## Math 331.2: Homework 13 (Section 7.6, 7.8, 9.1)

For the following systems
(a) Determine the type of the systems, a saddle, source (also called stable node) or a sink (unstable node), improper node (degenerate eigenvalues), spiral sink, spiral source, center.
(b) Sketch typical solution in in the phase plane (the $x_{1}-x_{2}$ plane). Indicate clearly the eigenvectors if adequate and sketch some typical solutions.
(c) Sketch a typical graph of $x_{1}$ vs. $t$

You do not need to write down the general solutions.

1. $\frac{d \mathbf{x}}{d t}=\left(\begin{array}{cc}5 & -1 \\ 3 & 1\end{array}\right) \mathbf{x}$
2. $\frac{d \mathbf{x}}{d t}=\left(\begin{array}{ll}2 & -1 \\ 6 & -2\end{array}\right) \mathbf{x}$
3. $\frac{d \mathbf{x}}{d t}=\left(\begin{array}{ll}1 & -4 \\ 4 & -7\end{array}\right) \mathbf{x}$
4. $\frac{d \mathbf{x}}{d t}=\left(\begin{array}{ll}1 & -5 \\ 1 & -3\end{array}\right) \mathbf{x}$
5. $\frac{d \mathbf{x}}{d t}=\left(\begin{array}{cc}-1 & -1 \\ 0 & -\frac{1}{4}\end{array}\right) \mathbf{x}$
6. $\frac{d \mathbf{x}}{d t}=\left(\begin{array}{ll}2 & -1 \\ 3 & -2\end{array}\right) \mathbf{x}$

For the following systems find the solution of the initial value problem. Sketch the graph of the two components $x_{1}(t)$ and $x_{2}(t)$ of the solutions $\mathbf{x}(t)$ and describe their behavior as $t \rightarrow \infty$.
7. $\frac{d \mathbf{x}}{d t}=\left(\begin{array}{cc}1 & -5 \\ 1 & -3\end{array}\right) \mathbf{x}, \quad \mathbf{x}(0)=\binom{1}{1}$
8. $\frac{d \mathbf{x}}{d t}=\left(\begin{array}{cc}-2 & -2 \\ 4 & 2\end{array}\right) \mathbf{x}, \quad \mathbf{x}(0)=\binom{1}{-2}$

For the following systems
(a) Determine the eigenvalues in terms of $\alpha$.
(b) Find the critical values of $\alpha$ where the type of the systems change.
(c) Draw a phase portrait of the system in the phase plane ( $x_{1}-x_{2}$-plane) for value of $\alpha$ just below the critical values of $\alpha$ and just above the critical values of $\alpha$
9. $\frac{d \mathbf{x}}{d t}=\left(\begin{array}{cc}\alpha & 1 \\ -1 & \alpha\end{array}\right) \mathbf{x}$
10. $\frac{d \mathbf{x}}{d t}=\left(\begin{array}{ll}2 & -5 \\ \alpha & -2\end{array}\right) \mathbf{x}$
12. $\frac{d \mathbf{x}}{d t}=\left(\begin{array}{cc}0 & -5 \\ 1 & \alpha\end{array}\right) \mathbf{x}$

