Math 331.2: Homework 6 (Section 3.2, 3.3, 3.4)

1. Consider the equation $t^2y'' - t(t+2)y' + (t+2)y = 0$. Show that $y_1(t) = t$ and $y_2(t) = te^t$ are two solution of the equations. Compute the Wronskian and solve the equation with initial value y(1) = 2, y'(1) = 0.

2. Compute the Wronskian of $y_1(t) = e^{\lambda t} \cos(\mu t)$ and $y_2(t) = e^{\lambda t} \sin(\mu t)$ and show that it never vanishes.

3. Use Euler formula to write the given expression in the form a + ib.

3. Use Euler formula to write the given expression in the form
$$a + ib$$
 (a). e^{1+3i} , (b). e^{2+2i}/e^i , (c). $e^{i\pi/2}$ (d). $e^{i2\pi/3}$ (e). 2^{1-i}

For the following problems find the general solution

4.
$$y'' - 2y' + 2y = 0$$

5.
$$4y'' + 9y = 0$$

6.
$$y'' - 2y' + y = 0$$

7.
$$y'' + 6y' + 13y = 0$$

8.
$$4y'' + 17y' + 4y = 0$$

For the following problems find the solution of the initial value problem, sketch a graph of the solution and describe its behavior for large t.

9.
$$y'' - 2y' + 2y = 0, y(0) = 1, y'(0) = 0$$

10.
$$4y'' + 9y = 0, y(0) = 2, y'(0) = -1$$

11.
$$y'' - 2y' + y = 0, y(0) = 1, y'(0) = 2$$

12.
$$y'' + 6y' + 13y = 0, y(0) = 0, y'(0) = 1$$

13.
$$4y'' + 17y' + 4y = 0, y(0) = -3, y'(0) = 2$$

Hints and solutions:

- 1. The Wronskian is t^2e^t which is non zero if $t \neq 0$. The solution is $y(t) = 4t 2te^{t-1}$.
- 2. $\lambda e^{\mu t}$.
- **3.** (c) i, (d) $-1/2 + i\sqrt{3}/2$, (e) $2\cos(\ln(2)) i2\sin(\ln(2))$
- **9.** $y(t) = e^t \cos(t) e^t \sin(t)$
- **10.** $y(t) = 2\cos(3t/2) 2/3\sin(3t/2)$
- **11.** $y(t) = \frac{1}{2}e^{-3t}\sin(2t)$
- **12.** $y(t) = -1/3e^{-4t} 8/3e^{-t/4}$