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ABsTrRACT. Let M = M, . denote the space of properly embedded (or Alex-
androv immersed) constant mean curvature (cmc) surfaces of genus g with &k
(labeled) ends, modulo rigid motions, endowed with the real analytic structure
described in [20]. Let P = Py = Rgr X R’i be the space of parabolic
structures over Riemann surfaces of genus g with k (marked) punctures, the
real analytic structure coming from the 3g — 3 + k£ local complex analytic
coordinates on the Riemann moduli space Ry - Then the parabolic classifying
map, ® : M — P, which assigns to a cmc surface its induced conformal
structure and asymptotic necksizes, is a proper, real analytic map. It follows
that ® is closed and in particular has closed image. For genus g = 0, this can
be used to show that every conformal type of multiply punctured Riemann
sphere occurs as a cmc surface, and —under a nondegeneracy hypothesis —
that ® has a well-defined (mod 2) degree. This degree vanishes, so generically
an even number of cMmc surfaces realize any given conformal structure and
asymptotic necksizes (compare [11, 12] for the case k = 3).

Introduction

Besides their beauty and variety, perhaps the most important reason minimal
surfaces have been so thoroughly investigated is because they can be conformally
parametrized via holomorphic functions of a complex variable, a long-familiar tool
to many mathematicians. This representation theory was worked out by Enneper
and Weierstrass in the middle of the 19th century, leading to important local results
and interesting periodic examples. But not until the 1960s did Osserman [27]
prepare the way for a global theory by showing that a complete minimal surface
with finite total curvature is conformally parametrized by meromorphic data on a
finitely punctured, finite genus Riemann surface. The global Enneper—Weierstrass
representation enables one to employ algebro-geometric methods from the theory
of complex curves to study such minimal surfaces. Over the past two decades it has
been used in conjunction with analytic methods by a number of authors — many
represented in this volume —to prove deep and striking results about properly
embedded minimal surfaces of finite total curvature or finite topology (finite genus
and a finite number of ends).
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The theory of complete, properly embedded surfaces with nonzero constant
mean curvature (CMC) has developed more recently and without the benefit of these
holomorphic methods. While more than a century elapsed between Delaunay’s clas-
sification [7] of the cMcC rotation surfaces (two ends, genus zero) and Alexandrov’s
[2] proof that the only compact (zero ends) cMc surface is the round sphere, only in
the past decade have interesting noncompact examples of finite topology CMC sur-
faces (with three or more ends) been constructed by Kapouleas [16], using difficult
analytic methods. At about the same time, the first steps toward a global theory
of these surfaces were taken by Meeks and by Korevaar, Kusner and Solomon: they
found obstructions to the existence of cMC surfaces with finite topology —none
have one end [24], two-ended surfaces are Delaunay unduloids [19]—and devel-
oped an asymptotic theory for these surfaces. In fact the fundamental result of
[19] is that each (annular) end of a cMcC surface has an unduloid asymptote. An
immediate consequence is that a finite topology cMcC surface can be conformally
parametrized by a finitely punctured Riemann surface of finite genus.

FIGURE 1. Equilateral triunduloid and tetrunduloid (images by Nick
Schmitt, GANG).

Can such a global conformal parametrization be made explicit—enough to
prove something new about ¢MC surfaces, or at least to experiment with them us-
ing a computer? Using a loop-group analogue of the Enneper—Weierstrass represen-
tation —dubbed the DPW representation after its discoverers, Dorfmeister, Pedit
and Wu [8] —Schmitt has recently taken up this question at GANG in Amherst
(see Figure 1, and www.gang.umass.edu). He adapted the DPW representation to
construct, in terms of explicit meromorphic data on a punctured Riemann surface,
conformal immersions of finite topology constant mean curvature surfaces whose
ends are asymptotically Delaunay unduloids (or nodoids) [17, 30]. This approach
is still under development, and little is known about how to prove that the examples
it constructs have the symmetries or embeddedness properties required. Neverthe-
less, it appears to recapture the earlier results of Grofe-Brauckmann, Kusner and
Sullivan [11, 12] about three-ended ¢MC surfaces of genus zero, the triunduloids.

Our investigations [11, 12] made use of a special classifying map from the space
of all triunduloids to an open three-ball. We relied heavily on the real analytic vari-
ety structure of cMC moduli space developed by Kusner, Mazzeo, and Pollack [20],
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as well as the compactness results of Korevaar and Kusner [18], to prove this map is
a homeomorphism. The present paper also uses these transcendental methods, and
was motivated by a desire to weave these together with the holomorphic methods
arising from the DPW representation in order to better comprehend the fabric of
cMC moduli spaces.

The main result of this paper is a properness theorem for a general classifying
map which assigns a ¢MC surface its induced conformal structure and asymptotic
necksizes. As noted in the abstract, consequences of this theorem include infor-
mation about which conformal structures and necksizes —input data for the DPW
representation —can arise for cMC surfaces, as well as about how many surfaces
might share given data. In particular, we show that these surfaces generally oc-
cur in pairs, a phenomenon first observed by Karcher and Grofe-Brauckmann [10]
for surfaces with special symmetry. Several outstanding open problems about the
moduli spaces of CMC surfaces are also discussed.

There is some interplay between our results and those of Mazzeo, Pacard and
Pollack, so here an effort is made to focus on what is complementary; the reader
is encouraged to refer to their nice paper [23], as well as to [12], for additional
background and related material. The author wishes to thank Rafe Mazzeo, Frank
Pacard, Dan Pollack, Jesse Ratzkin and Rick Schoen for stimulating discussions,
and Karsten Grofse-Brauckmann for much thoughtful advice. Thanks are also due
to Nicos Kapouleas, Hermann Karcher, Nick Korevaar, Remi Langevin, Franz Pedit,
Wayne Rossman, Nick Schmitt, John Sullivan and Mike Wolf for their interest
and comments, and especially to David Hoffman and Harold Rosenberg for their
invitation to present this at the 2001 Clay /MSRI summer workshop. The research
reported here was supported in part by NSF grant DMS-0076085.

1. Background on the cMmc Moduli Space

Let M = M, be the moduli space of all cmcC surfaces of genus g with &
(labeled) ends, modulo rigid motions. Here, as usual, we scale the mean curvature
to be 1, and include in M not only the embedded surfaces, but also those which are
immersed in the sense of Alexandrov: these are boundaries of properly immersed
3-dimensional manifolds (compare [3, 12, 19]). Some of the results mentioned in
the introduction can then be expressed in terms of M as follows:

e My, is a point, represented by any unit sphere, and M, is empty for

all g > 0 [2];

My is empty for every g [24];

Ma,2 consists of the unduloids (up to rigid motion), but M, » is empty

for all g > 0 [19];

e M, is nonempty for every g > 0, k > 2 [16] —for example, My 3 is a
3-ball [11, 12];

e M, is a real analytic variety of (virtual) dimension 3k — 6, for k > 2
[20].

To understand this real analytic structure on M, it will be useful to introduce
the pre-moduli space M, that is, the space of cMC surfaces before dividing by rigid
motions. We also let &f = M 5 denote the pre-moduli space of all unduloids. The

discussion below will describe the real analytic variety structure on M in terms
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of an explicit real analytic manifold structure on U, in order to demonstrate the
following (almost tautological) result:

ProrosITION 1.1. The map Mg,k — UF which assigns a cMC surface its k
unduloid asymptotes is real analytic, and is equivariant with respect to the actions
of rigid motions. Moreover, there is a real analytic necksize function s : U — R4,
taking values in (0,1]. It is invariant under rigid motions, and so gives rise to a
real analytic asymptotic necksize map (s1,...,85) : Mg — R’jr, taking values in
(0, 1]".

PROOF. The equivariance is clear when we take the diagonal action by rigid
motions on the k-fold product U*: as a cMc surface undergoes a rigid motion, each
unduloid asymptote undergoes the same motion. Furthermore, once s is defined,
it should be clear that (s,...,sk) is defined by composition with the asymptotes
map and passage to the quotient by rigid motions.

Recall that an unduloid [19] is a periodic ¢MC surface of revolution determined
by its axis, its neckphase —where along the axis it is nearest the axis—and its
necksize. (Of course, modulo rigid motions, an unduloid is specified by its necksize
alone.) So the space U is naturally a fiber bundle over the space T'S? of (oriented)
lines in R3. The base space T'S? has a natural analytic structure as a homogeneous
space for the group of rigid motions. The total space U will then be expressed as
a 6-dimensional real analytic manifold provided an analytic manifold structure can
be exhibited on the typical fiber D, consisting of all unduloids with a fixed, oriented
axis (the two ends of the unduloid are labeled according to the axis orientation).

Observe that D is topologically an open disk, with necksize and neckphase as
polar coordinates. The cylinder, whose necksize is maximal and whose neckphase
is not well defined, is at the center of D, fixed under rotation (neckphase-shift).
The boundary of D corresponds to the zero necksize limits of unduloids — chains of
spheres along the given axis. The natural analytic structure on D comes from its
(locally homogeneous) realization as an open subset of the unit sphere S, indeed
as S% — {p} for a single point p.

This spherical picture of D also played a key role in [12], leading to a natural
interpretation of necksize —there referring to the length of the shortest nontrivial
loop on an unduloid —as the spherical distance n between p and another point
q € D = S?— {p}. Unfortunately, n is not an analytic coordinate on D: at the
cylinder (corresponding to ¢ antipodal to p) the function n is only Lipshitz. This
will be remedied by reinterpreting necksize here to mean s = %(1 —cosn).

Although s may seem geometrically less natural than n, it turns out to be more
natural in other ways. For example, being a height function on S? in the direction
p, it is symplectically dual to neckphase (angle around p) for the homogeneous sym-
plectic structure on S2. For the present paper, however, the important point is that
s is analytic with respect to the natural (locally homogeneous) analytic structure
on U, and has the invariance properties and range indicated in the statement of the
proposition. In fact, we could have equally well used the weight or force modulus
[19] of an unduloid, f = n(27 —n), which is also an analytic coordinate on U, even
at the cylinder (n = ).

The tangent space to i at an unduloid can be identified with the 6-dimensional
linear space V of geometric Jacobi fields (see [19, 20]). Thus V gives analytic
local coordinates on U in a neighborhood of this unduloid. We shall pretend that
V defines global analytic coordinates on U in what follows, but since checking
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analyticity is a local condition, this pretense only amounts to a mild abuse of
notation.

Using the asymptotics result [19], one can construct [20] a 6k-dimensional
linear space W of functions on any surface X € Hg,k which grow at each end of ¥
like those in V. There are various ways to realize such a ¥ —either as an orthogonal
complement (in an appropriate Hilbert space, compare [20]) to the functions which
decay on every end of X, or as a quotient space (compare [22]) by such functions —
but the salient point is that there is a linear isomorphism from W to V¥, and thus
a real analytic map from W to U*.

So in order to establish the proposition above, it would suffice to analytically
embed M into W, at least locally, in the natural way: at a CMC surface X, represent
any nearby CMC surface in M via its asymptotic behavior, which is encoded by a
point of W. One of the main results in [20] is that this is possible when ¥ is
nondegenerate, that is, provided ¥ supports no nontrivial L2-Jacobi fields. In this
case all nearby cMC surfaces form an analytic manifold of dimension 3k — half that
of W—and M, is (locally) a Lagrangian submanifold with respect to a natural
symplectic structure defined [20] on W (or on V¥, or even directly on U*).

For the general case, a neighborhood of ¥ in M may no longer analytically
embed in W, but it can still be embedded as a variety in a larger linear space
W x K where K is a finite-dimensional linear space accounting for the L2-Jacobi
fields on X (compare [20]). Clearly the composition of analytic maps— inclusion
of this variety in W x K, followed by projection to W, then the linear isomorphism
to V¥, and finally, the analytic local coordinates map into U* —is the asymptotes
map, which is thus analytic. |

2. A Proper Classifying Map and Its Consequences

One can investigate the topology of M by studying maps with special properties
from M to other known spaces. As noted in the introduction, this is the method
used to classify the triunduloids: there is a homeomorphism ¥ from Mg 3 to an
open 3-ball, realized by the space of ordered triples of points on S2 (up to rotations):
¥ identifies the asymptotic necksizes of the triunduloid with the spherical distances
for the triple [11, 12]. Unfortunately, the triunduloid classifying map ¥ requires
the existence of a mirror symmetry which is not necessarily present for cMC surfaces
with four or more ends, and so we will introduce a more general classifying map
here to investigate them.

We have already observed that the necksize map (s1,...,8%) : Mg — R’i,
is real analytic. Now consider the forgetful map ¢ : Mgy — R,y which assigns
the cMc surface ¥ the conformal class [X] of its induced metric from R?. In other
words, ¢ “forgets” everything but the underlying punctured Riemann surface. It is
well known (compare [1, 15, 32, 31]) that the Riemann moduli space Ry can
be given a real analytic structure in two (equivalent) ways, either in terms of holo-
morphic quadratic differentials with prescribed poles at the punctures (3g — 3 + &
complex analytic local coordinates coming from the cotangent bundle to Ry ) or in
terms of finite-area hyperbolic metrics (6g — 6+ 2k real analytic Fenchel-Nielsen co-
ordinates). One could exploit the Hopf differential for the Gauss map of a constant
mean curvature surface to derive the following result via holomorphic quadratic
differentials, but fortunately Mazzeo, Pacard and Pollack have already derived this
[23] by proving a nontrivial result in semilinear elliptic partial differential equations;
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they show the unique hyperbolic metric on ¥ — conformal to its induced metric as
a cMc surface—depends analytically on X, and thus [23]:

PROPOSITION 2.1. The forgetful map ¢ is real analytic.

Although it is tempting to work with the forgetful map ¢ alone, there are at
least two reasons why another map will be more suitable. First, in order to find
homotopy invariants for maps between noncompact spaces, the maps are generally
required to be proper. Unfortunately ¢ itself is not proper: compare Rg 3, which is
a single point (and thus compact), to its preimage Mg 3 under ¢, which is an open
(and thus noncompact) 3-ball. In general ¢ fails to be proper because a sequence
of cMc surfaces diverges in M by having asymptotic necksizes tend to zero, while
remaining in a compact family of conformal types. Second, the meromorphic data
for the DPW representation of a ¢cMcC surface with asymptotically unduloidal ends
can be geometrically interpreted in terms of flat connections on a rank-2 complex
vector bundle over a punctured Riemann surface, with parabolic holonomy deter-
mined by a positive number (related to the asymptotic necksize) at each of the
punctures (compare [5, 30]).

These considerations suggest extending the Riemann moduli space to the par-
abolic moduli space Py = Ry r X Ri which assigns a positive real number to each
puncture of [¥], and defining the parabolic classifying map

P : Mg,k — 'Pg,k = Rg,k X le_

as the product of the forgetful map ¢ with the asymptotic necksize map (s1,. .., sk)-
The main result of this paper is the following;:

THEOREM 2.2. The parabolic classifying map ® : M — P is real analytic and
proper.

Note that the real analyticity of ® follows immediately from Propositions 1.1
and 2.1. Before giving a proof of properness (see Section 3), we first point out
several consequences:

COROLLARY 2.3. The parabolic classifying map ® : M — P is closed. In fact,
its image is a closed real analytic subvariety, which represents a (mod 2) homology
class in P. The forgetful map ¢ also has closed image in R.

PROOF. Since P is a compactly generated Hausdorff space, we can apply a
lemma from general topology (see [12], Section 5) to show that any proper map to
P is closed; in particular, ® has closed image ®(M) C P. The homology class in P
is carried by the image of ®, or more precisely, by the proper (mod 2) cycle which
is the push-forward via @ of the fundamental (mod 2) cycle of the real analytic
variety M (compare [6, 33]).

The forgetful map ¢ is the composition of & with the projection from P to
R. Unfortunately, projection is generally not a closed map, so the proof that the
image of ¢ is closed does not follow immediately from the fact that the image of
® is closed. Nevertheless, the analyticity of the forgetful map ¢ (Proposition 2.1)
suffices to show it has closed image (compare [23]). O

Next, observe that any component of M, containing a nondegenerate CMC
surface is a real analytic variety of dimension 3k — 6 [20], and this coincides with
69—6+3k —the dimension of P, ; — precisely when g = 0. This is a third important
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reason to introduce P, since it leads to a degree theory, at least in case of genus
zero surfaces (we shall assume g = 0 for the remainder of this section, with the
exception of the final remark):

THEOREM 2.4. For any component N of Mg i, containing a nondegenerate CMC
surface, the restriction of ® to N has a well-defined degree (mod 2). Moreover, this
degree is zero.

PROOF. Because the domain A and the range P have the same dimension, the
ideas in [6, 12, 33] let us define this degree as the number of pre-images (mod 2)
for any regular value of ®. The connectedness of P and properness of ® imply that
the pre-images of any two regular values can be joined by a compact, 1-dimensional
(semi-analytic) variety in A/, which necessarily has an even number of endpoints,
so the numbers of pre-images agree (mod 2). Then the obvious upper bound on
necksize by that of a cylinder shows that this (mod 2)-degree must vanish. |

In particular, it follows that genus zero cMcC surfaces generically occur in pairs:

COROLLARY 2.5. For any nondegenerate surface ¥ € My, which is a regular
point of ®, there is a corresponding surface ¥' € My with the same conformal
structure and necksizes.

Of course, there is no reason to expect there are exactly two such surfaces with
the same data, only an even number (see Section 5 for further discussion of this
phenomenon).

Finally, we observe that every conformal type of punctured Riemann sphere is
realized by a cMmC surface. Although we make no use of this below, this observation
is useful from the perspective of the DPW representation, since it guarantees the
search for DPW data on a particular punctured Riemann sphere will (in principle)
always succeed. Although this is also proven via a rather different argument —
using end attachment at (almost) any point of a (nondegenerate) cMmc surface, and
induction on the number of ends—in [23], it is interesting to present this direct
argument, based on ideas coming from Kapouleas’ original construction of cMmc
surfaces [16]:

THEOREM 2.6. The forgetful map ¢ : Mo, — Ro,k is surjective.

PROOF. From the second part of Corollary 2.3, it suffices to show that a dense
set of conformal types is realized. Using a little linear algebra, it is not hard to
see that, up to conformal transformations of S2, any configuration of k¥ > 1 points
&1,...,& on S? can be balanced with positive weights: that is, regarding the &; as
unit vectors in R®, there exists a positive solution fi,..., fx to the linear relation
(force balancing)

fi&o +--+ frée = 0.

For sufficiently small forces f;, the Kapouleas construction [16] then gives a cmC
surface ¥ of genus zero with k ends asymptotic to unduloids whose jth axis is
approximately in the direction {; and whose corresponding necksize is approxi-
mately f;. Because X is obtained by quasiconformally attaching punctured disks
(corresponding to the unduloid ends) at the boundaries of arbitrarily small disks
about each &;, its conformal structure [X] can be made to lie within any prescribed
neighborhood of [S% — {&1,...,&}] in Ro k. a
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It is quite easy to see that ¢ cannot be surjective for g > 0. For instance, when
k = 3 a cMc surface ¥ must have a plane of reflection symmetry, so the Riemann
surface [X] = ¢(X) must have a certain anti-conformal involution with more than
g component curves in the fixed point set; this necessary condition, for example,
allows only rectangular tori in My 3.

There is an interesting generalization of ® and M, ; which admits results anal-
ogous to Theorems 2.2 and 2.4 (and their Corollaries) in case g > 0. To understand
this, recall that any 3 € M, ; bounds an immersed genus-g handlebody (2; because
3 closes when we follow a loop in {2 means we have the trivial representation of
m1(Q) into the group of rigid motions. The new idea is to consider all such repre-
sentations, where ¥ may no longer have closed periods around the g generators of
71(Q); the corresponding space M; i of half-periodic cMc surfaces forms a variety
whose (virtual) dimension is 6g more than that of M, ;. A fundamental domain
for a half-periodic surface still defines a punctured Riemann surface, and it still has
k asymptotic necksizes; thus we get an extended parabolic classifying map ®* in the
obvious way:

REMARK 2.7. The extended parabolic classifying map ®* : ok = Pok is real
analytic and proper. Any component N'* of M* containing a nondegenerate half-
periodic CMC surface is (3k — 6 + 69g)-dimensional (the same as for P), and thus
the restriction of ®* to N'* has a well-defined (mod 2) degree, which must vanish.

We plan to explore the consequences of these observations about ®*, along with
the problem of closing periods of ¥ € M7 ;. in a future paper.

3. Proof of Properness

The proof that the parabolic classifying map ® : M — P is proper relies on
the a priori estimates for cMC surfaces developed in [18], namely:

LEMMA 3.1. Any ¥ € M, lies in o uniform tubular neighborhood of a piece-
wise linear 1-complex with k rays and at most k+ 39 — 3 finite segments. Moreover,
a sequence (i) of CMC surfaces, all of which lie in a compact family of uniform
tubular neighborhoods, diverges in M, i, if and only if the length £(i) of the shortest
nontrivial loop on (i) tends to zero (compare [18]).

A compact family of uniform tubular neighborhoods is characterized by requiring
the lengths of all segments to be uniformly bounded above, although these lengths
may go to zero, as may the angles between the rays or edges. For sequences of cMC
surfaces X.(i) lying in such a compact family of tubular neighborhoods, uniform
linear area and total curvature estimates [18] still hold, and uniform pointwise
curvature estimates also hold under the hypothesis that the £(¢) are bounded away
from zero (using blow-up arguments of the kind we outline below).

The proof also depends on a description of divergent sequences of punctured
Riemann surfaces in terms of the conformal moduli of certain nontrivial annuli. We
say that an embedded annulus A on a punctured Riemann surface is essential (or
nonperipheral) provided it is not homotopic to a single point of the surface, nor to a
single puncture. Such an annulus then has a (necessarily finite) conformal modulus
[A] = m € (1,00) defined by conformally mapping A into C so that one boundary
component goes to the unit circle, and the other goes to the circle of radius m. The
basic fact which we will use is the following:
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LEMMA 3.2. A sequence of punctured Riemann surfaces [X(i)] diverges in Rg
if and only if there exist essential annuli A(i) C X(i) whose moduli [A(i)] = m(i) —
00 as i — 0.

Proor. This is a standard result in Teichmiiller theory, using extremal length
(compare, for instance, [32]) or Fenchel-Nielsen coordinates (compare [1, 15, 31]),
although it seems difficult to find the exact statement in the literature, particularly
for the case of a punctured Riemann surface. In effect, the existence of a family of
essential annuli A(7) C X(i) whose moduli diverges to infinity is equivalent to having
a family of geodesics (in the homotopy class of A(i)) whose length in the conformal
hyperbolic metric on [£(4)] tends to zero. The Mumford-Bers compactness theorem
(compare [26, 4]) implies that only these [X(i)] diverge in Ry . O

Proof of the properness theorem. To show that the classifying map & is proper
it will suffice to prove the contrapositive, namely, that a divergent sequence (%)
in M, i, whose asymptotic necksizes s (i), ..., sk (i) are uniformly bounded away
from zero, must contain divergent essential annuli as above, implying ®(X(7)) is
divergent in Py .

So suppose a sequence X (i) diverges in M, with all asymptotic necksizes s; (i) >
£ > 0. Then we have two (non-exclusive) alternatives:

e L(i) — oo, where L(i) is the length of the longest finite segment in the
1-complex whose uniform tubular neighborhood contains X(i); or

e /(1) = 0, where £(7) is the length of some nontrivial closed curve, which
is not homotopic to an end of X(7).

In the first case, the Alexandrov symmetrization method [18, 19] shows there is
a sequence of essential annuli A(7) C X(4) which are approximately unduloidal on
greater and greater lengths (comparable to L(i) — oo, though the constants are
not explicitly computable). Since any unduloid is periodic, the essential annuli ap-
proximating an unduloid have moduli [A(7)] which grow exponentially with length,
and thus diverge.

In the second case, we make a blow-up argument (compare [12, 18, 19]) to
get a non-flat, finite total curvature minimal surface M bounding an immersed
3-manifold. There are several subcases to consider.

First, suppose M is embedded, so its top and bottom ends are catenoidal. Let
A be a punctured-disk representative for such an end on M. Thus as i — oo,
the end A is approximated by rescaled copies of annuli A(i) C ¥(¢) with moduli
[A(7)] = [A] = 0. Since A is catenoidal, it has nonzero force (see [12, 18, 19]), as
must the A(7), which implies they are homologically nontrivial. And although the
forces (and thus the necksizes) of the A(7) tend to zero, because we are assuming
the necksizes of the ends of X(i) are bounded away from zero, it follows that the
A(7) are not homotopic to any end of ¥(i), and so must be essential.

Next, suppose the blow-up minimal surface M is only immersed. If each end
of M is simple, then each must be either catenoidal or planar. An application of
the strong half-space theorem [14], using the immersed 3-manifold in place of R?,
shows that not all ends of M can be planar; so we get a catenoidal end with nonzero
force, and a punctured-disk representative A, to use just as in the argument above.

Finally, in case an end of the blow-up minimal surface M is non-simple, we
use a “slicing trick” (compare with the instructive example in Section 4): we find
a smoothly embedded plane P in R®, which meets a representative annulus A for
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this end in a curve which cannot bound a compact immersed surface on P; it will
then follow that A must have been approximated by rescaled essential annuli A(%)
on X(7). Such a P can be constructed by taking a large radius cylinder with axis
parallel to the asymptotic unit normal of A, and capping off by a hemisphere very
high up on this cylinder (choose this normal to be on the side which bounds the
immersed 3-manifold and think of this side as up). Its curve of intersection with
the rescaled approximating A(%) has turning number in P equal to the asymptotic
winding number of A, which is at least 2. Endow P with an intrinsically flat
metric and apply the Gauss—Bonnet formula to see this curve cannot bound a
compact immersed surface in P: its winding number would equal the Euler number
of a connected surface with boundary, which is at most 1. This shows that this
curve of intersection cannot bound in the 3-manifold itself. It follows that the
annuli A(i) C X(i) approximating A must have been homotopically nontrivial in
the immersed 3-manifold bounded by X(i) as well, and thus essential in X(3).
This completes the proof of our main result.

4. An Instructive Example: the Enneper Surface

The reader may find it instructive to apply this slicing trick to decide whether
a particular immersed surface can actually be extended to a properly immersed
3-manifold. Take, for example, the Enneper surface, a minimally immersed R2
in R?; it has one end, of winding number 3. Note that, in general, the Frankel-
Lawson [9, 21] argument shows the inclusion of the bounding minimal surface into
the 3-manifold induces an epimorphism on fundamental groups. So if Enneper
were to bound, it would bound an immersed 3-ball (with one boundary puncture,
corresponding to the one end of Enneper). But the slicing trick implies that the
intersection curve of Enneper with a slicing plane P, constructed as above, has
turning number 3, and therefore the curve would be homotopically nontrivial in
the 3-ball, which is absurd. Thus:

COROLLARY 4.1. The Enneper surface is not immersed in the sense of Alexan-
drov.

5. Some Open Problems

To conclude, it may be interesting to contemplate the following (open) problems
which are related to the results above:

e What is the image of the parabolic classifying map ® in P, or its intersection
with a slice of fixed conformal type? In other words, how does the set of allowable
necksizes depend on the underlying punctured Riemann surface? For g = 0 and
k = 3, there is only one conformal type, so these questions coincide: the image of
® is known to be the simplex determined by the spherical triangle inequalities for
the necksizes of a triunduloid [12]. The general case seems closely related to the
Biswas inequalities [5, 30] which arise in the study of flat connections on parabolic
vector bundles.

o Is the cardinality of ®~'([X]) finite, and is 2IX(*)| an upper bound? The absolute
value of the Euler characteristic |x(X)] = 29 — 2 + k is the number of trousers in a
decomposition of ¥. Thus the possible choices of “innie” or “outie” configurations at
each trousers nexus saturates this bound. (This whimsical terminology — suggested
by the proximity of each trousers nexus to the umbilic points on the surface —
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describes either a neck-like or bubble-like geometry near the trousers nexus.) Again,
for g =0 and k = 3 we have |x(X)| = 1, and this bound is sharp [12]: ® is two-to-
one, except at the maximal necksize “fold” where it is one-to-one.

e Is M, 1, connected? And-—at least on some connected component of M —how
far from an isomorphism is the homomorphism on fundamental groups induced by
® —or, equivalently, by ¢? In case g = 0 it follows from [12] and [29] (or more
directly from [23]) that, on what is presumably the only component —the one
containing the coplanar cMc surfaces [13]—of Mgy, this is an epimorphism for
any k.

e Does M, . carry a complete metric of nonpositive curvature, in some suitable
sense, and is it thus an Eilenberg-MacLane K (m,1)-space? The identification of
Mo 3 with the (hyperbolic) 3-ball in [12] is very suggestive, but it is not clear where
to find a metric (hyperbolic or otherwise) directly from the cMC geometry, even in
this special case. Note that P, does carry such a metric, and is a K(m,1) with
m = m1(Rg,k), which when g = 0 is a (colored) braid group.

e Can one construct a properly (Alexandrov immersed or) embedded minimal sur-
face of finite topology which is degenerate (in the sense of [22, 25]), either explicitly,
or by global methods on minimal surface moduli space (for instance, might one ex-
hibit a classifying map whose critical points must be degenerate minimal surfaces,
and which is forced to have a critical point via Morse theory)? And if one works
L2-orthogonal to the extra Jacobi fields, can one glue unduloids to the ends of
the minimal surface to get a degenerate cMC surface in M? There exist minimal
surfaces with all ends planar which are degenerate, but these are not immersed in
the sense of Alexandrov; similar comments apply to the immersed constant mean
curvature tori, first constructed by Wente [34], and later classified by Pinkall and
Sterling [28].

o Is there a computable way to detect when an immersed surface in R? is immersed
in the sense of Alexandrov? As we have noted above, the trick of slicing with a
smoothly embedded plane, and then deciding by winding number considerations
that the intersection curves cannot bound an immersed domain in this plane, pro-
vides a necessary condition, but it would be interesting to have a general obstruction
theory. The corresponding sufficient condition is more difficult to formulate: for
example, if all such planes slice the surface in curves that bound immersed surfaces
in this plane, it is tempting to think that ideas from ambient Morse theory could
be used to construct the immersed 3-manifold by carefully stacking such slices. Of
course, one problem is the potential non-uniqueness of the immersed surface which
extends the immersed curve in each slice.
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