Math 331.2: Homework 2 (Section 2.1 and 2.2)

- 1. Classify the following equations as linear or nonlinear and separable or not. (Do not solve them.)
- (a) $\frac{dy}{dt} = \frac{ty (t+3)y}{y^2}.$
- (b) $y \frac{dy}{dt} + ty = \cos(t)y^2$. (c) $\frac{dy}{dt} + 2ty = \cos(t + 2y)$. (d) $\frac{dy}{dt} = y^2(t + \cos(t))$.
- **2.** Find the general solution for $y' + 3y = t + e^{-2t}$. Describe the behavior of the solutions as $t \to \infty$.
- **3.** Find the general solution for $y'-2y=t^2e^{2t}$. Describe the behavior of the solutions as $t\to\infty$.
- **4.** Find the general solution for $ty' + 2y = \sin(t)$.
- **5.** Solve the initial value problem $y' y = e^{2t}$, y(0) = 3.
- **6.** Solve the initial value problem $t^3y' + 3t^2y = e^{-t}$, y(-1) = 0.
- 7. Find the general solution of $y'=x^2/y$ and then solve the initial value problem for the initial condition y(1) = -1.
- **8.** Solve the differential equation $y' = \frac{x^2}{y^2(1+x^3)}$.
- **9.** Solve the differential equation $y' = \frac{3x^2 1}{3 + 2y}$.
- **10.** Solve the differential equation $\frac{dy}{dx} = \frac{x e^{-x}}{y + e^y}$.
- 11. Solve the initial value problem $y' = (1 2t)y^2$, y(0) = -2.
- 12. Solve the initial value problem $\sin(2t) + \cos(3y) \frac{dy}{dt}$, $y(\pi/2) = \pi/3$.

Solutions:

2
$$y(t) = Ce^{-3t} + (t/3) - 1/9 + e^{-2t}$$
. For large t , $y(t)$ is asymptotic to the line $t/3 - 1/9$.

3
$$y(t) = Ce^{2t} + \frac{t^3}{3}e^2t/3$$
, $y(t)$ diverges as $t \to \infty$.

4
$$y(t) = \frac{1}{t^2}(c - t\cos(t) + \sin(t))$$

5
$$y(t) = e^{2t} + 2e^t$$
.

6
$$y(t) = \frac{1}{t^3}(e - e^{-t}).$$

7
$$y(x) = \pm \sqrt{\frac{x^3}{3} + C}$$
 and $y(t) = -\sqrt{\frac{x^3}{3} + 2/3}$

8
$$y(x) = (\ln(1+x^3) + C)^{1/3}$$

9 In implicit form
$$y^2 + 3y = x^3 - x + C$$
 or in explicit form $y = -\frac{3}{2} \pm \frac{1}{2} \sqrt{9 + 4(x^3 - x + C)}$

10 In implicit form
$$\frac{y^2}{2} + e^y = \frac{x^2}{2} + e^{-x}$$
.

$$\mathbf{11} \ y(t) = \frac{1}{t^2 - t - \frac{1}{2}}$$

12
$$y(t) = \frac{1}{3}\arcsin\left(\frac{3}{2}\cos(2t) + \frac{3}{2}\right).$$