DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS
 MATH 131 FALL 2002
 FINAL EXAM

1. Consider the polynomial function $f(x)=\frac{x^{4}}{4}+\frac{x^{3}}{3}-x^{2}+2$
a) [8] Determine analytically the intervals where the function is increasing and those where it is decreasing. Find also all local maxima and local minima. Show all your analytical steps.
b) [8] Determine analytically the intervals where the function is concave upward and those where it is concave downward. Find also all points of inflection. Show all your analytical steps.
c) [4] Support your results in parts a) and b) by a graph of the function $f(x)$ in a view window of appropriate size. Indicate clearly the inflection points and the local maxima and minima.
2. [10] Consider the ellipse $\frac{x^{2}}{8}+\frac{y^{2}}{4}=1$.

Use implicit differentiation to show, that the tangent line to the ellipse at the point $\left(x_{0}, y_{0}\right)=$ $(2, \sqrt{2})$ has the equation $x+\sqrt{2} y=4$.
3. [15] Compute the following limits, using analytical steps (limit laws and/or L'Hospital's Rule). Justify all your steps!
a) $\lim _{x \rightarrow \infty} \frac{1}{x} \ln \left(\frac{1}{x}\right)$
b) $\lim _{x \rightarrow 2} \frac{x^{2}+x-6}{\cos (x-2)}$
c) $\lim _{x \rightarrow 0}(1+x)^{\frac{1}{\sin (x)}}$
4. [15] A rectangular banner has a red border and a white center. The width of the border at the top and at the bottom is 1 foot and along the sides it is $\frac{1}{2}$ foot. The total area is 32 square feet. Find the dimensions of the banner, which maximize the area of the white center. Justify your answer and show all your work.
5. [10] Find all the horizontal and vertical asymptotes of the function

$$
f(x)=\frac{x^{3}+4 x+6}{2 x^{3}-8 x^{2}}
$$

Show all the analytical steps involved.
6. [15] A radar station on the ground is tracking an aircraft, which is flying horizontally at an altitude of 3 miles. The radar signal indicates, that the distance between the aircraft and the radar station is 5 miles and the distance is increasing at a rate of 800 miles per hour. Calculate the speed of the aircraft. Show all your work!
7. [15] a) Find the global maximum and the global minimum of $f(x)=x e^{-x}$ on the interval $0 \leq x \leq 2$.
b) Sketch the function over the interval, marking clearly the global maximum and the global minimum.

