
Chapter 1: Probability models and counting

Part 1: Probability model

Probability theory is the mathematical toolbox to describe phenomena or experiments
where randomness occur. To have a probability model we need the following ingredients

• A sample space S which is the collection of all possible outcomes of the (random)
experiment. We shall consider mostly finite sample spaces S.

• A probability distribution. To each element i ∈ S we assign a probability p(i) ∈ S.

p(i) = Probability that the outcome i occurs

We have
0 ≤ p(i) ≤ 1

∑
i∈S

p(i) = 1 .

By definition probabilities are nonnegative numbers and add up to 1.

• An event A is a subset of the sample space S. It describes an experiment or an
observation that is compatible with the outcomes i ∈ A. The probability that A
occurs, P (A), is given by

P (A) =
∑
i∈A

p(i) .

Example: Thoss three (fair) coins and record if the coin lands on tail (T) or head (H).
The sample space is

S = {HHH,HHT,HTH, THH,HTT, THT, TTH, TTT}

and has 8 = 23 elements. For fair coins it is natural assign the probability 1/8 to each
outcome.

P (HHH) = P (HHT ) = · · · = P (TTT ) = 1/8

An example of an event A is that at least two of the coins land on head. Then

A = {HHH,HHT, THH,HHT} P (A) = 1/2 .

The basic operations of set theory have a direct probabilistic interpretation:
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• The event A ∪ B is the set of outcomes wich belong either to A or to B. We say
that P (A ∪B) is the probability that either A or B occurs.

• The event A ∩B is the set of outcomes which belong to A and to B. We say that
P (A ∪B) is the probability that A and B occurs.

• The event A \ B is the set of outcomes which belong to A but not to B. We say
that P (A \B) is the probability that A occurs but B does not occurs.

• The event A = S \A is the set of outcomes which do not belong to A. We say that
P (A) is the probability that A does not occur.

We have the following simple rules to compute probability of events. Check them!

Theorem 1. Suppose A and B are events. Then we have

1. 0 ≤ P (A) ≤ 1 for any event A ⊂ S.

2. P (A) ≤ P (B) if A ⊂ B.

3. P (A) = 1− P (A)

4. P (A ∪B) = P (A) + P (B) if A and B are disjoint.

5. P (A ∪B) = P (A) + P (B)− P (A ∩B) for general A and B.

Proof. We let the reader check 1. to 4. For 5. we can reduce ourselves to 4. by writing
A ∪B as the union of two disjoint event, for example

A ∪B = A ∪ (B \ A) .

We do have, by 4.
P (A ∪B) = P (A) + P (B \ A) (1)

On the other hand we can write B has the union of two disjoint sets (the outcomes in B
which are also in A or not).

B = (B ∩ A) ∪ (B \ A)

and so by 4.
P (B) = P (B ∩ A) + P (B \ A) (2)

So by combining (1) and (2) we find 5.

Example: Tossing three coins again let A be the event that the first toss is head while
B is the event that the second toss is tail. Then A = {HHH,HHT,HTH,HTT},
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and B = {HTH,HTT, TTH, TTT}, A ∩ B = {HTH,HTT}. We have P (A ∪ B) =
P (A) + P (B)− P (A ∩B) = 1/2 + 1/2− 1/4 = 3/4.

There is a generalization of item 5. of the previous theorem to more than 2 events.
For example we have for 3 events A1, A2 and A3

P (A1∪A2∪A3) = P (A1)+P (A2)+P (A3)−P (A1∩A2)−P (A1∩A3)−P (A2∩A3)+P (A1∩A2∩A3)

This can be proved by applying item 5. repeatedly.
The general formula for n events is called the inclusion-exclusion theorem and can be

proved by induction.

Theorem 2. Suppose A1, · · ·An are events . Then we have

P (A1 ∪ · · · ∪ An) =
∑

1≤i≤n

P (Ai)−
∑

1≤i<j≤n

P (Ai ∩ Aj)

+
∑

1≤i<j<k≤n

P (Ai ∩ Aj ∩ Ak) + · · ·+ (−1)n−1P (A1 ∩ · · · ∩ An) .

Uniform distribution (”Naive probabilities”). In many examples it is natural to
assign the same probability to each event in the sample space. If the sample space is S
we denote by the cardinality of S by

#S = number of elements in S

Then for every event i ∈ S we set

p(i) =
1

#S
,

and for any event A we have

p(A) =
#A

#S

Example. Throw two fair dice. The sample space is the set of pairs (i, j) with i and j
an integer between 1 and 6 and has cardinality 36. We then obtain for example

P (Sum of the dice is 2) =
1

36
, P (Sum of the dice is 9) =

4

36
, · · ·
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The birthday problem. A classical problem in probability is the following. What is
the probability that among N people at least 2 have the same birthday. As it turns out,
and at first sight maybe surprisingly, one needs few people to have a high probability of
matching birthdays. For example for N = 23 there is a probability greater than 1/2 than
at least two people have the same birthday. To compute this we will make the simplifying
but reasonable assumptions that there is no leap year and that every birthday is equally
likely.

If there are N people present, the sample space S is the set of all birthdays of the
everyone. Since there is 365 choice for everyone we have

#S = 365N

We consider the event

A = at least two people have the same birthday

It is easier to consider instead the complementary event

B = A = no pair have the same birthday

To compute the cardinality of B we make a list of the N people (the order does not
matter). There is 365 choice of birthday for the first one on the list, for the second one
on the list, there is only 364 choice of birthday if they do not have the same birthday.
Continuing in the same way we find

#B = 365× 364× 363× · · · × (365−N + 1)

and so

P (B) =
365× 364× 363× · · · × (365− (N − 1)

365N

= 1×
(

1− 1

365

)(
1− 2

365

)
×
(

1− N − 1

365

)
To compute this efficiently we recall from calculus (use L’Hospital rule to prove this) that
for any number x we have

ex = lim
n→∞

(
1 +

x

n

)n
We take n = 365 which is a reasonably large number and take x = −1,−2, · · · . We have
the approximation (

1− j

365

)
≈ e−j/365 .
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We find then

P (B) ≈ 1× e−1/365 × e−2/365 × e−(N−1)/365

= e−(1+2+···N−1)/365

= e−N(N−1)/730

by using the well-known identity 1 + 2 + · · ·N =
N(N + 1)

2
.

How many people are needed to have a probability of 1/2 of having 2 same birthday.
We have

P (B) =
1

2
≈ e−N(N−1)/730 ⇐⇒ N(N − 1) = 730 ln(2)

Even for moderately small N , N(N − 1) ≈ N2 and so we find the approximate answer

N ≈
√

730 ln(2) = 22.49

That is if there are 23 people in a room, the probability that two have the same birthday
is greater than 1/2. Similarly we find that if there are

N ≈
√

730 ln(10) = 40.99

people in the room there is a probability greater than .9 than two people have the same
birthday.

Application: Odds in sport betting. In the context of gambling, or sports betting,
the randomness of the experiment is expressed in terms of odds rather than probabilities.
We are discussing various types of odds used in practice and the goal is to understand
how a bookmaker will determine the odds.

As a motivation, at the time of the writing, the New England Patriots are getting
ready to take on the Los Anegles Rams for Superbowl. The odds for the games are given
on the Fanduel Sportsbook website on January 22 as

Spread Money Total

New England Patriots .1.5 (-115) -126 Over 57.5 (-110)
Los Angeles Rams 1.5 (-105) 110 Under 57.5 (-110)

and they differ slightly from yesterday’s odds which were

Spread Money Total

New England Patriots .1.5 (-110) -122 Over 57.5 (-110)
Los Angeles Rams 1.5 (-110) 106 Under 57.5 (-110)
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Our first task is to understand what these numbers mean, and out second task is to
figure out how the bookmaker decide these numbers. Note that different bookmaker have
different odds (on vegasinsider.com the odds are -135 for the patriots and 115 for the
Rams.) If you were to decide to bet (strongly recommended against by your instructor)
which bookmaker should you pick?

Let us start by some basic mathematics. We consider an event A which is

A is the event that Team X wins agains Team Y

which we think of having a probability P (A).
Instead of probabilities, in the context of gambling, one uses odds instead. For ex-

ample if we say the odds that Team X wins are 5 to 1 we mean that the probability that
Team X wins is thought to be 5 times greater than the probability that Team Y wins.
That is we have

P (A) = P (Team X wins) = 5P (Team Y wins) = 5P (Team X looses) = 5(1− P (A))

and thus we have P (A) = 5(1− P (A)), or P (A) = 5/6. More generally we have

The odds of an event A are r to s⇐⇒ P (A)

1− P (A)
=
r

s
⇐⇒ P (A) =

r/s

r/s+ 1
=

r

r + s

Paying odds in gambling. In betting situations, say betting on the outcome of football
games, the potential payoff for the gambler is expressed in terms of odds. Let us first
explain some terminology. The following odds are used

1. Fractional odds (common in UK and Hong-Kong). Fractional odds of, for example
3
1
, means that a bet of say $10, if won, will generate a profit of $ 3

1
× 10 = $30 for

the gambler. That is, if he wins, the gambler will get $50 back, his bet of $10 back
plus a profit $30. If the fraction is less than one, say the odds are 3

7
then a successful

bet of $10 will generate a profit $30
7

= 4.29 and gets $14.29 back.

2. Decimal odds (common in Europe, Canada, Australia). Decimal odds are ex-
pressed by a number (always greater than 1) which express the amount the betting
house will pay for a winning bet of $1. For example decimal odds of 6 means that
for a winning bet of $10 the player will get $60 back for a profit of $50. That is
decimal odds of 6 corresponds to a fractional odd of 5

1
. In the same way decimal

odds of 1.3 correspond to a fractional odd of 3
10

. In general we have

Decimal odds = Fractional odds + 1

6



3. Moneyline odds (common in the USA). The money line odds are based on a bet
of $100 and are expressed using a positive number greater than 100 (say +250) or as
a negative number less than −100 (say −125). Positive and negative number have
a slightly different interpretation.

Odds of +250 means that a bet of $100 will generate a profit of $250. So this
corresponds to fractional odds of 250

100
= 5

2
.

Odds of −125 means that you need to bet $125 to generate a profit of $100 that is
it corresponds to fractional odds of 100

125
= 4

5

Computing paying odds. All these paying odds are of course equivalent but we may
wonder how do the bookmaker fix them? One such procedure is called the parimutuel
betting. In this model, the betting odds keep changing as more and more people wage
their bets and the odds are computed to reflect the amount of money which is bet on
different teams. Suppose that

TX = amount of money bet on Team X

TY = amount of money bet on Team Y

This allows us to assign probabilities that X will win if we believe the collective Wisdom
of the Crowd: we can say

P (A) := P ( X wins) =
TX

TX + TY

or equivalently

Odds that X wins =
TX
TY

=
P (A)

1− P (A)

Let us assume for a while that the bookmaker takes no commission, then all the money
collected which is TX + TY would be redistributed to the winners and so the (fractional)
paying odds would be respectively

Fractional paying odds if X wins =
TY
TX

=
1− P (A)

P (A)
(if no commission)

Fractional paying odds if Y wins =
TX
TY

=
P (A)

1− P (A)
(if no commission)

since if, say X wins, then $TY are redistributed among the players betting on X and each
dollar bet on X makes a profit of TY /TX .

Note that we have

Paying odds if X wins =
1

Odds that X wins
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and so we can use this to translate fractional paying odds into probability that X wins.
To figure out who is the underdog and who is is the favorite we have for example

X is the underdog ⇔ P (A) < 1/2⇔ Odds of A < 1⇔ Fractional paying odds of A > 1

In terms of decimal odds (which gives the total amount returned to the winner (initial
bet + profit) we have

Decimal paying odds if X wins = 1 +
TY
TX

= 1 +
1− P (A)

P (A)
=

1

P (A)
(if no commission)

Decimal paying odds if Y wins = 1 +
TX
TY

=
P (A)

1− P (A)
=

1

1− P (A)
(if no commission)

In terms of money line odds we would get then (assuming X is the underdog and so
TY /TX > 1)

Moneyline odds if X wins = 100
TY
TX

Moneyline odds if Y wins = −100
TY
TX

Now how does the bookmaker modify the paying odds to ensure a profit? Let us say
that bookmaker would like to ensure a %5 profit margin for himself. If X wins for each
of the TX dollars bet on X he will return 1/P (A) dollar to the bettors while if Y wins
for each of the TY dollars bets on Y he will return 1/(1 − P (A)) dollars to the bettors.
Therefore to ensure a %5 percent margin, no matter who wins, the bookmaker should
choose

Decimal paying odds if X wins =
1

P (A)
× .95

Decimal paying odds if Y wins =
1

1− P (A)
× .95

and then of course we can express these numbers in fractional or moneyline odds.
For example if P (A) = 0.6 = 3/5 then the bookmaker will choose the decimal odds

to be 5/3× .95 = 1.58 (if X wins) and 2.38 (if Y wins) which translates into money line
odds of -172 (for the favorite X) and +138 (for the underdog Y).

Note that this ensure the bookmaker will make a %5 profit if the bettors bets according
to P (A) = TX/(TX +TY ). If this is not the case, say $ 5,500 is bet on X and $4,500 is bet
on Y then if X wins the bookmaker will pay back 5, 500.58 = 8690 for a profit of %13.1
while if Y wins he will pay 4, 500.38 = 10, 710 for a loss of %7.1. In that case his books
are unbalanced and he will adjust the odds. This explains, at least to some extent, while
the odds keep changing.
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Part 2: Combinatorics

In many problems in probability where one uses uniform distribution (many of them
related to gambling’s) one needs to count the number of outcomes compatible with a
certain event. In order to do this we shall need a few basic facts of combinatorics

Permutations: Suppose you have n objects and you make a list of these objects. There
are

n! = n(n− 1)(n− 2) · · · 1

different way to write down this list, since there are n choices for the first on the list, n−1
choice for the second, and so on.

The number n! grows very fast with n. Often it is useful to have a good estimate of
n! for large n and such an estimate is given by Stirling’s formula

Stirling′s formula n! ∼ nne−n
√

2πn

where the symbols an ∼ bn means here that lim
n→∞

an
bn

= 1

Combinations: Suppose you have a group of n objects and you wish to select a j of the
n objects. The number of ways you can do this defines the binomial coefficients(

n

j

)
= # of ways to pick j objects out of n objects

and this pronounced ”n choose j”.

Example: The set U = {a, b, c} has 3 elements. The subsets of U are

∅ , {a} , {b} , {c} , {a, b} , {a, c} , {b, c} , {a, b, c}

and there are
(
3
0

)
= 1 subset with 0 elements,

(
3
1

)
= 3 subset with 1 elements,

(
3
2

)
= 3

subset with 2 elements, and
(
3
3

)
= 1 subset with 3 elements.

Formulas involving binomial coefficients and ”Storyproofs”: There are many
relations between binomial coefficients. One can prove these relation using the formula
for the coefficients derived a bit later. A very elegant alternative is often to use the
meaning of the coefficients and to make up a ”story”. We give a few example
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1. We have the equality (
n

k

)
=

(
n

n− k

)
(3)

For example we have
(
10
6

)
=
(
10
4

)
.

To see why this is true think of forming a group of k people out of n people. You
can do by selecting k people with

(
n
k

)
choices. Alternatively you can for the group

by selecting all the people who are not among the group, that is you select n − k
people not in the group and there

(
n

n−k

)
ways of doing this.

2. Recursion relation for the binomial coefficients:and Pascal triangle: There
is a simple recursion relation for the binomial coefficients

(
n
j

)
in terms of the binomial

coefficients
(
n−1
k

)
: (

n

j

)
=

(
n− 1

j

)
+

(
n− 1

j − 1

)
(4)

for 0 < j < n. To use this recursion one needs to know that
(
n
0

)
=
(
n
n

)
= 1.

To see why the formula (4) holds think of a group of n people. The left hand side
of (4) is the number of ways to form groups of j people out of those n people. Now
let us pick one distinguished individual among the n, let us say we pick Bob. Then(
n−1
j

)
is the number of way to choose a group of j people which do not include Bob

(pick j out of the remaining n − 1) while
(
n−1
j−1

)
is the number of ways to pick a

group of j people which does include Bob (pick Bob and then pick j − 1 out of the
remaining n− 1. Adding these two we obtain the right hand side of (4) .

3. We have the relation

k

(
n

k

)
= n

(
n− 1

k − 1

)
(5)

To with this holds imagine selecting a team of k (out of n) and selecting also a
captain for the team. Then you can either pick first the team (

(
n
k

)
ways) and then

selecting the captain (k choices). This gives the left hand side of (5). Alternatively
you can pick first the captain (n choices) and then select the rest of the team (

(
n−1
k−1

)
ways).This gives the right hand side of (5).

Formula for the binomial coefficients To find an explicit formula for
(
n
j

)
we note first

that
n(n− 1) · · ·n− (j − 1)

is the number of ways to write an ordered list of j objects out of n objects since there are
n choices for the first one on the list, n − 1 choices for the second one and so on. Many
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of these lists contain the same objects but arranged in a different order and there are j!
ways to write a list of the same j objects in different orders. So we have(

n

j

)
=
n(n− 1) · · ·n− (j − 1)

j!

which we can rewrite as (
n

j

)
=

n!

j!(n− j)!

Poker hands. We will compute the probability of certain poker hands. A poker hands
consists of a 5 randomly chosen cards out of a deck of 52. So we have

Total number of poker hands =

(
52

5

)
= 2598960

Four of a kind: This hands consists of 4 cards of the same values (say 4 seven). To
compute the probability of a four of a kinf note that there are 13 choices for the choice
of values of the four of a kind. Then there are 48 cards left and so 48 choice for the
remaining cards. So

Probability of a four of a kind =
13× 48(

52
5

) =
624

2598960
= 0.00024

Full house: This hands consists three cards of the same value and two cards of an another
value (e.g. 3 kings and 2 eights). There are 13 ways to choose the value of three of a kind
and once this value is chose there is

(
4
3

)
to select the three cards out of the four of same

value. There are then 12 values left to choose from for the pair and there
(
4
2

)
to select the

the pair. So we have

Probability of a four of a full house =
13×

(
4
3

)
× 12×

(
4
2

)(
52
5

) =
3744

2598960
= 0.0014

So the full house is 6 times as likely as the four of a kind.

Three of a kind: There are 13
(
4
3

)
ways to pick a three of kind. There are then 48 cards

left from which to choose the remaining last 2 cards and there are
(
48
2

)
ways to do this.

But we are then also allowing to pick a pair for the remaining two cards which would give
a full house. Therefore we have

Probability of a three of a kind =
13×

(
4
3

)
×
(
48
2

)
− 13×

(
4
3

)
× 12×

(
4
2

)(
52
5

)
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Another way to compute this probability is to note that among the 48 remaining cards
we should choose two different values (so as not to have a pair) and then pick a card of
that value. This gives

Probability of a three of a kind =
13×

(
4
3

)
×
(
12
2

)
×
(
4
1

)
×
(
4
1

)(
52
5

)
Either way this gives a probability 54912

2598960
= 0.0211

Keno. This is a popular form of lottery played in casinos as well as often in bars and
restaurants. For example in Massachusetts, the numbers are drawn every four minutes
and appear on screens.

The game is played with the numbers {1, 2, 3, · · · , 80} and the casino randomly selects
20 numbers out of those. Clearly there are

(
80
20

)
choices. The player plays by selecting m

numbers out of 80. The number m varies and typically the game allows for the player to
choose m (for example in Massachusetts any m with 1 ≤ m ≤ 12 is allowed). One say
that a player gets a catch of k if k of his m numbers matches some of the 20 numbers
selected by the casino.

Let us take m = 8 and compute the probability of a catch of k in this case. Think
now of the 80 numbers divided into two groups the 8 ”good numbers” selected by the
player and the 72 bad numbers which are not. For the player to get a catch of k, k of his
numbers must be selected by the casino from his 8 ”good numbers” and the remaining
20− k numbers are selected from the ”bad numbers”. So we find

P ( catch of k if playing 8 numbers) =

(
8
k

)(
72

20−k

)(
80
20

) , k = 0, 1, · · · 8

In general we find

P ( catch of k if playing m numbers) =

(
m
k

)(
80−m
20−k

)(
80
20

) k = 0, 1, · · ·m

We will revisit the game of Keno later: the list of all odds and payouts as well as the the de-
tailed rules for Keno as played Massachusetts can be found at http://www.masslottery.
com/games/keno.html.

A lottery game. Consider the following lottery game. There are N tickets which are
numbered 1 to N . To each ticket one assigns a randomly chosen between 1 and N (so
that all N numbers are chosen) and the numbers are hidden behind a scratch surface.
The winner are the one with both numbers matching and the question we ask is to find
the probability that we have at least one winner at this game. The problem occurs in
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various context and is often called the“matching hat” problem since you can imagine N
gentlemen dropping all their hats in a big bucket and then picking them at random. The
question is what is the probability to pick your own hat.

To answer this question we use inclusion-exclusion. We write Ai for the event that the
ticket with number i is a winner and so we need to compute

P (A1 ∪ A2 ∪ · · ·AN)

We have P (A1) = 1
N

since there are N choice for the number and by symmetry we have
P (Ai) = 1

N
for all i. For two events A1 ∩A2 we find P (A1 ∩A2) = 1

N(N−1) since there are
1 out of N choice for the player 1 and then 1 out of N − 1 choices for the second player.
Again by symmetry we have P (Ai ∩ Aj) = 1

N(N−1) . Similarly we find for any collection

P (Ai1 ∩ · · · ∩ Aik) =
1

N(N − 1) · · · (N − k + 1)
.

if all the il are distinct. Getting back to the inclusion-exclusion we find that

P (A1 ∪ A2 ∪ · · ·AN)

= N
1

N
−
(
N

2

)
1

N(N − 1)
+

(
N

3

)
1

N(N − 1)(N − 2)
· · · (−1)N−1

(
N

N

)
1

N !

= 1− 1

2!
+

1

3!
− · · · (−1)N−1

1

N !
(6)

To get an idea recall that the series for e−1 is

e−1 =
∞∑
k=1

(−1)k

k!
= 1− 1

1!
+

1

2!
− 1

3!
+ · · ·

so that we have, approximately,

P (A1 ∪ A2 ∪ · · ·AN) ≈ 1− 1

e
= 0.6321

This approximation is however extremely good since we have the true values

N P (A1 ∪ A2 ∪ · · ·AN)
1 1
2 0.5
3 0. 6666
4 0.6250
5 0.6333
6 0.6319
7 0.6321

so that the approximation is essentially exact for very small number!
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