Math 331.2: Homework 5 (Section 2.4 and Section 3.1)

In the following two problems, solve the initial value problem and determine the interval on which the solution exists

1. $y^{\prime}=-4 t / y, y(0)=y_{0}$
2. $y^{\prime}+y^{3}=0, y(0)=y_{0}$
3. Consider the nonlinear equation $\frac{d y}{d t}=2 y-y^{2}$ Show that $v=\frac{1}{y}$ satisfies the linear equation $\frac{d v}{d t}=-2 v+1$. Solve the equation for v to find the solution for y.

For the following equations find the general solutions
4. $y^{\prime \prime}+2 y^{\prime}-3 y=0$
5. $y^{\prime \prime}+5 y=0$
6. $6 y^{\prime \prime}-y^{\prime}-y$

For the following equations find the solution of the given initial value problem. Sketch the graph of the solutions, and describe the behavior as t increases.
7. $y^{\prime \prime}+4 y^{\prime}+3 y=0, y(0)=2, y^{\prime}(0)=-1$
8. $y^{\prime \prime}+3 y=0, y(0)=-2, y^{\prime}(0)=3$
9. Find the solution of the initial value problem $2 y^{\prime \prime}-3 y^{\prime}+y=0, y(0)=2, y^{\prime}(0)=\frac{1}{2}$. Sketch a graph of the solution. Determine the maximum value of the solution. Find the point where the solution is 0 .
10. Consider the equation $t^{2} y^{\prime \prime}-2 t y-4 y=0$. Find the general solution of this equation by trying function of the form t^{r} some r.
11. Consider $4 y^{\prime \prime}-y=0, y(0)=2$. Find the value of the initial $y^{\prime}(0)=\beta$ such that $\lim _{t \rightarrow \infty} y(t)=0$.

Hints and solutions:

1. $y(t)= \pm \sqrt{y_{0}^{2}-4 t^{2}}$ the solution exists if $-\left|y_{0}\right| / 2 \leq t \leq\left|y_{0}\right| / 2$
2. $y(t)=\frac{y_{0}}{\sqrt{2 t y_{0}^{2}+1}}$, the solution exists if $-\frac{1}{2 y_{0}^{2}}<t<\infty$
3. $y(t)=c_{1} e^{t}+c_{2} e^{-3 t}$
4. $y(t)=c_{1}+c_{2} e^{-5 t}$
5. $y(t)=c_{1} e^{-t / 3}+c_{2} e^{t / 2}$
6. $y(t)=\frac{5}{2} e^{-t}-\frac{1}{2} e^{-3 t}$
7. $y(t)=-1-e^{-3 t}$
8. The maximum is at $t=\ln (9 / 4)$ and the zero is at $t \ln (9)$.
9. $y(t)=c_{1} t^{4}+c_{2} t^{-1}$
10. $\beta=-1$.
