Math 331.2: Homework 5 (Section 2.4 and Section 3.1)

In the following two problems, solve the initial value problem and determine the interval on which the solution exists

1.
$$y' = -4t/y$$
, $y(0) = y_0$

2.
$$y' + y^3 = 0$$
, $y(0) = y_0$

3. Consider the nonlinear equation $\frac{dy}{dt} = 2y - y^2$ Show that $v = \frac{1}{y}$ satisfies the linear equation $\frac{dv}{dt} = -2v + 1$. Solve the equation for v to find the solution for y.

For the following equations find the general solutions

4.
$$y'' + 2y' - 3y = 0$$

5.
$$y'' + 5y = 0$$

6.
$$6y'' - y' - y$$

For the following equations find the solution of the given initial value problem. **Sketch the graph of the solutions**, and describe the behavior as t increases.

7.
$$y'' + 4y' + 3y = 0$$
, $y(0) = 2$, $y'(0) = -1$

8.
$$y'' + 3y = 0$$
, $y(0) = -2$, $y'(0) = 3$

- **9.** Find the solution of the initial value problem 2y'' 3y' + y = 0, $y(0) = 2, y'(0) = \frac{1}{2}$. Sketch a graph of the solution. Determine the maximum value of the solution. Find the point where the solution is 0.
- 10. Consider the equation $t^2y'' 2ty 4y = 0$. Find the general solution of this equation by trying function of the form t^r some r.
- 11. Consider 4y'' y = 0, y(0) = 2. Find the value of the initial $y'(0) = \beta$ such that $\lim_{t\to\infty} y(t) = 0$.

Hints and solutions:

1.
$$y(t) = \pm \sqrt{y_0^2 - 4t^2}$$
 the solution exists if $-|y_0|/2 \le t \le |y_0|/2$

2.
$$y(t) = \frac{y_0}{\sqrt{2ty_0^2 + 1}}$$
, the solution exists if $-\frac{1}{2y_0^2} < t < \infty$

4.
$$y(t) = c_1 e^t + c_2 e^{-3t}$$

5.
$$y(t) = c_1 + c_2 e^{-5t}$$

6.
$$y(t) = c_1 e^{-t/3} + c_2 e^{t/2}$$

7.
$$y(t) = \frac{5}{2}e^{-t} - \frac{1}{2}e^{-3t}$$

8.
$$y(t) = -1 - e^{-3t}$$

9. The maximum is at
$$t = \ln(9/4)$$
 and the zero is at $t \ln(9)$.

10.
$$y(t) = c_1 t^4 + c_2 t^{-1}$$

11.
$$\beta = -1$$
.