MATH 331.1, Fall 2007 : Quizz \#6 solution

Your Name:

\qquad
The quizz has 1 question worth 10 points.
Find the general solution for the second order system $\frac{d^{2} y}{d t^{2}}+25 y=\cos (t)$.
Solution: The homogeneous equation $\frac{d^{2} y}{d t^{2}}+25 y=0$ is solved by trying an exponential $e^{s t}$. Inserting into the equation gives

$$
s^{2}+25=0, \quad s= \pm i \sqrt{5} .
$$

The solution of the homogeneous equation is thus

$$
y_{h}(t)=k_{1} \cos (5 t)+k_{2} \sin (5 t)
$$

In order to find a particular solution we use complex numbers and consider first the equation $\frac{d^{2} y}{d t^{2}}+25 y=e^{i t}$. We look for a solution of the form $y_{c}(t)=a e^{i t}$. Inserting into the equation gives

$$
a i^{2} e^{i t}+25 a e^{i t}=e^{i t}
$$

that is $a(-1+25)=1$ or $a=1 / 24$. The particular complex solution of $\frac{d^{2} y}{d t^{2}}+25 y=e^{i t}$ is

$$
y_{c}(t)=\frac{1}{24} e^{i t} .
$$

Since $\cos (t)$ is the real part of $e^{i t}$ a particular solution $y_{p}(t)$ of $\frac{d^{2} y}{d t^{2}}+25 y=\cos (t)$ is obtained by taking the real part of $y_{c}(t)=\frac{1}{24} e^{i t}=\frac{1}{24}(\cos (t)+i \sin (t))$, i.e.

$$
y_{p}(t)=\frac{1}{24} \cos (t)
$$

The general solution $\frac{d^{2} y}{d t^{2}}+25 y=\cos (t)$ is then

$$
y(t)=y_{h}(t)+y_{p}(t)=k_{1} \cos (5 t)+k_{2} \sin (5 t)+\frac{1}{24} \cos (t) .
$$

