MATH 331.1, Fall 2007 : Quizz \#4 solution

Your Name:

\qquad
The quizz has 2 question worth 5 points each.
For the following 2 linear systems of the form $\frac{d \mathbf{Y}}{d t}=A \mathbf{Y}$,
(a) Find the eigenvalues and determine the type of the system (source, sink, saddle, center, spiral source, spiral sink, degenerate eigenvalue).
(b) If the eigenvalues are real compute the eigenvectors and draw the phase portrait of the system in the x, y-plane.
If the eigenvalue are complex determine the directions of oscillations (clockwise or counterclockwise) and draw the phase portrait of the system in the x, y-plane.

1. $\quad A=\left(\begin{array}{cc}1 & 2 \\ -1 & 1\end{array}\right)$

Solution:

1(a): Eigenvalues and type.
The equation for the eigenvalues is

$$
0=\operatorname{det}\left(\begin{array}{cc}
1-\lambda & 2 \\
-1 & 1-\lambda
\end{array}\right)=(1-\lambda)^{2}+2=\lambda^{2}-2 \lambda+3
$$

We have

$$
\lambda=\frac{2 \pm \sqrt{4-12}}{2}=1 \pm i \sqrt{2}
$$

The eigenvalue are complex and the real part is +1 so positive. The type is thus a spiral source.

In order to determine the directions of oscillations pick a random point, say $(1,0)$. We have

$$
A\binom{1}{0}=\left(\begin{array}{cc}
1 & 2 \\
-1 & 1
\end{array}\right)\binom{1}{0}=\left(\begin{array}{cc}
1-\lambda & 1 / 4 \\
1 / 4 & 1-\lambda
\end{array}\right)
$$

So at the point $(1,0)$ i.e., on the x-axis the vector field point in the $(1,-1)$ direction, i.e., in the southeast direction. Therefore the solution spiral in the clockwise direction.

1(b) Phase portrait.
2) $\quad A=\left(\begin{array}{cc}1 & 1 / 4 \\ 1 / 4 & 1\end{array}\right)$

Solution:

2(a): Eigenvalues and type.
The equation for the eigenvalues is

$$
0=\operatorname{det}\left(\begin{array}{cc}
1-\lambda & 1 / 4 \\
1 / 4 & 1-\lambda
\end{array}\right)=(1-\lambda)^{2}-1 / 16=\lambda^{2}-2 \lambda+15 / 16
$$

We have then

$$
\lambda=\frac{2 \pm \sqrt{4-4 \times 15 / 16}}{2}=1 \pm \frac{1}{4}=3 / 4,5 / 4
$$

Therefore we have a source.
The eigenvector equations are
(a) $\lambda=3 / 4$

$$
\left(\begin{array}{cc}
1 & 1 / 4 \\
1 / 4 & 1
\end{array}\right)\binom{x}{y}=3 / 4\binom{x}{y}
$$

which gives the equation $x+y / 4=3 x / 4$ or $x+y=0$. For $\lambda=3 / 4$ the eigenvector is $(1,-1)$.
(b) $\lambda=5 / 4$

$$
\left(\begin{array}{cc}
1 & 1 / 4 \\
1 / 4 & 1
\end{array}\right)\binom{x}{y}=5 / 4\binom{x}{y}
$$

which gives $x+y / 4=5 x / 4$ or $x-y=0$. For $\lambda=5 / 4$ the eigenvector is $(1,1)$.

2(b) Phase portrait.

