Homework 4

1. Solve the following difference equations
(a) $2 x(n)-5 x(n-1)=0, x(0)=2$.
(b) $2 x(n)-5 x(n-1)=3, x(0)=3$.
(c) $2 x(n)-5 x(n-1)=3 n, x(0)=0$.
(d) $2 x(n+1)-7 x(n)+3 x(n-1)=0, x(0)=1, x(1)=2$.
(e) $2 x(n+1)-7 x(n)+3 x(n-1)=2+2^{n}, x(0)=3, x(1)=0$.
2. Your mortgage is for 30 years with a fixed annual rate of 4% compounded monthly.
(a) If you borrow $\$ 150,000$ today, what is the total amount of money will you pay back to the bank during the next 30 years?
(b) You can afford a down-payment of $\$ 15,000$ and a monthly payment of no more than $\$ 1250$. What is the value of the most expensive house can you buy?
3. Your retirement account guarantees a fixed rate of 8% per year paid yearly. You start saving for retirement at age 30 with a target retirement age of 65 and $\$ 0$ in your saving account. Use first order difference equations to answer the following questions (all interests and payments are computed on a yearly basis).
(a) You set aside $\$ 500$ every month (or $\$ 6000$ a year). How much money will you have for your retirement?
(b) You want to retire with $\$ 500,000$. How much should you save every year?
(c) You assume that your salary will increase 5% every year and so you decide your contribution should also increase by 5% every year. If your starting contribution is $\$ 500$ every month how much money will you have saved at retirement age?
(d) Assuming again that your contribution is increasing by 5% every year, what should your starting contribution be if if you want to reach $\$ 500,000$ by retirement age?
4. In the powerball with with a jackpot of $\$ 40$ millions, you can either receive a lump sum of $\$ 27$ million today or to receive $\$ 1 \frac{1}{3}$ million per year for the next 30 years. To compare the two options assume that you can get guaranteed interest rate of α percent yearly (compounded annually) and assume you invest and save all your money for 30 years.
(a) Write down two difference equations for each of the two options $(x(n)$ is the value of investment after n years in million dollars).
(b) For which interest rate α is the option of a lump sum better?
