Fall '01-Exam 1

(1) (15 pts)
(a) The following is a table of values for the function $f(x)=2 x /\left(x^{2}+1\right)$. Compute the slopes of the secant lines through each of these points and the point $(0,0)$. Use your table to estimate the slope of the tangent line to the graph $y=f(x)$ at $(0,0)$.

x	0.1	0.01	0.001	0.0001
$f(x)$	0.198020	0.019998	0.002000	0.000200

(b) Using your slope estimate from problem (a) above, write down the equation of the tangent line to $y=f(x)$ at the point $(0,0)$.
(2) (15 pts) Given the function $f(x)=x /\left(x^{2}-x-2\right)$
(a) Find the equations of all horizontal and vertical asymptotes of the graph.
(b) Draw the graph of $y=f(x)$, showing all the asymptotes.
(3) (16 pts) Let $f(x)=\sqrt{x-1}$.
(a) Calculate the derivative $f^{\prime}(x)$ directly from the definition.
(b) Find the domain of $f(x)$ and of $f^{\prime}(x)$.
(4) (24 pts) Consider the function

$$
g(x)= \begin{cases}3 x, & -2 \leq x<-1 \\ 2+x^{2}, & -1 \leq x<0 \\ e^{x}+1, & 0 \leq x \leq 1\end{cases}
$$

(a) Find all points x at which $g(x)$ is discontinuous. Explain.
(b) Find all points x at which $g(x)$ is not differentiable. Explain.
(c) Draw the graph, clearly labelling these points.
(d) Evaluate the limit

$$
\lim _{x \rightarrow 25} \frac{25-x}{5-\sqrt{x}}
$$

showing all your steps clearly.
(5) (10 pts) Find the points on the graph of $y=x(x-1)(x-2)$ where the tangent line is horizontal.
(6) (10 pts) Calculate the derivative of the function

$$
f(x)=\frac{x-k^{2}}{\sqrt{x}-k}
$$

where k is a constant.

