MATH 131 Spring 2005

EXAM 2 - Solution

1. A curve is given by the equation $x^{2}+x y+y^{2}=3$.
(a) (10) Compute the derivative $\frac{d y}{d x}$ of the curve at the point $(1,1)$.

ANS:

$$
\frac{d}{d x}\left(x^{2}+x y+y^{2}\right)=\frac{d}{d x}(3)
$$

or

$$
2 x+x \frac{d y}{d x}+y+2 y \frac{d y}{d x}=0 \quad \Rightarrow \quad \frac{d y}{d x}=-\frac{2 x+y}{x+2 y} \quad(6 \mathrm{pts})
$$

and

$$
\begin{equation*}
\left.\frac{d y}{d x}\right|_{(1,1)}=-\left.\frac{2 x+y}{x+2 y}\right|_{(1,1)}=-\frac{1}{1}=-1 \tag{4pts}
\end{equation*}
$$

(b) (10) Find the points where the tangent to the curve is horizontal.

ANS:

The tangent line is horizontal at a point (x, y) when

$$
\begin{equation*}
\frac{d y}{d x}=0 \quad \Rightarrow \quad-\frac{2 x+y}{x+2 y}=0 \quad \Rightarrow \quad 2 x+y=0 \quad \Rightarrow \quad y=-2 x \tag{4pts}
\end{equation*}
$$

Now, (x, y) must also satisfy the equation for the curve, so

$$
x^{2}+x(-2 x)+(-2 x)^{2}=3 \quad \Rightarrow \quad x^{2}=1 \quad \Rightarrow \quad x= \pm 1 \quad(4 \mathrm{pts})
$$

This gives the x values, so the points are $(1,-2)$ and $(-1,2)(2 \mathrm{pts})$.
2. Differentiate the following functions
(a) (10) $f(x)=\sqrt{\ln (\tan (x))}$

ANS:

$$
\begin{aligned}
\frac{d}{d x} \sqrt{\ln (\tan (x))} & =\frac{d}{d x}(\ln (\tan (x)))^{1 / 2} \\
& =\frac{1}{2}(\ln (\tan (x)))^{-1 / 2} \frac{1}{\tan (x)} \sec ^{2}(x)
\end{aligned}
$$

(b) (10) $f(x)=x^{6 x} e^{x^{2}-1}$

ANS: There is no way to do this problem without logarithmic differentiation.

$$
\begin{aligned}
f(x) & =x^{6 x} e^{x^{2}-1} \\
\ln (f(x)) & =\ln \left(x^{6 x} e^{x^{2}-1}\right)=\ln \left(x^{6 x}\right)+\ln \left(e^{x^{2}-1}\right)=6 x \ln (x)+x^{2}-1 \\
\frac{d}{d x}(\ln (f(x))) & =\frac{d}{d x}(6 x \ln (x))+\frac{d}{d x}\left(x^{2}-1\right) \\
& =\frac{d}{d x}(6 x \ln (x))+2 x \quad \text { Use the product rule on the first }
\end{aligned}
$$ term.

$$
\begin{aligned}
& =6 \times \frac{1}{\not x}+6 \ln (x)+2 x \\
\frac{f^{\prime}(x)}{f(x)} & =6+6 \ln (x)+2 x \text { Multiplying both sides by } f(x) \\
f^{\prime}(x) & =f(x)(6+6 \ln (x)+2 x) \\
\mathbf{f}^{\prime}(\mathbf{x}) & =\mathbf{x}^{6 \mathbf{x}} \mathbf{e}^{\mathbf{x}^{2}-1}(\mathbf{6}+\mathbf{6} \ln (\mathbf{x})+\mathbf{2 x})
\end{aligned}
$$

You may also use the product rule with $u=x^{6 x}$ and $v=e^{x^{2}-1}$. But you will still need logarithmic differentiation to find $u^{\prime}=x^{6 x}\left(6 x \frac{1}{x}+6 \ln (x)\right)$ see example 8 in section 3.8 (pg. 247) in the text book for a calculation similar to the one for u^{\prime}. You will also need to find $v^{\prime}=2 x e^{x^{2}-1}$ using the chain rule.
3. Let $f(x)=e^{3 x}+\sin (x)$.
(a) (12) Compute the first three derivatives $f^{\prime}(x), f^{\prime \prime}(x), f^{\prime \prime \prime}(x)$.

ANS:

$$
\begin{aligned}
f^{\prime}(x) & =3 e^{3 x}+\cos (x) \\
f^{\prime \prime}(x) & =3\left(3 e^{3 x}\right)-\sin (x)=9 e^{3 x}-\sin (x) \\
f^{\prime \prime \prime}(x) & =9\left(3 e^{3 x}\right)-\cos (x)=27 e^{3 x}-\cos (x)
\end{aligned}
$$

(b) (8) Find $f^{(37)}(0)$.

ANS:

$$
\begin{aligned}
f^{(37)}(x) & =3^{37} e^{3 x}+\cos (x) \\
f^{(37)}(0) & =3^{37} e^{0}+\cos (0)=3^{37}+1
\end{aligned}
$$

4. In a building which is 100 ft high, a woman takes an elevator at the top of the building and moves downward at a speed of $16 \mathrm{ft} / \mathrm{sec}$. At exactly the same time a man exits the building and travels along a straight line at a speed of $3 \mathrm{ft} / \mathrm{sec}$. Find the rate of increase of the distance between the man and woman after 5 seconds.

ANS:

Let x be the (horizontal) distance between the bottom of the building and the man and let y be the (vertical) distance between the bottom of the building and the woman.
The distance z between the man and the woman is related to x and y by

$$
z^{2}=x^{2}+y^{2} .
$$

We know that at time 0 we have $x(0)=0$ and $y(0)=100$ and that

$$
\frac{d x}{d t}=3 \quad \text { and } \quad \frac{d y}{d t}=-16
$$

(Be careful about the sign!)
After 5 seconds, we have $x(5)=3 \times 5=15$ and $y(5)=100-5 \times 16=20$. Therefore the distance between ther man and the woman after 5 seconds is

$$
\sqrt{20^{2}+15^{2}}=\sqrt{625}=25
$$

If we differentiate the relation $z^{2}=x^{2}+y^{2}$ with respect to t we find

$$
2 z \frac{d z}{d t}=2 x \frac{d x}{d t}+2 y \frac{d y}{d t}
$$

or

$$
\frac{d z}{d t}=\frac{x \frac{d x}{d t}+y \frac{d y}{d t}}{z}
$$

After 5 seconds

$$
\frac{d z}{d t}=\frac{15 \times 3+20 \times(-16)}{25}=-11
$$

5. If a piece of chalk is thrown vertically upward with a velocity of $32 \mathrm{ft} / \mathrm{sec}$, then the height after the t seconds is

$$
s(t)=32 t-16 t^{2}
$$

(a) (4) Find the velocity of the piece of chalk after 2 seconds.

ANS:

$$
v(t)=32-32 t
$$

so that $v(2)=32-64=-32$. The velocity after 2 seconds is $-32 \mathrm{ft} / \mathrm{sec}$
(b) (4) When is the piece of chalk at rest?

ANS:

At rest when $v(t)=32(1-t)=0$, i.e., $t=1$.
(c) (4) What is the accelaration?

ANS:

$$
a(t)=-32
$$

(d) (4) When is the piece of chalk speeding up/slowing down?

ANS:

Speeding up if $a<0, v<0$, i.e., for $1<t$. Slowing down if $a<0, v>0$, i.e., for $1>t$.
(e) (4) What is the velocity of the piece of chalk when it is 12 ft above the ground on its way up?

ANS:

$$
s(t)=32 t-16 t^{2}=12
$$

if $t^{2}-2 t+\frac{3}{4}=0$ which gives

$$
t_{1}=\frac{1}{2}, t_{2}=\frac{3}{2} .
$$

In the first case $v\left(\frac{1}{2}\right)=16$, in the second $v\left(\frac{3}{2}\right)=-16$. This shows that the chalk is on its way up when $t=\frac{1}{2}$ and then the velocity is $16 \mathrm{ft} / \mathrm{sec}$.

