1) A squash ball is hit upwards so that its height in meters is given by $h(t)=5 t-10 t^{2}$, where t is the elapsed time in seconds.
A. (10 pts) Find the velocity after $0.1 \mathrm{sec}, 0.2 \mathrm{sec}$ and 0.3 sec , respectively.
B. (10 pts) When will the velocity be zero, and how high will the ball be then?
C. (10 pts) At what time will the ball first hit the ground? With what velocity will it do so?
2) Let $f(x)=e^{2 x} \cos (x)$.
A. (10 pts) Find the derivative $f^{\prime}(x)$.
B. (10 pts) Find the equation of the tangent line to the graph of $y=f(x)$ at the point $(0,1)$.
3) The function f is given by $f(t)=t e^{t}$.
A. (10 pts) Find its first and second derivatives.
B. $(10 \mathrm{pts})$ Give a formula for the n-th derivative $f^{(n)}(t)$.
4) (10 pts) Use logarithmic differentiation to find the derivative of $g(x)=x^{\ln (x)}$, giving your answer in terms of x.
5) (10 pts) Find $\frac{d y}{d x}$ when y is given implicitly by $x^{2} y+x y^{3}=1$.
6)

A. (10 pts) Find the linearization of the function \sqrt{x} at $a=16$.
B. (10 pts) Use differentials to approximate $\sqrt{16.5}$.
7) (20 pts) A (perfectly cubic) chunk of ice is melting so that its volume decreases at a rate of $15 \mathrm{~cm}^{3} / \mathrm{min}$. At what rate is the side of the cube changing when that side is 10 cm long?

Mathematics 131: 2nd midterm, Fall, 2001

1) A car position as a function of time is given by the formula $s=f(t)=2 t^{3}-9 t^{2}+12 t$ where s is measured in feet and t is measured in seconds.
A. (8 pts) What is the velocity of the car at time t ? When is the car at rest?
B. (8 pts) When is the car moving in the positive direction? In the negative direction?
C. $(8 \mathrm{pts})$ Find the total distance the car travels in the first 3 seconds.
2) Suppose a function is defined implicitly by $\left(x^{2}+y^{2}\right)^{2}=x^{4}+3$.
A. $(8 \mathrm{pts})$ Find $\frac{\mathrm{dy}}{\mathrm{d} x}$
B. (6 pts) Find an equation of the tangent line to the curve at the point $(1,1)$.
3) (12 pts) The function f is given by $f(x)=e^{6 x}$
A. Find its first and second derivatives
B. Give a formula for the nth derivative $f^{(n)}(x)$.
4) (12 pts) Use logarithmic differentiation to find the derivative of

$$
f(x)=(x+1)^{2}(x+2)^{3}(x+3)^{4}
$$

Gives your answers in terms of x.
5) (12 pts) Let f and g be differentiable functions, and let $h(x)=\ln \left(\frac{f(x)}{\sqrt{g(x)}}\right)$. If $f(0)=3$, $g(0)=1, f^{\prime}(0)=1$ and $g^{\prime}(0)=-1$, find $h^{\prime}(0)$.
6) (14 pts) A plane flying horizontally at an altitude of 1 mile and a speed of 500 miles per hour passes directly over a radar station. Find the rate at which the distance from the plane to the station is increasing when this distance is 2 miles.
7) (12 pts)
A. Approximate $\sqrt{6}$ using linear approximation and the fact that $\sqrt{6.25}=2.5$.
B. Is your approximation greater than or less than the actual value? Why?

