MATH 331.1, Fall 2007 : Quizz \#5 solution

Your Name:

\qquad
The quizz has 1 question worth 10 points.
(a) (2.5 pts). Find the general solution for the second order system $\frac{d^{2} y}{d t^{2}}+7 \frac{d y}{d t}+12 y=0$.

Solution: Try a solution of the form $y(t)=e^{s t}$. Inserting into the equation gives

$$
s^{2}+7 s+12=0
$$

which has solutions

$$
s=\frac{-7 \pm \sqrt{49-48}}{2}=-3,-4
$$

The general solution is then

$$
y(t)=k_{1} e^{-3 t}+k_{2} e^{-4 t}
$$

(b) (2.5 pts). Using complex numbers find a complex particular solution y_{c} of the second order system $\frac{d^{2} y}{d t^{2}}+7 \frac{d y}{d t}+12 y=8 e^{4 i t}$.

Solution: Try a solution of the form $y(t)=a e^{4 i t}$. Inserting into the equations give

$$
(4 i)^{2} a e^{4 i t}+7(4 i) a e^{4 i t}+12 a e^{4 i t}=8 e^{4 i t} .
$$

which gives

$$
a(-16+28 i+12)=8 \quad \text { or } \quad a=\frac{8}{-4+8 i}=\frac{2}{-1+7 i}
$$

and

$$
a=\frac{2}{-1+7 i} \frac{(-1-7 i)}{(-1-7 i)}=\frac{-2-14 i}{1+49}=-\frac{1}{25}-i \frac{7}{25}
$$

The complex particular solution is then

$$
y_{c}(t)=\left(-\frac{1}{25}-i \frac{7}{25}\right) e^{4 i t}
$$

(c) $(2.5 \mathrm{pts})$. Find the a real particular solution y_{p} for the second order system $\frac{d^{2} y}{d t^{2}}+7 \frac{d y}{d t}+12 y=8 \sin (4 t)$.

Solution: To find the particular solution we need to find the imaginary part of $y_{c}(t)$ (imaginary part because we have a force term $8 \sin (4 t)$.)

We have

$$
\begin{aligned}
y_{c}(t) & =(-1 / 25-i 7 / 25) e^{4 i t}=(-1 / 25-i 7 / 25)(\cos (4 t)+i \sin (4 t)) \\
& =[-1 / 25 \cos (4 t)+7 / 25 \sin (4 t)]+i[-7 / 25 \cos (4 t)-1 / 25 \sin (4 t)]
\end{aligned}
$$

Therefore

$$
y_{p}(t)=-7 / 25 \cos (4 t)-1 / 25 \sin (4 t)
$$

(d) (2.5 pts). Find the amplitude and the phase angle of the particular solution y_{p}.

To find the amplitude we rewrite a found in (b) as

$$
a=-1 / 25-i 7 / 25=|a| e^{i \theta}
$$

with

$$
\begin{aligned}
|a| & =\sqrt{(-1 / 25)^{2}+(-7 / 25)^{2}}=\sqrt{2 / 25} \\
\theta & =\arctan \left(\frac{-7 / 25}{-1 / 25}\right)=\arctan (-7) .
\end{aligned}
$$

The solution $y_{c}(t)$ is then

$$
Y_{c}(t)=\sqrt{2 / 25} e^{i \theta} e^{i 4 t}=\sqrt{2 / 25} e^{i \theta+4 t}=\sqrt{2 / 25}(\cos (4 t+\theta)+i \sin (4 t+\theta))
$$

The particular solution $y_{p}(t)$ is then

$$
\sqrt{2 / 25} \sin (4 t+\theta)=\sqrt{2 / 25} \cos \left(4 t+\theta-90^{\circ}\right)
$$

The amplitude is $\sqrt{2 / 25}$ and the phase angle is $\arctan (-7)-90^{\circ}$.

