Math 331.2: Homework 8 (Section 3.7)

- 1. For the following two function write them in the form $y(t) = R\cos(\omega_0 t \delta)$ (Recall R is the amplitude of the oscillations, ω_0 is the frequency of the oscillations, δ is the phase shift). Graph the solutions, carefully indicating clearly on your graph R, ω_0, δ .
- (a) $y(t) = 3\cos(2t) + 4\sin(2t)$
- (b) $y(t) = -\cos(t) + \sqrt{3}\sin(t)$
- 2. A mass weighing 3lb stretches a spring 3 in. Determine the corresponding mass m and spring constant k. If the spring is pushed upward a distance of 1 in and then set in motion with a downard velocity of 2 ft/sec, determine the position y(t) of the mass at time t. Find the frequency, period, amplitude and phase of the motion. $Hint: g = 32ft/sec^2$.
- **3.** A mass of 100 g stretches a spring 5 cm. If the mass is set in motion from its equilibrium position with a downard velocity of 10 cm/s and if there is no damping, determine the position y of the mass at time t. Find the frequency, period, amplitude and phase of the motion. $Hint: g = 9.8m/sec^2$.
- 4. A mass weighing 3lb stretches a spring 3 in. The damping constant is γ lb · s /ft
- (a) Find the value of γ at which the system transition from damped to overdamped.
- (b) Suppose $\gamma = 1$ and that the mass is set in motion from its equilibrium position with a downward velocity of 2 in/sec. Find the time at which the mass returns to its equilibrium position for the first time.
- 5. The position of a certain mass-spring system satisfies the initial value problem $\frac{3}{2}y'' + ky = 0$, y(0) = 2, y'(0) = v. It is observed that the period and amplitude of the motion are π and 3, respectively. Determine the spring constant k and the initial velocity v.
- **6.** The position of a certain mass-spring system satisfies the initial value problem $y'' + y' + \frac{5}{2}y = 0$, y(0) = 0, y'(0) = 2.
- (a) Is the system damped or overdamped? If it is damped determine the quasi-frequency and quasi-period.
- (b) Solve the initial value problem.
- (c) Plot y versus t and y' versus t.
- 7. The position of a certain mass-spring system satisfies the initial value problem $y'' + \frac{3}{2}y' + \frac{1}{2}y = 0$, y(0) = 0, y'(0) = 2.
- (a) Is the system damped or overdamped? If it damped determine the quasi-frequency and quasi-period.
- (b) Solve the initial value problem.
- (c) Plot y versus t and y' versus t.
- 8. The position of a certain mass-spring system satisfies the initial value problem $y'' + y' + \frac{1}{4}y = 0$, y(0) = 0, y'(0) = 2.
- (a) Is the system damped or overdamped? If it damped determine the quasi-frequency and quasi-period.
- (b) Solve the initial value problem.
- (c) Plot y versus t and y' versus t.