DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS EXAM 2: MATH 131 Spring 2003

is as indicated. It has 8 pages,

30 April 2003

This exam paper consists of 9 questions. The value of each question is as indicated. It has 8 pagincluding this one.
On this exam, you may use a calculator, but no books or notes. It is not sufficient to just write the answers. You must <i>explain</i> how you arrive at your answers.
It is not sunicient to just write the answers. Tou must explain now you arrive at your answers.
This space reserved for marking the exam.
1. (15)
2. (10)
3. (10)
4. (10)
5. (10)
6. (10)
7. (10)
8. (10)
9. (15)

TOTAL (100)

Your Name: _____

Your Instructor's Name:

(1) [15] For $t \ge 0$, the position s of a particle moving along a line is

$$s = \frac{1}{4}t^4 - t^3 + t^2 + 1,$$

where t is measured in seconds and s in feet.

- (a) Find the velocity at time t.
- (b) Find the acceleration at time t.
- (c) What is the velocity at three seconds?
- (d) When is the particle at rest?

(2) [10] Suppose that $y^2 = x^4 - 2x^2$. Compute $\frac{dy}{dx}$.

(3) [10] Compute the derivative of the function $y = \frac{x}{\ln(\sin x)}$.

- (4) [10] Suppose that $(x+y)^2 = x$. (a) Find y' by using implicit differentiation.
 - (b) Using implicit differentiation on your answer to part (a), compute y'', expressing it in terms of x and y.

(5) [10] Find the first three derivatives of the function $y = e^{x^2}$.

(6) [10] Use logarithmic differentiation to compute the derivative of the function $y = x^{2x}$.

(7) [10] Use logarithmic differentiation to find the derivative of the following function. (No credit will be given for using only the chain, quotient, and product rules.)

$$y = \frac{e^x(5x^3 + 3x - 2)^3}{\sqrt[3]{x}}$$

(8) [10] Let $f(x) = \sqrt{x}$. Use the linearization of this function at a = 4 to find an estimate for $\sqrt{3.5}$.

(9) [15] A car is moving west at 50 miles/hour. A man is riding a bike south at 15 miles/hour. The car and the bike are heading towards the same intersection of roads. At what rate are the bike and the car approaching each other when the car is 3 miles away from the intersection and the bike is 4 miles away from the intersection?