MATH 331.1, Fall 2007 : Midterm Exam

Your Name:

The exam consists of 5 questions, each worth 20 points.

1. (20 points) Solve the initial value problem $\frac{d x}{d t}=x^{2}[t+\sin (t)]$ with $x(0)=6$.
2. Mary initially deposits $\$ 1000$ in a savings account that pays interest at the rate of 5% per year (compounded continuously). She also arranges for $\$ 25$ per week to be deposited automatically into her account.
(a) Assume that weekly deposits can be approximated by continuous deposits. Write down an initial value problem for her account balance $S(t)$ over time (t measured in years).
(b) How long does she needs to save to buy a $\$ 5000$ car?
3. Consider the following equation for a certain population of squirrels given by $P(t)$ (t is measured in years).

$$
\frac{d P}{d t}=2 P\left(1-\frac{P}{2}\right)(P-1)
$$

(a) Find all the equilibrium points of the equations. Draw the phase line and indicate the type of each equilibrium points (i.e., sink, source, or node).
(b) Make a graph of the solutions with initial conditions $P(0)=1 / 4, P(0)=3 / 2$, and $P(0)=3$.
(c) At a certain time the hunting of squirrels become permitted and the law allows that a certain percentage α of the squirrel population be eliminated every year. A new equation for the squirrel population is then

$$
\frac{d P}{d t}=2 P\left(1-\frac{P}{2}\right)(P-1)-\alpha P
$$

The IALS (International Association for the Liberation of Squirrels) asserts than no more than 10% of squirrels should be eliminated every year (i.e $\alpha=0.1$), otherwise the population would go extinct. On the contrary the UHA (United Hunters of America) asserts that it is safe to hunt half of the squirrel population every year (i.e. $\alpha=0.5$).

Analyze the bifurcations of the systems as α varies and determine who is right from the IALS or the UHA.
4. Solve the linear system

$$
\begin{aligned}
& \frac{d x}{d t}=4 x+2 y \\
& \frac{d y}{d t}=x+3 y
\end{aligned}
$$

with initial conditions

$$
x(0)=4, \quad y(0)=-2 .
$$

5. Find the solution for the system

$$
\begin{aligned}
& \frac{d x}{d t}=x y+y \\
& \frac{d y}{d t}=2
\end{aligned}
$$

with $x(0)=3$ and $y(0)=0$.

