
Chapter 6: Variance, the law of large numbers and
the Monte-Carlo method

Expected value, variance, and Chebyshev inequality. If X is a random variable
recall that the expected value of X, E[X] is the average value of X

Expected value of X : E[X] =
∑
α

αP (X = α)

The expected value measures only the average of X and two random variables with
the same mean can have very different behavior. For example the random variable X
with

P (X = +1) = 1/2 , P (X = −1) = 1/2

and the random variable Y with

[P (X = +100) = 1/2 , P (X = −100) = 1/2

have the same mean
E[X] = E[Y ] = 0

To measure the ”spread” of a random variable X, that is how likely it is to have value of
X very far away from the mean we introduce the variance of X, denoted by var(X). Let
us consider the distance to the expected value i.e., |X − E[X]|. It is more convenient to
look at the square of this distance (X − E[X])2 to get rid of the absolute value and the
variance is then given by

Variance of X : var(X) = E
[
(X − E[X])2

]
We summarize some elementary properties of expected value and variance in the fol-

lowing

Theorem 1. We have

1. For any two random variables X and Y , E[X + Y ] = E[X] + E[Y ].

2. For any real number a, E[aX] = aE[X].

3. For any real number c, E[X + c] = E[X] + c.
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4. For any real number a, var(aX) = a2var(X).

5. For any real number c, var(X + c) = var(X).

Proof. 1. should be obvious, the sum of averages is the average of the sum. For 2. one
notes that if X takes the value α with some probability then the random variable aX
takes the value aα with the same probability. 3 is a special case of 1 if we realize that
E[a] = a. For 4. we use 2 and we have

var(X) = E
[
(aX − E[aX])2

]
= E

[
a2 (X − E[X])2

]
= a2E

[
(X − E[X])2

]
= a2var(X) .

Finally for 5. not that X+a−E[X+a] = X−E[x] and so the variance does not change.

Using this rule we can derive another formula for the variance.

var(X) = E
[
(X − E[X])2

]
= E[X2 − 2XE[X] + E[X]2

= E[X2] + E[−2XE[X]] + E[E[X]2]

= E[X2]− 2E[X]2 + E[X]2

= E[X2]− E[X]2

So we obtain

Variance of X : var(X) = E
[
(X − E[X])2

]
= E[X2]− E[X]2

Example: The 0 − 1 random variable. Suppose A is an event the random variable
XA is given by

XA =

{
1 if A occurs
0 otherwise

and let us write
p = P (A)

The we have

E[XA] = 0× P (XA = 0) + 1× P (XA = 1) = 0× (1− p) + 1× p = p .
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To compute the variance note that

XA − E[XA] =

{
1− p if A occurs
−p otherwise

and so

var(X) = (−p)2×P (XA = 0) + (1−p)2×P (XA = 1) = p2(1−p) + (1−p)2p = p(1−p)

In summary we have

The 0− 1 random variable

P (X = 1) = p , P (X = 0) = (1− p)
E[X] = p , var(X) = p(1− p)

Chebyshev inequality: The Chebyshev inequality is a simple inequality which allows
you to extract information about the values that X can take if you know only the mean
and the variance of X.

Theorem 2. We have

1. Markov inequality. If X ≥ 0, i.e. X takes only nonnegative values, then for any
a > 0 we have

P (X ≥ a) ≤ E[X]

α

2. Chebyshev inequality. For any random variable X and any ε > 0 we have

P (|X − E[X]| ≥ ε) ≤ var(X)

ε2

Proof. Let us prove first Markov inequality. Pick a positive number a. Since X takes only
nonnegative values all terms in the sum giving the expectations are nonnegative we have

E[X] =
∑
α

αP (X = α) ≥
∑
α≥a

αP (X = α) ≥ a
∑
α≥a

P (X = α) = aP (X ≥ a)
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and thus

P (X ≥ a) ≤ E[X]

a
.

To prove Chebyshev we will use Markov inequality and apply it to the random variable

Y = (X − E[X])2

which is nonnegative and with expected value

E[Y ] = E
[
(X − E[X])2

]
= var(X) .

We have then

P (|X − E[X]| ≥ ε) = P ((X − E[X])2 ≥ ε2)

= P (Y ≥ ε2)

≤ E[Y ]

ε2

=
var(X)

ε2

(1)

Independence and sum of random variables: Two random variables are independent
independent if the knowledge of Y does not influence the results of X and vice versa. This
can be expressed in terms of conditional probabilities: the (conditional) probability that
Y takes a certain value, say β, does not change if we know that X takes a value, say α.
In other words

Y is independent of X if P (Y = β|X = α) = P (Y = β) for all α, β

But using the definition of conditional probability we find that

P (Y = β|X = α) =
P (Y = β ∩X = α)

P (X = α)
= P (Y = β)

or
P (Y = β ∩X = α) = P (X = α)P (Y = β) .

This formula is symmetric in X and Y and so if Y is independent of X then X is also
independent of Y and we just say that X and Y are independent.
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X and Y are independent if P (Y = β ∩X = α) = P (X = α)P (Y = β) for all α, β

Theorem 3. Suppose X and Y are independent random variable. Then we have

1. E[XY ] = E[X]E[Y ].

2. var(X + Y ) = var(X) + var(Y ).

Proof. : If X and Y are independent we have

E[XY ] =
∑
α,β

αβP (X = αY = β)

=
∑
α,β

αβP (X = α)P (Y = β)

=
∑
α

αP (X = α)
∑
β

βP (Y = β)

= E[X]E[Y ]

To compute the variance of X + Y it is best to note that by Theorem 1, part 5, the
variance is unchanged if we translate the the random variable. So we have for example
var(X) = var(X − E[X]) and similarly for Y and X + Y . So without loss of generality
we may assume that E[X] = E[Y ] = E[X + Y ] = 0. Then var(X) = E[X2], etc...

var(X + Y ) = E
[
(X + Y )2

]
= E

[
X2 + 2XY + Y 2

]
= E

[
X2
]

+ E
[
Y 2
]

+ 2E [XY ]

= E
[
X2
]

+ E
[
Y 2
]

+ 2E [X]E [Y ] (X, Y independent)

= E
[
X2
]

+ E
[
Y 2
]

(since E[X] = E[Y ] = 0)

= var(X) + var(Y )

The Law of Large numbers Suppose we perform an experiment and a measurement
encoded in the random variable X and that we repeat this experiment n times each time
in the same conditions and each time independently of each other. We thus obtain n
independent copies of the random variable X which we denote

X1, X2, · · · , Xn
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Such a collection of random variable is called a IID sequence of random variables where IID
stands for independent and identically distributed. This means that the random variables
Xi have the same probability distribution. In particular they have all the same means
and variance

E[Xi] = µ , var(Xi) = σ2 , i = 1, 2, · · · , n

Each time we perform the experiment n tiimes, the Xi provides a (random) measurement
and if the average value

X1 + · · ·+Xn

n

is called the empirical average. The Law of Large Numbers states for large n the empirical
average is very close to the expected value µ with very high probability

Theorem 4. Let X1, · · · , Xn IID random variables with E[Xi] = µ and var(Xi) for
all i. Then we have

P

(∣∣∣∣X1 + · · ·Xn

n
− µ

∣∣∣∣ ≥ ε

)
≤ σ2

nε2

In particular the right hand side goes to 0 has n→∞.

Proof. The proof of the law of large numbers is a simple application from Chebyshev
inequality to the random variable X1+···Xn

n
. Indeed by the properties of expectations we

have

E

[
X1 + · · ·Xn

n

]
=

1

n
E [X1 + · · ·Xn] =

1

n
(E [X1] + · · ·E [Xn]) =

1

n
nµ = µ

For the variance we use that the Xi are independent and so we have

var

(
X1 + · · ·Xn

n

)
=

1

n2
var (X1 + · · ·Xn]) =

1

n2
(var(X1) + · · ·+ var(Xn)) =

σ2

n

By Chebyshev inequality we obtain then

P

(∣∣∣∣X1 + · · ·Xn

n
− µ

∣∣∣∣ ≥ ε

)
≤ σ2

nε2

Coin flip Suppose we flip a fair coin 100 times. How likely it is to obtain between 40%
and 60% heads? We consider the random variable X which is 1 if the coin lands on head
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and 0 otherwise. We have µ = E[X] = 1/2 and σ2 = var(X) = 1/4 and by Chebyshev

P (between 40 and 60 heads) = P (40 ≤ X1 + · · ·X100 ≤ 60)

= P

(
4

10
≤ X1 + · · ·X100

100
≤ 6

10

)
= P

(∣∣∣∣X1 + · · ·X100

100
− 1

2

∣∣∣∣ ≤ 1

10

)
= 1− P

(∣∣∣∣X1 + · · ·X100

100
− 1

2

∣∣∣∣ ≥ 1

10

)
≥ 1− 1/4

100(1/10)2
= .75 (2)

If we now flip a fair coin now 1000 obtainthe probability to obtain between 40% and 60%
heads can be estimated by

P (between 400 and 600 heads) = P

(∣∣∣∣X1 + · · ·X1000

1000
− 1

2

∣∣∣∣ ≥ 1

10

)
= 1− P

(∣∣∣∣X1 + · · ·X100

100
− 1

2

∣∣∣∣ ≤ 1

10

)
≥ 1− 1/4

1000(1/10)2
= .975 (3)

Variance as a measure of risk: In many problems the variance can be interpreted as
measuring how risky an investment is. As an example let us put ourselves in the casino
shoes and try to figure out what is more risky for a casino? A player betting on red/black
at roulette or a player betting on numbers?

• Suppose X is the expected win on red or black. Then we have E[X] = 118
38
− 118

38
=

− 2
38

and E[X2] = 118
38

+ 118
38

= 1 so Var(X) = 0.99.

• Suppose Y is the expected win on a number. Then E[X] = 35 1
38
− 137

38
= − 2

38
, and

E[X2] = (35)2 18
38

+ 118
38

= 33.21 so Var(X) = 33.20

It is obvious that that the riskier bet is to bet on numbers. To estimate the risk taken
by the casino, let us estimate using Chebyshev inequality that the casino actually loses
money on n bets of say $1. This is

P {X1 + · · ·+Xn > 0}
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Using Chebyshev we have

P {X1 + · · ·+Xn > 0} = P {X1 + · · ·+Xn − µ > −µ}
≤ P {|X1 + · · ·+Xn − µ| > |µ|}

≤ σ2

n|µ|2
(4)

So for bets on red/black the estimates on the probability that the casino is around 33
times smaller for for a bet numbers. But of course, in nay case the probability that the
casino lose at all is tiny and in addition Chebyshev grossly overestimates these numbers.

Probabilistic algorithms and the Monte-Carlo method: Under the name Monte-
Carlo methods, one understands an algorithm which uses randomness and the LLN to
compute a certain quantity which might have nothing to do with randomness. Such
algorithm are becoming ubiquitous in many applications in statistics, computer science,
physics and engineering. We will illustrate the ideas here with some very simple test
examples. We start with a probabilistic algorithm which do not use the LLN at all but
use probability in a surprising manner to make a decision.

Guessing the largest of two number: Suppose you pick two distinct integers A < B,
let us say between 1 and 100. You can do this in any way you wish. You write then the
2 numbers on two pieces of papers and put them face down. I then pick one of the two
pieces of paper and look at the number on it. I should then decide whether this number is
the largest of the 2 or not. We will describe an algorithm which always return the largest
of 2 with probability greater than 1/2, no matter how you picked the number.

To describe the algorithm we let O be the observed number by me. Then I pick a
random number N between 1 and 100, for example uniformly, that is P (N = n) = 1

100

with n = 1, 2 · · · , 100. I could pick N according to another distribution and it would still
works. Then my answer is simply

• If O > N then I guess that O is the largest number.

• if O ≤ N then I switch and guess that the other unobserved number is the largest.

To see how this works we distinguish three cases

1. If N < A < B then N < 0 and thus picking O as the largest give me a probability
1/2 to pick the largest.

2. If N ≥ B > A, then I decide to switch and again I pick the largest with probability
1/2.
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3. If A ≥ N < B it gets interesting, since if O = A, then N ≥ A and so I switch and
pick B which is the largest. On the other hand if O = B, then N < O and so i
guess that O = B is the largest and win. So I always win.

Using conditional probabilities, we find that

P (Win) = P (Win|N < A)P (N < A) + P (Win|A ≤ N < B)P (A ≤ N < B)

+P (Win|B ≤ N)P (B ≤ N)

=
1

2
P (N < A) + P (A ≤ N < B) +

1

2
P (B ≤ N) >

1

2
(5)

For example is N is uniformly distributed, we have

P (Win) =
1

2

A− 1

100
+
B − A

100
+

1

2

100−B + 1

100
=

1

2
+

1

2

B − A
100

.

Random numbers: A computer comes equipped with a random number generator,
(usually the command rand, which produces a number which is uniformly distributed in
[0, 1]. We call such a number U and such a number is characterized by the fact that

P (U ∈ [a, b]) = b− a for any interval [a, b] ⊂ [0, 1] .

Every Monte-Carlo method should be in principle constructed with random number so
as to be easily implementable. For example we can generate a 0 − 1 random variable X
with P (X = 1) = p and P (X = 0) = 1− p by using a random number. We simply set

X =

{
1 if U ≤ p
0 if U > p

Then we have
P (X = 1) = P (U ∈ [0, p]) = p .

An algorithm to compute the number π: To compute the number π we draw a
square with side length 1 and inscribe in it a circle of radius 1/2. The area of the square
of 1 while the area of the circle is π/4. To compute π we generate a random point in the
square. If the point generated is inside the circle we accept it, while if it is outside we
reject it. The we repeat the same experiment many times and expect by the LLN to have
a proportion of accepted points equal to π/4

More precisely the algorithm now goes as follows
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• Generate two random numbers U1 and V1, this is the same as generating a random
point in the square [0, 1]× [0, 1].

• If U2
1 + V 2

1 ≤ 1 then set X1 = 1 while if U2 + V 2 > 1 set X1 = 0.

• Repeat to the two previous steps to generate X2, X3, · · · , Xn.

We have

P (X1 = 1) = P (U2
1 + V 2

1 ≤ 1) =
area of circle

area of the square
=

π/4

1

and P (X = 0) = 1− π/4. We have then

E[X] = µ = π/4 var(X) = σ2 = π/4(1− π/4)

So using the LLN and Chebyshev we have

P

(∣∣∣∣X1 + · · ·Xn

n
− π

4

∣∣∣∣ ≥ ε

)
≤ π/4(1− π/4)

nε2

In order to get quantitative information suppose we want to compute π with an accuracy
of ±1/1000, that is we take ε = 1/000. This is the same as computing π/4 with an
accuracy of 1/4000. On the right hand side we have the variance π/4(1− π/4) which is a
number we don’t know. But we note that the function p(1− p) on [0, 1] has its maximum
at p = 1/2 and the maximum is 1/4 so we can obtain

P

(∣∣∣∣X1 + · · ·Xn

n
− π

4

∣∣∣∣ ≥ 4/100

)
≤ 4, 000, 000

n

That we need to compute run the algorithm 80 millions times to make this probability
5/100.

The Monte-carlo method to compute the integral
∫ b
a
f(x) dx. We consider a func-

tion f on the interval [a, b] and we wish to compute

I =

∫ b

a

f(x) dx .

for some bounded function f . Without loss of generality we can assume that f ≥ 0,
otherwise we replace f by f + c for some constant c. Next we can also assume that f ≤ 1
otherwise we replace f by cf for a sufficiently small c. Finally we may assume that a = 0
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and b = 1 otherwise we make the change of variable y = (x − a)/(b − a). For example
suppose we want to compute the integral∫ 1

0

esin(x
3)

3(1 + 5x8)
dx

This cannot be done by hand and so we need a numerical method. A standard method
would be to use a Riemann sum, i.e. we divide the interval [0, 1] in subinterval and set
xi = i

n
then we can approximate the integral by∫

f(x)dx ≈ 1

n

n∑
i=1

f(xi)

that is we approximate the area under the graph of f by the sum of areas of rectangles
of base length 1/n and height f(i/n).

We use instead a Monte-Carlo method. We note that

I = Area under the graph of f

and we construct a 0 − 1 random variable X so that E[X] = I. We proceed as for
computing π.

More precisely the algorithm now goes as follows

• Generate two random numbers U1 and V1, this is the same as generating a random
point in the square [0, 1]× [0, 1].

• If V1 ≤ f(U1) then set X1 = 1 while if V1 > f(U1) set X1 = 0.

• Repeat to the two previous steps to generate X2, X3, · · · , Xn.

We have

P (X = 1) = P (V ≤ f(U)) =
Area under the graph of f

Area of [0, 1]× [0, 1]
= I =

∫ 1

0

f(x) dx

and so E[X] = I and var(X) = I(1− I).

11


