Math 331.2: Homework 6 (Section 3.2, 3.3, 3.4)

1. Consider the equation $t^{2} y^{\prime \prime}-t(t+2) y^{\prime}+(t+2) y=0$. Show that $y_{1}(t)=t$ and $y_{2}(t)=t e^{t}$ are two solution of the equations. Compute the Wronskian and solve the equation with initial value $y(1)=2, y^{\prime}(1)=0$.
2. Compute the Wronskian of $y_{1}(t)=e^{\lambda t} \cos (\mu t)$ and $y_{2}(t)=e^{\lambda t} \sin (\mu t)$ and show that it never vanishes.
3. Use Euler formula to write the given expression in the form $a+i b$.
(a). $e^{1+3 i}$,
(b). $e^{2+2 i} / e^{i}$,
(c). $e^{i \pi / 2}$
(d). $e^{i 2 \pi / 3}$
(e). 2^{1-i}

For the following problems find the general solution
4. $y^{\prime \prime}-2 y^{\prime}+2 y=0$
5. $4 y^{\prime \prime}+9 y=0$
6. $y^{\prime \prime}-2 y^{\prime}+y=0$
7. $y^{\prime \prime}+6 y^{\prime}+13 y=0$
8. $4 y^{\prime \prime}+17 y^{\prime}+4 y=0$

For the following problems find the solution of the initial value problem, sketch a graph of the solution and describe its behavior for large t.
9. $y "-2 y^{\prime}+2 y=0, y(0)=1, y^{\prime}(0)=0$
10. $4 y^{\prime \prime}+9 y=0, y(0)=2, y^{\prime}(0)=-1$
11. $y^{\prime \prime}-2 y^{\prime}+y=0, y(0)=1, y^{\prime}(0)=2$
12. $y "+6 y^{\prime}+13 y=0, y(0)=0, y^{\prime}(0)=1$
13. $4 y^{\prime \prime}+17 y^{\prime}+4 y=0, y(0)=-3, y^{\prime}(0)=2$

Hints and solutions:

1. The Wronskian is $t^{2} e^{t}$ which is non zero if $t \neq 0$. The solution is $y(t)=4 t-2 t e^{t-1}$.
2. $\lambda e^{\mu t}$.
3. (c) i, (d) $-1 / 2+i \sqrt{3} / 2$, (e) $2 \cos (\ln (2))-i 2 \sin (\ln (2))$
4. $y(t)=e^{t} \cos (t)-e^{t} \sin (t)$
5. $y(t)=2 \cos (3 t / 2)-2 / 3 \sin (3 t / 2)$
6. $y(t)=\frac{1}{2} e^{-3 t} \sin (2 t)$
7. $y(t)=-1 / 3 e^{-4 t}-8 / 3 e^{-t / 4}$
