MATH 331.1, Fall 2007 : Quizz \#1 Solution

Your Name:

\qquad
The quizz has 2 questions worth 5 points each.

1. Solve the initial value problem $\frac{d y}{d t}=\frac{1+y^{2}}{y}, \quad y(0)=-2$.

Solution: The equation is separable and we obtain

$$
\int \frac{y}{1+y^{2}} d y=\int d t
$$

Using the change of variables $u=1+y^{2}, d u=2 y d y$ we have

$$
\int \frac{y}{1+y^{2}} d y=\frac{1}{2} \int \frac{1}{u} d u=\frac{1}{2} \ln (|u|)=\frac{1}{2} \ln \left(1+y^{2}\right)
$$

So we obtain

$$
\frac{1}{2} \ln \left(1+y^{2}\right)=t+C
$$

or with $K=e^{2 C}$

$$
1+y^{2}=K e^{2 t}
$$

The general solution is then

$$
y= \pm \sqrt{K e^{2 t}-1}
$$

The initial condition $y(0)=-2$ gives the equation

$$
-2= \pm \sqrt{K-1}
$$

This tells us that we should choose $K=5$ and the negative sign in front of the square root. The solution is then

$$
y(t)=-\sqrt{5 e^{2 t}-1}
$$

2. Consider the differential equation $\frac{d y}{d t}=3 y^{3}-12 y$
(a) Find the equilibrium points, draw the phase line, and identify the equilibrium points as source, sink, or node.

Solution: The equilibrium points are determined by the equation

$$
3 y^{3}-12 y=3 y\left(y^{2}-4\right)=0
$$

There are 3 equilibrium points $y=0, y=2$, and $y=-2$. The function $f(y)=$ $3 y^{3}-12 y^{2}$ has the following sign

$$
\begin{array}{rll}
y<-2 & : & f(y)<0 \\
-2<y<0 & : & f(y)>0 \\
0<y<-2 & : & f(y)<0 \\
y>2 & : & f(y)>0 \tag{1}
\end{array}
$$

This implies that

- -2 is a source.
- 0 is a sink.
- 2 is a source.
(b) Sketch the solutions with initial conditions $y(0)=2, y(0)=-1, y(0)=-3$.

Solution:

- If $y(0)=2$ then $y(t)=2$ for all t since 2 is an equilibrium point.
- If $y(0)=-1$ then, since $-2<-1<0$ the solution is increasing since $f(-1)>$ 0 . As $t \rightarrow \infty y(t) \rightarrow 0$ and as $t \rightarrow-\infty y(t) \rightarrow-2$.
- If $y(0)=-1$ then, since $-3<-2$ the solution is decreasing increasing since $f(-3)<0$. For positive $t, y(t) \rightarrow-\infty$ and as $t \rightarrow-\infty y(t) \rightarrow-2$.

