DEPARTMENT OF MATHEMATICS AND STATISTICS
 UNIVERSITY OF MASSACHUSETTS
 MATH 131 Fall 2003
 EXAM \#1

Your Section Number:

\qquad

Your Instructor's Name: \qquad

Print Your Name: \qquad

Sign Your Name: \qquad

This exam consists of 7 questions. It has 8 numbered pages, where the last is a blank page.

On this exam, you may use a calculator and a page of your own notes, but no books.
It is not sufficient to just write the answers. You must explain how you arrive at your answers.

Leave the space below empty!

1. (15) \qquad
2. (15) \qquad
3. (15) \qquad
4. (10) \qquad
5. (15) \qquad
6. (15) \qquad
7. (15) \qquad
TOTAL (100)
8. Find each finite or infinite limit (without giving details):
a) (7 points)

$$
\lim _{x \rightarrow \infty} \frac{1}{3-x}=
$$

b) (8 points)

$$
\lim _{x \rightarrow 2^{-}} \frac{x+2}{x-2}=
$$

2. (10 points)

$$
f(x)=x e^{x}+\frac{\sqrt{x^{2}+1}}{5 x-1}
$$

a) Use the limit rules (showing steps) to calculate

$$
\lim _{x \rightarrow 1} f(x)
$$

b) (2 points) Find $f(1)$.
c) (3 points) Is f continuous at 1 ?
3. Let $f(x)=2 \sqrt{x}+5$.
a) (7 points) Find $f^{\prime}(x)$ by using standard differentiation rules.
b) (8 points) Find the equation of the tangent line to the graph of f at the point $(1,7)$.
4. (10 points) Let f be a continuous function defined everywhere on the real line. How many horizontal asymptotes can f have? Circle all possible answers. For each circled response sketch a graph to illustrate this possibility, using dotted lines for asymptotes.

$\begin{array}{lll}0 & 1 & 2\end{array}$ more than 2

5. Let

$$
y=\frac{x}{x+1}
$$

a) (8 points) Use the definition of the derivative as a limit to compute $d y / d x$, showing steps.
b) (7 points) Use the quotient rule to compute $d y / d x$, showing steps.
6. The height of a ball t seconds after it is thrown vertically upwards from an initial position is

$$
s(t)=64 t-16 t^{2}
$$

a) (10 points) Use the derivative to determine the time at which the ball stops rising: when is the velocity 0 ?
b) (5 points) Determine at what time t the ball returns to the initial position.
7. a) (10 points) Use the derivative of $y=x^{3}-3 x^{2}+4$ to determine all points $x=a$ at which the graph has a horizontal tangent line.
b) (5 points) Draw the graph to check your answer in part a).

