DEPARTMENT OF MATHEMATICS AND STATISTICS
 UNIVERSITY OF MASSACHUSETTS
 EXAM 1: MATH 131 Spring 2003
 12 March 2003

Your Name: \qquad
Your Instructor's Name: \qquad
This exam paper consists of 10 questions, all of equal weight. It has 9 pages.
On this exam, you may use a calculator, but no books or notes.
It is not sufficient to just write the answers. You must explain how you arrive at your answers.

1. (10) \qquad
2. (10) \qquad
3. (10) \qquad
4. (10) \qquad
5. (10) \qquad
6. (10) \qquad
7. (10) \qquad
8. (10) \qquad
9. (10) \qquad
10. (10) \qquad
TOTAL (100)
(1) Compute the following limits.
(a) Explain each step with the limit laws. No credit will be gven for alternative solutions.

$$
\lim _{x \rightarrow 1} e^{x} \frac{1}{1+x}
$$

(b) Find the following limit $\quad \lim _{x \rightarrow 2} \frac{\left(x^{2}-4\right)}{x(x-2)}$.
(2) Consider the function $f(x)=\left\{\begin{array}{rr}x^{2}-1 & x \leq 1 \\ x-1 & x>1\end{array}\right.$.

Is this function continuous at $x=1$? Explain.
(3) Find $\lim _{x \rightarrow \infty} \frac{\sqrt{4 x^{2}+1}}{2 x+5}$.
(4) Find all horizontal and vertical asymptotes of

$$
f(x)=\frac{\left(x^{2}+1\right)(x-1)}{\left(x^{2}-3 x-2\right)} .
$$

Show all the analytical steps involved.
(5) State the definition of the derivative of a function $f(x)$ at $x=a$.
(6) Using the definition of the derivative, find $f^{\prime}(2)$ where $f(x)=x^{2}-3$.
(7) At $t=0$ seconds, a baseball is thrown vertically upward from a window that is 160 feet above the ground. The height in feet of the baseball above the ground is given by the formula

$$
h(t)=-16 t^{2}+B t+A
$$

where A and B are some constants.
(a) Determine the value of the constant A.
(b) The ball reaches its highest point at the time $t=1$. Use this information to determine the value of the constant B. (Hint: What is the velocity of the ball at the highest point?)
(c) At what time will the ball hit the ground?
(8) For what values of x is the tangent line to the curve $y=x^{3}-x^{2}-x+1$ horizontal?
(9) State the quotient rule for the derivative of the function $y=f(x) / g(x)$.
(10) Find y^{\prime}, where $y=\frac{e^{x}+x}{x-2}$.

