
Chapter 10: Mixed strategies Nash equilibria,
reaction curves and the equality of payoffs theorem

Nash equilibrium: The concept of Nash equilibrium can be extended in a natural
manner to the mixed strategies introduced in Lecture 5. First we generalize the idea of a
best response to a mixed strategy

Definition 1. A mixed strategy σ̂R is a best response for R to some mixed strategy σC
of C if we have

〈σ̂R, PRσC〉 ≥ 〈σR, PRσC〉 for all σR .

A mixed strategy σ̂C is a best response for C to some strategy σR of R if we have

〈σR, PC σ̂C〉 ≥ 〈σR, PCσC〉 for all σC

We can then extend the definition to Nash equilbrium

Definition 2. The mixed strategies σ̂R, σ̂R are a Nash equilibrium for a two-player game
with payoff matrices PR and PC if

σ̂R is a best response to σ̂C and σ̂C is a best response to σ̂R

or in other words
〈σ̂R, PRσ̂C〉 ≥ 〈σR, PRσ̂C〉 for all σR .

〈σ̂R, PC σ̂C〉 ≥ 〈σ̂R, PCσC〉 for all σR

Reaction curves: For games with two strategies one can compute the best responses
and the Nash equilbria in terms of the reactions curves. To explain the idea let us start
with a example

Example: Matching Pennies The payoff matrices are given by

PR =

(
1 −1
−1 1

)
, PR =

(
−1 1
1 −1

)
and let us write the mixed strategies as

σR = (p, 1− p) σC = (q, 1− q)

To find the best response to σC we compute

〈σR, PRσC〉 =

〈(
p

1− p

)
,

(
1 −1
−1 1

)(
q

1− q

)〉
=

〈(
p

1− p

)
,

(
2q − 1
1− 2q

)〉
= p(2q − 1) + (1− p)(1− 2q) = (2q − 1) + p(4q − 2)
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Since we are computing the best response for R to the strategy of C we consider the
payoff

(2q − 1) + p(4q − 2)

for fixed q and variable p with 0 ≤ p ≤ 1. This is a linear function of p and the
maximum will depend on the slope of this function (here 4q − 2), whether it is positive,
negative, or 0.

Best response for R:

• 4q − 2 > 0 (or q < 1/2) The slope is positive so the maximum is at p = 1.

• 4q − 2 < 0 (or q > 1/2) The slope is negative so the maximum is at p = 0

• 4q− 2 = 0 (or q = 1/2) The slope is 0 so the maximum is at any p between 0 and 1.

To find the best response for C we compute

〈σR, PRσC〉 =

〈(
p

1− p

)
,

(
−1 1
1 −1

)(
q

1− q

)〉
=

〈(
p

1− p

)
,

(
1− 2q
2q − 1

)〉
= p(1− 2q) + (1− p)(2q − 1)

= (2p− 1) + q(2− 4p)

which we now consider has a function of the variable q and for fixed p. By maximizing
over 0 ≤ q ≤ 1 we find

Best response for C:

• 2− 4p > 0 (or p > 1/2) The slope is positive so the maximum is at q = 1.

• 2− 4p < 0 (or p < 1/2) The slope is negative so the maximum is at q = 0

• 2− 4p = 0 (or p = 1/2) The slope is 0 so the maximum is at any q between 0 and 1.

To find the Nash equilibria we argue as follows.

• If q > 1/2 then the best response is p = 0 but the best response to p = 0 is q = 0
which contradicts q > 1/2 and this does not lead to a Nash equilbrium.

• If q < 1/2 then the best response is p = 1 but the best response to p = 1 is q = 1
and again this does not lead to a Nash equilbrium.

• If q = 1/2 then the best response is any p and so if we choose p = 1/2 then the best
response to p = 1/2 is any q, in particular q = 1/2.
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Figure 1: Reaction curves for the matching pennies game

The conclusion is that there exists one Nash equilibrium

σR = (1/2, 1/2) , σC = (1/2, 1/2) ,

A convenient way to put all this information together and to find the Nash equilibria
in a a graphical manner is to draw the reaction curves which exhibit the best responses.
For the matching pennies they are show in figure ??

Example: Battle of the sexes. Writing the payoff as σR = (p, 1− p), σC = (q, 1− q)
we have for the best response from R to C

〈σR, PRσC〉 =

〈(
p

1− p

)
,

(
1 3
2 0

)(
q

1− q

)〉
=

〈(
p

1− p

)
,

(
3− 2q

2q

)〉
= p(3− 2q) + (1− p)2q = 2q + p(3− 4q) (1)

Since the fame is symmetric we obtain the payoff for C by exchanging p and q

〈σR, PCσC〉 = 2p+ q(3− 4p)

We obtain Best response for R:

• 3− 4q > 0 (or q < 3/4) The slope is positive so the maximum is at p = 1.

• 3− 4q < 0 (or q > 3/4) The slope is negative so the maximum is at p = 0

• 3− 4q = 0 (or q = 3/4) The slope is 0 so the maximum is at any p between 0 and 1.

and Best response for R:

• 3− 4p > 0 (or p < 3/4) The slope is positive so the maximum is at q = 1.

3



Figure 2: Reaction curves for the battle of the sexes game

• 3− 4p < 0 (or p > 3/4) The slope is negative so the maximum is at q = 0

• 3− 4p = 0 (or p = 3/4) The slope is 0 so the maximum is at any q between 0 and 1.

The best response curves are given in Figure ??

The equality of payoffs theorem The method used above to compute the Nash equilib-
ria works well if there are 2 strategies but is not very useful if three or more strategies are
used since the optimization problems become much more complicated. We present here
a method which, in principle, allows to compute, all Nash equilibria of a game. But the
reader should be warned that computations become quickly quite lengthy and involved.

Some games do not have a Nash equilibrium in pure strategies (like rock-paper-scissors)
or matching pennies but there is always one (and often many) if we consider mixed
strategies.

Theorem 3. (Nash Theorem) A game (with a finite number of strategies) always has
at least one Nash equilibrium (σ̂R, σ̂C) in mixed strategies.

Many interesting examples of games are symmetric.

Theorem 4. (Nash Theorem for symmetric games) For a symmetric game we have

(σ̂R, σ̂C) is a NE⇐⇒ (σ̂C , σ̂R) is a NE

Moroever there always exists at least one symmetric NE

(σ̂R, σ̂C) = (σ̂, σ̂)

The computation of Nash equilibria is based on the simple observation.
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Theorem 5. (Equality of payoff theorems) Suppose σ̂R is a best response to σC.
Then we have

1. If the strategy i and j are played with positive probability for R (that is we have
σ̂R(i) > 0 and σ̂R(j) > 0) then the payoff to play i and j against σC are identical.

σ̂R(i) > 0 and σ̂R(j) > 0 =⇒ PRσC(i) = PRσC(j)

2. If the strategy i is played with positive probability (that is we have σ̂R(i) > 0) but
the strategy j is played with probability 0 (that is σ̂R(j) = 0) then the payoff for R
to play j against σC is less than or equal to the payoff to play i against σC.

σ̂R(i) > 0 and σ̂R(j) = 0 =⇒ PRσC(i) ≥ PRσC(j)

Proof. (i) It is best to argue by contradiction. Suppose that the strategies i and j are
played with positive probability for R (that is we have σ̂R(i) > 0 and σ̂R(j) > 0) but
the payoffs PRσC(i) and PRσC(j) are not equal. Let us say for example that we have
PRσC(j) > PRσC(i). Then we argue that σ̂R cannot be a best response to σC : since it
it more favorable to play j than to play i if you choose a new mixed strategy where you
play j with greater probability than σ̂R(i) and j with a smaller probability that σ̂R(j)
and all the other strategies with the unchanged probabilities then your payoff in this new
strategy against σC will strictly increase. So σ̂R was not a best response.

(ii) Argue again by contradiction. Suppose that σ̂R(i) > 0 and σ̂R(j) = 0 but that
PRσC(j) > PRσC(i). Then σ̂R cannot be a best response to σC . To see this change your
strategy σ̂R into a new strategy where you play now j with positive probability and i with
probability 0. In this new strategy the payoff against σC is greater than for σ̂R and so σ̂R
was not a best response.

It is useful to give a name for the strategies which are played with positive probabilities:

Definition 6. The support of a mixed strategies σ is the set of pure strategies which are
played with positive probability. We denote the support of σ by S(σ):

S(σ) = {i : σ(i) > 0)}

For example if σ = (1/7, 2/7, 0, 0, 4/7) then S(σ) = {1, 2, 5} that is the mixed strategy
σ the strategies played with positive probability are 1, 2, and 5.
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Using the equality of payoff theorem we can devise a method to compute all Nash
equilibria:

Algorithm to compute Nash equilibria

• Pick a support for both σR and σC .

• Compute the payoff for R, i.e., compute the vector PRσC and set the payoffs equal
to each other if they are in the support of σR. Solve the equation for σC . Do the
same for the payoff for C, i.e. compute P T

C σR and set the payoffs equal to each other
if they are in the support of σC . Solve the equation for σR.

• Check that the strategies which are not in the support of σR and σC do not offer a
greater payoff.

• Pick another support for both σR and σC and repeat the exercise.

At each step one tries to solve a system of linear equations which is not easy but
the complexity of the algorithm grows very quickly since one needs to check all possible
supports. For example if R has 2 strategies and C has 3 strategies there are 3 choices of
support for R and 7 for C........

It is a bit less tedious to compute symmetric Nash equilibria since one can use the
symmetry of the problem.

Algorithm to compute symmetric Nash equilibria (σ̂, σ̂)

• Pick a support σ.

• Set all the payoff PRσ(i) equal for i ∈ S(σ) and try to solve for σ.

• Check that for j /∈ S(σ) the payoff PRσ(j) is smaller than the payoff for i ∈ S(σ).

• Pick another support for σ̂ and repeat.

Let us illustrate the techniques with a number of examples:

Example: Consider the game with payoff matrices

PR =

(
−2 3
3 −5

)
, PC =

(
1 3
2 1

)
We try to find a NE in mixed strategies. We denote σC = (p, 1 − p) and σR = (q,−1q).
The payoff for R are given by

PRσC =

(
−2 3
3 −5

)(
p

1− p

)
=

(
3− 5p
8p− 5

)
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while the payoff for C are given by

P T
C σR =

(
1 2
3 1

)(
q

1− q

)
=

(
2− q
1 + 2q

)
Setting the payoff for R to be equal we find

3− 5p = 8p− 5 ⇒ p = 8/13

while setting the payoff for C to be equal gives

2− q = 1 + 2q ⇒ q = 1/3

So we have a NE
(σ̂R, σ̂C) = ((1/3, 2/3) , (8/13, 5/13)) .

Example: Symmetric 2-strategies game Consider the symmetric game with payoff
matrices

PR =

(
a b
c d

)
, PC =

(
a c
b d

)
We already know that the game as 1 pure strategy NE is a > c, b > d or a < c, b < d
and 2 pure strategy NE if a > c, b < d or a < c, b > d. To find when this game as a
mixed Nash equilibrium we use the equality of payoff theorem. Denote σC = (p, 1 − p),
the strategy for C, then the payoff for R is(

a b
c d

)(
p

1− p

)
=

(
b+ p(a− b)
d+ p(c− d)

)
Setting the payoff to be equal we find

b+ p(a− b) = d+ p(c− d)

or
p[(a− c) + (d− b)] = d− b .

So we find

p =
(d− b)

(a− c) + (d− b)
.

Since the game is symmetric if we denote that strategy for R by σR = (q, 1− q) the payoff
for C are (

b+ q(a− b)
d+ q(c− d)

)
and equating them gives the same solution q = (d−b)

(a−c)+(d−b)
. Note that p and q should be

between 0 and 1 and this occurs only if a > c, b < d or a < c, b > d.
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A symmetric two strategies game with matrix PR =

(
a b
c d

)
and PC = P T

R has

a mixed strategy NE if a > c, b < d or a < c, b > d. The NE is symmetric and given
by (σ̂R, σ̂C) = (σ̂, σ̂) with

σ̂ =

(
(d− b)

(a− c) + (d− b)
,

(a− c)
(a− c) + (d− b)

)

Example: Nash equilibria for Rock-scissors-papers The payoff matrices are

PR =

 0 1 −1
−1 0 1
1 −1 0

 , PC =

 0 −1 1
1 0 −1
−1 1 0


Note that the game is a symmetric one so we should find a symmetric Nash equilibrium.
The computation of Nash equilibria goes in several steps.

• Assume that one of the player use all his three pure strategies, for example take
σC = (p1, p2, 1 − p1 − p2). Then the payoffs for R against this mixed strategy are
given by

PRσC =

 0 1 −1
−1 0 1
1 −1 0

 p1
p2

1− p1 − p2

 =

 2p2 + p1 − 1
1− p2 − 2p1
p1 − p2


We set the payoffs to be equal and find two equation

2p2 + p1 − 1 = p1 − p2 → p2 = 1/3

1− p2 − 2p1 − 1 = p1 − p2 → p1 = 1/3

so we must have σC = (1/3, 1/3, 1/3). Since the game is symmetric by reversing the
roles of R and C we find then σR = (1/3, 1/3, 1/3) and we have found a (symmetric)
NE.

• We try next to find NE where one player plays only 2 of his strategies, say let us
pick σC = (p, 1− p, 0). Then the payoff for R is

PRσC =

 0 1 −1
−1 0 1
1 −1 0

 p
1− p

0

 =

 1− p
−p
0


8



If we try to set the payoff equal to each other we find 1−p = −p which is impossible
or −p = 0 which gives p = 0 or 1− p = 0 which gives p = 1. In both case it means
that C is actually using only one of his strategies and not two as assumed. Note
that the game is also symmetric in the strategies and so picking another 2 strategies
for any of the player will lead to the same conclusion.

• Finally assume that C use only a pure strategy in his NE, for example his first one
(Rock). Then we have

PRσC =

 0 1 −1
−1 0 1
1 −1 0

 1
0
0

 =

 0
−1
1


and the best response for R is then to play his third strategy (Paper, of course).
But conversely Rock for C is not a best response to Paper for R and so this does
not give a NE.

To conclude we find

Unique NE σ̂R = (1/3, 1/3, 1/3) , σ̂C = (1/3, 1/3, 1/3)

Example: NE for coordination game: Let us consider the symmetric game where
two players shows 1, 2, or 3 fingers and win the number of finger they show if both player
show the same number of fingers and lose the number of finger they show if the numbers
of fingers do not match. This game is a coordination game since it is advantageous for
a player to play the same strategy as his opponent. Coordination have typically many
Nash equilibria.

The payoff matrices are given by

PR =

 1 −1 −1
−2 2 −2
−3 −3 3

 , PC =

 1 −2 −3
−1 2 −3
−1 −2 3


The game is symmetric and we shall use this fact to simplify the computations. The
computation of Nash equilibria goes in several steps.

• Assume player C use all his three strategies, for example σC = (p1, p2, 1− p1 − p2).
Then the payoffs against this strategies are given by

PRσC =

 1 −1 −1
−2 2 −2
−3 −3 3

 p1
p2

1− p1 − p2

 =

 2p1 − 1
4p2 − 2

3− 6p1 − 6p2
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We set the payoffs to be equal and find

2p1 − 1 = 3− 6p1 − 6p2 4p2 − 2 = 3− 6p1 − 6p2

or
8p1 + 6p2 = 4 6p1 + 10p2 = 5

and after some algebra we find σC = (5/22, 8/22, 9/22). Since the game is symmet-
ric, reversing the role of R and C we also find σR = (5/22, 8/22, 9/22).

• Let us assume that C uses only his first two strategies (one finger and two fingers)
σC = (p, 1− p, 0). Then we have

PRσC =

 1 −1 −1
−2 2 −2
−3 −3 3

 p
1− p

0

 =

 2p− 1
2− 4p

0


If we set the payoffs to be equal we find 2p−1 = 2−4p or p = 1/2. For that choice the
payoffs are then (0, 0, 0). So we can assume that R is playing is first two strategies
with positive probability. His third strategy yields a payoff which is not bigger. But
now if R use his first two strategies using the symmetry of the game we find the same
result for C. So we obtain a Nash equilibrium σR = (1/2, 1/2, 0), σC = (1/2, 1/2, 0).

• Let us assume that C uses only his first and third strategies, σC = (p, 1 − p, 0).
Then we find PRσC = (2p− 1, 0, 3− 6p) and arguing as in the previous case we find
a Nash equilibrium σR = (1/2, 0, 1/2), σC = (1/2, 0, 1/2).

• Let us assume that C uses only his second and third strategies, then we obtain in a
similar way σR = (0, 1/2, 1/2), σC = (0, 1/2, 1/2).

• Finally let us assume that C plays a pure strategy, say 1. Then we have

PRσC =

 1 −1 −1
−2 2 −2
−3 −3 3

 1

0

 =

 1
−2
−3


and so the best response for R is to play 1. By symmetry we find the Nash equilib-
rium σR = (1, 0, 0), σC = (1, 0, 0). One argues similarly with playing pure strategies
2 and 3 and one finds two more Nash equilbrium in pure strategies.

To summarize we have found 7 Nash equilibria, all of them symmetric, i.e., we have
(σ̂R = σ̂C) = (σ̂, σ̂) with

σ̂ = (5/22, 8/22, 9/22),

σ̂ = (1/2, 1/2, 0), σ̂ = (1/2, 0, 1/2), σ̂ = (0, 1/2, 1/2)

σ̂ = (1, 0, 0), σ̂ = (0, 1, 0), σ̂ = (0, 0, 1).
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