MATH 331.1, Fall 2007 : Quizz \#3

Your Name:

\qquad
The quizz has 1 question worth 10 points.

1. Consider the linear system $\frac{d \mathbf{Y}}{d t}=A \mathbf{Y}$ where $A=\left(\begin{array}{cc}1 & 3 \\ 1 & -1\end{array}\right)$.
(a) (5 points) Compute the eigenvalues and eigenvectors of the matrix A To compute the eigenvalue we have

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{cc}
1-\lambda & 3 \\
1 & -1-\lambda
\end{array}\right) & =(1-\lambda)(-1-\lambda)-3 \\
& =\lambda^{2}-4
\end{aligned}
$$

Therefore the eigenvalues are $\lambda_{1}=+2$ and $\lambda_{2}=-2$.
For the eigenvalue $\lambda_{1}=2$ the eigenvector equation is

$$
\left(\begin{array}{cc}
1 & 3 \\
1 & -1
\end{array}\right)\binom{v_{1}}{v_{2}}=2\binom{v_{1}}{v_{2}}
$$

or

$$
v_{1}+3 v_{2}=2 v_{1} \quad \text { and } \quad v_{1}-v_{2}=2 v_{2}
$$

Both equation gives $v_{1}=3 v_{2}$ and so we can choose $v_{1}=3$ and $v_{2}=1$.
For the eigenvalue $\lambda_{2}=-2$ the eigenvector equation is

$$
\left(\begin{array}{cc}
1 & 3 \\
1 & -1
\end{array}\right)\binom{v_{1}}{v_{2}}=-2\binom{v_{1}}{v_{2}}
$$

or

$$
v_{1}+3 v_{2}=-2 v_{1} \quad \text { and } \quad v_{1}-v_{2}=-2 v_{2}
$$

Both equation gives $v_{1}+v_{2}=0$ and so we can choose $v_{1}=1$ and $v_{2}=-1$.

$$
\lambda_{1}=2 \quad \mathbf{V}_{1}=\binom{3}{1} \quad \lambda_{2}=-2 \quad \mathbf{V}_{2}=\binom{1}{-1}
$$

(b) (4 points) Solve the initial value problem $\frac{d \mathbf{Y}}{d t}=A \mathbf{Y}$ with $\mathbf{Y}(0)=\binom{0}{3}$. The general solution is given by

$$
Y(t)=k_{1} e^{2 t}\binom{3}{1}+k_{2} e^{-2 t}\binom{1}{-1}
$$

Setting $t=0$ we find

$$
\binom{0}{3}=k_{1}\binom{3}{1}+k_{2}\binom{1}{-1}
$$

or

$$
0=3 k_{1}+k_{2} \quad \text { and } \quad 3=k_{1}-k_{2}
$$

The first equation gives

$$
k_{2}=-3 k_{1}
$$

Inserting into the second equation gives

$$
3=k_{1}+3 k_{1}
$$

and thus we find

$$
\begin{gathered}
k_{1}=\frac{3}{4} \quad k_{2}=-\frac{9}{4} \\
\mathbf{Y}(t)=\frac{3}{4} e^{2 t}\binom{3}{1}+\frac{9}{4} e^{-2 t}\binom{1}{-1}=\binom{x(t)}{y(t)}=\binom{\frac{9}{4} e^{2 t}+\frac{9}{4} e^{-2 t}}{\frac{3}{4} e^{2 t}-\frac{9}{4} e^{-2 t}}
\end{gathered}
$$

(c) (1 points) Sketch the $x(t)$ and $y(t)$ graphs for the solution to the inital value problem in (b).

