Math 131H: Midterm 2 practice problems

1. If you need to practice your chain rule and your implicit differentiation look for example at Reviews problems $11,13,15,25,29,33,36$ on page 262.
2. Use logarithmic differentiation to compute the derivative of the function

$$
f(x)=\frac{\sqrt[5]{2 x+1}\left(x^{2}-1\right)^{5}}{(x+4)^{6}}
$$

3. Review problem 53, , p. 262
4. Review problem 66, p. 262
5. Differentiate the functions

$$
f(t)=7^{3 t^{2}}
$$

and

$$
g(x)=\log _{10}(\sin (x))
$$

6. Review problem 89, p. 263
7. Review problem 90, p. 263
8. Review problem 93, p. 263
9. Review problem 94, p. 263
10. Review problem 96 , p. 263
11. Review problem 97, p. 263
12. Review problem 98, p. 264
13. Review problem 99, p. 264
14. Review problem 100, p. 264
15. (a) If $\$ 2000$ is borrowed at $\% 6$ percent interest, find the amount money due after 3 years if the interests is compounded (i) yearly, (ii) monthly, (iii) continuously.
(b) If the interests on the $\$ 2000$ borrowed in (a) are compounded continuously how long will it take for the your debt to double.
16. Review problem 105, p. 264
17. Using a suitable linear approximation given an approximation of

$$
(a) \sqrt[3]{27.5}, \quad(b) \frac{1}{104}, \quad(c) \tan \left(44^{o}\right)
$$

18. A ferris wheel with a radius of 10 m is rotating at a rate of one revolution every two minutes. How fast is a rider rising when his seat is 16 m above ground level?
19. The circumference of a sphere was measured to be 48 cm with an error of .2 cm . Use differentials to estimate the maximum error and the relative error for the surface area and the volume of the sphere.
20. Review problem 15, p. 348.
21. Find the local and absolute extrema (i.e., local and global maxima and minima) for the following functions on the given intervals

$$
\begin{gathered}
f(x)=x \sqrt{1-x}, \quad[-1,1] \\
f(x)=\frac{3 x-4}{x^{2}+1}, \quad[-2,2] \\
\frac{\ln (x)}{x^{2}}, \quad[1,3]
\end{gathered}
$$

21. For the following functions
22. Find the horizontal and vertical asymptotes
23. Find the local maxima and minima.
24. Find the interval where the function is increasing/decreasing.
25. Find the interval where the function id concave upward/downard
26. Draw a graph indicating all the results obtained 1.-4.

$$
\begin{aligned}
& f(x)=e^{2 x-x^{2}} \\
& f(x)=\frac{x^{2}}{x+8} \\
& f(x)=\frac{1}{1-x^{2}} \\
& f(x)=e^{-1 / x^{2}}
\end{aligned}
$$

