DEPARTMENT OF MATHEMATICS AND STATISTICS
 UNIVERSITY OF MASSACHUSETTS
 EXAM 2: MATH 131 Spring 2003
 30 April 2003

Your Name: \qquad
Your Instructor's Name: \qquad
This exam paper consists of 9 questions. The value of each question is as indicated. It has 8 pages, including this one.
On this exam, you may use a calculator, but no books or notes.
It is not sufficient to just write the answers. You must explain how you arrive at your answers.

This space reserved for marking the exam.

1. (15) \qquad
2. (10) \qquad
3. (10) \qquad
4. (10) \qquad
5. (10) \qquad
6. (10) \qquad
7. (10) \qquad
8. (10) \qquad
9. (15) \qquad
TOTAL (100)
(1) [15] For $t \geq 0$, the position s of a particle moving along a line is

$$
s=\frac{1}{4} t^{4}-t^{3}+t^{2}+1,
$$

where t is measured in seconds and s in feet.
(a) Find the velocity at time t.
(b) Find the acceleration at time t.
(c) What is the velocity at three seconds?
(d) When is the particle at rest?
(2) [10] Suppose that $y^{2}=x^{4}-2 x^{2}$. Compute $\frac{d y}{d x}$.
(3) [10] Compute the derivative of the function $y=\frac{x}{\ln (\sin x)}$.
(4) [10] Suppose that $(x+y)^{2}=x$.
(a) Find y^{\prime} by using implicit differentiation.
(b) Using implicit differentiation on your answer to part (a), compute $y^{\prime \prime}$, expressing it in terms of x and y.
(5) [10] Find the first three derivatives of the function $y=e^{x^{2}}$.
(6) [10] Use logarithmic differentiation to compute the derivative of the function $y=x^{2 x}$.
(7) [10] Use logarithmic differentiation to find the derivative of the following function. (No credit will be given for using only the chain, quotient, and product rules.)

$$
y=\frac{e^{x}\left(5 x^{3}+3 x-2\right)^{3}}{\sqrt[3]{x}}
$$

(8) [10] Let $f(x)=\sqrt{x}$. Use the linearization of this function at $a=4$ to find an estimate for $\sqrt{3.5}$.
(9) [15] A car is moving west at 50 miles/hour. A man is riding a bike south at 15 miles/hour. The car and the bike are heading towards the same intersection of roads. At what rate are the bike and the car approaching each other when the car is 3 miles away from the intersection and the bike is 4 miles away from the intersection?

