Math 331.2: Homework 2 (Section 2.1 and 2.2)

1. Classify the following equations as linear or nonlinear and separable or not. (Do not solve them.)
(a) $\frac{d y}{d t}=\frac{t y-(t+3) y}{y^{2}}$.
(b) $y \frac{d y}{d t}+t y=\cos (t) y^{2}$.
(c) $\frac{d y}{d t}+2 t y=\cos (t+2 y)$.
(d) $\frac{d y}{d t}=y^{2}(t+\cos (t))$.
2. Find the general solution for $y^{\prime}+3 y=t+e^{-2 t}$. Describe the behavior of the solutions as $t \rightarrow \infty$.
3. Find the general solution for $y^{\prime}-2 y=t^{2} e^{2 t}$. Describe the behavior of the solutions as $t \rightarrow \infty$.
4. Find the general solution for $t y^{\prime}+2 y=\sin (t)$.
5. Solve the initial value problem $y^{\prime}-y=e^{2 t}, y(0)=3$.
6. Solve the initial value problem $t^{3} y^{\prime}+3 t^{2} y=e^{-t}, y(-1)=0$.
7. Find the general solution of $y^{\prime}=x^{2} / y$ and then solve the initial value problem for the initial condition $y(1)=-1$.
8. Solve the differential equation $y^{\prime}=\frac{x^{2}}{y^{2}\left(1+x^{3}\right)}$.
9. Solve the differential equation $y^{\prime}=\frac{3 x^{2}-1}{3+2 y}$.
10. Solve the differential equation $\frac{d y}{d x}=\frac{x-e^{-x}}{y+e^{y}}$.
11. Solve the initial value problem $y^{\prime}=(1-2 t) y^{2}, y(0)=-2$.
12. Solve the initial value problem $\sin (2 t)+\cos (3 y) \frac{d y}{d t}, y(\pi / 2)=\pi / 3$.

Solutions:

$2 y(t)=C e^{-3 t}+(t / 3)-1 / 9+e^{-2 t}$. For large $t, y(t)$ is asymptotic to the line $t / 3-1 / 9$.
$\mathbf{3} y(t)=C e^{2 t}+\frac{t^{3}}{3} e^{2} t / 3, y(t)$ diverges as $t \rightarrow \infty$.
$4 y(t)=\frac{1}{t^{2}}(c-t \cos (t)+\sin (t))$
$5 y(t)=e^{2 t}+2 e^{t}$.
$6 y(t)=\frac{1}{t^{3}}\left(e-e^{-t}\right)$.
$7 y(x)= \pm \sqrt{\frac{x^{3}}{3}+C}$ and $y(t)=-\sqrt{\frac{x^{3}}{3}+2 / 3}$
$8 y(x)=\left(\ln \left(1+x^{3}\right)+C\right)^{1 / 3}$
9 In implicit form $y^{2}+3 y=x^{3}-x+C$ or in explicit form $y=-\frac{3}{2} \pm \frac{1}{2} \sqrt{9+4\left(x^{3}-x+C\right)}$
10 In implicit form $\frac{y^{2}}{2}+e^{y}=\frac{x^{2}}{2}+e^{-x}$.
$11 y(t)=\frac{1}{t^{2}-t-\frac{1}{2}}$
$12 y(t)=\frac{1}{3} \arcsin \left(\frac{3}{2} \cos (2 t)+\frac{3}{2}\right)$.

