DEPARTMENT OF MATHEMATICS AND STATISTICS
 UNIVERSITY OF MASSACHUSETTS
 MATH 131 Spring 2004
 EXAM I

Your Section Number:

\qquad

Your Instructor's Name:

\qquad

Print Your Name: \qquad

Your ID Number: \qquad

Sign Your Name:

\qquad

This exam consists of 5 questions. It has 6 numbered pages, where the last is a blank page. Each problem is worth the indicated number of points. On this exam, you may use a calculator and a page of your own notes, but no books.

Unless indicated otherwise, it is not sufficient to just write the answers, and you must show your work to receive credit for a problem.

Please circle or box your final answer for each problem.

Leave the space below empty!

1. (20) \qquad
2. (20) \qquad
3. (20) \qquad
4. (20) \qquad
5. (20) \qquad
TOTAL (100)
6. Please classify the following statements as True or False. Write out the word completely; do not simply write T or F. There is no partial credit for this problem, and it is not necessary to show your work for this problem.
(a) (4 pts) The function $f(x)=\frac{x-1}{x-2}$ is not continuous at $x=2$.
(b) (4 pts) Suppose $f(1)=0, f^{\prime}(0)=1, g(0)=1$, and $g^{\prime}(0)=3$. Then the derivative of $f(x) g(x)$ evaluated at $x=0$ is 1 .
(c) (4 pts) According to the limit laws, $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{f(a)}{g(a)}$ as long as $g(a) \neq 0$.
(d) (4 pts) If $f(x)=e^{x}$, then the slope of the tangent line to the graph of $f(x)$ at $x=0$ is 1 .
(e) (4 pts) If $f(x)$ is continuous at $x=1$, then $f(x)$ is differentiable at $x=1$.
7. Compute the following limits.
(a) (6 pts) $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}$
(b) $(7 \mathrm{pts}) \lim _{x \rightarrow 4} \frac{x-4}{\sqrt{x}-2}$
(c) $(7 \mathrm{pts}) \lim _{x \rightarrow \infty} \frac{3 x^{2}+2 x+1}{2 x^{3}-4 x^{2}-1}$
8. Let $f(x)$ be function.
(a) (4 pts) State the definition of the derivative.
(b) (8 pts) Use the definition to compute the derivative of $f(x)=x^{2}+1$.
(c) $(8 \mathrm{pts})$ Use the definition to compute the derivative of $f(x)=\frac{1}{x+3}$.
9. Let $f(x)=\frac{x^{2}-4 x+3}{x^{2}-1}$.
(a) (3 pts) What is the domain of $f(x)$?
(b) (6 pts) Compute $f^{\prime}(x)$. (Please do not simplify your answer.)
(c) (5 pts) Find the equation for the tangent line to the graph of $f(x)$ at $x=0$.
(d) (6 pts) Find equations for the vertical asymptotes of $f(x)$, if there are any.
10. Let $f(x)=x^{3}-6 x^{2}+12 x+2$.
(a) (5 pts) Compute the derivative of f.
(b) (15 pts) Find the x-coordinates of all points where the graph of $f(x)$ has a tangent line parallel to the line $y=3 x+4$.
