Math 331.2: Homework 8 (Section 3.7)

1. For the following two function write them in the form $y(t)=R \cos \left(\omega_{0} t-\delta\right)$ (Recall R is the amplitude of the oscillations, ω_{0} is the frequency of the oscillations, δ is the phase shift). Graph the solutions, carefully indicating clearly on your graph R, ω_{0}, δ.
(a) $y(t)=3 \cos (2 t)+4 \sin (2 t)$
(b) $y(t)=-\cos (t)+\sqrt{3} \sin (t)$
2. A mass weighing 3 lb stretches a spring 3 in. Determine the corresponding mass m and spring constant k. If the spring is pushed upward a distance of 1 in and then set in motion with a downard velocity of $2 \mathrm{ft} / \mathrm{sec}$, determine the position $y(t)$ of the mass at time t. Find the frequency, period, amplitude and phase of the motion. Hint: $g=32 \mathrm{ft} / \mathrm{sec}^{2}$.
3. A mass of 100 g stretches a spring 5 cm . If the mass is set in motion from its equilibrium position with a downard velocity of $10 \mathrm{~cm} / \mathrm{s}$ and if there is no damping, determine the position y of the mass at time t. Find the frequency, period, amplitude and phase of the motion. Hint: $g=9.8 \mathrm{~m} / \mathrm{sec}^{2}$.
4. A mass weighing 3 lb stretches a spring 3 in . The damping constant is $\gamma \mathrm{lb} \cdot \mathrm{s} / \mathrm{ft}$
(a) Find the value of γ at which the system transition from damped to overdamped.
(b) Suppose $\gamma=1$ and that the mass is set in motion from its equilibrium position with a downward velocity of $2 \mathrm{in} / \mathrm{sec}$. Find the time at which the mass returns to its equilibrium position for the first time.
5. The position of a certain mass-spring system satisfies the initial value problem $\frac{3}{2} y^{\prime \prime}+k y=0, y(0)=2$, $y^{\prime}(0)=v$. It is observed that the period and amplitude of the motion are π and 3 , respectively. Determine the spring constant k and the initial velocity v.
6. The position of a certain mass-spring system satisfies the initial value problem $y^{\prime \prime}+y^{\prime}+\frac{5}{2} y=0, y(0)=0$, $y^{\prime}(0)=2$.
(a) Is the system damped or overdamped? If it is damped determine the quasi-frequency and quasi-period.
(b) Solve the initial value problem.
(c) Plot y versus t and y^{\prime} versus t.
7. The position of a certain mass-spring system satisfies the initial value problem $y^{\prime \prime}+\frac{3}{2} y^{\prime}+\frac{1}{2} y=0, y(0)=0$, $y^{\prime}(0)=2$.
(a) Is the system damped or overdamped? If it damped determine the quasi-frequency and quasi-period.
(b) Solve the initial value problem.
(c) Plot y versus t and y^{\prime} versus t.
8. The position of a certain mass-spring system satisfies the initial value problem $y^{\prime \prime}+y^{\prime}+\frac{1}{4} y=0, y(0)=0$, $y^{\prime}(0)=2$.
(a) Is the system damped or overdamped? If it damped determine the quasi-frequency and quasi-period.
(b) Solve the initial value problem.
(c) Plot y versus t and y^{\prime} versus t.
