

1. Consider the integral $\int \operatorname{Arctan} \mathrm{xdx}$.
(a) Use the integration by parts formula on this integral. Clearly indicate your choice for u and v , as well as their differentials, du and dv
(b) Using part (a), complete the integration.
(c) Check your answer (how?)
$2_{\text {ds }}$ Is the following improper integral convergent or divergent? $\int_{2}^{\infty} \frac{d x}{x(\ln x)^{2}}$

If it is convergent, find the value of the integral.
3. Consider curve given by $\mathrm{x}=\mathrm{t}^{2}, \mathrm{y}=\mathrm{t}^{3}-3 \mathrm{t}$
(a) Find the equations of all horizontal tangent lines to the curve.
(b) Find an expression for the second derivative, $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}$.
4. Consider the curve given parametrically by $x=e^{t}, y=\ln t$.
(a) Write an expression for the differential of arc length, ds.
(b) Set up an integral that gives the length of the curve from $t-1$ to $t=2$.
(c) Set up an integral that gives the length of the curve from $t=1$ to $t=2$. (c) Use the calculator to evaluate this integral to at least 4 decimal places.
5. Find the area bounded by the curve given in polar coordinates r $=1+3 \theta$, inside the sector $0<0<7 \pi$.
6. Are the following sequences $\{\mathrm{an}\}$ convergent or divergent? If convergent, find the limit of the sequence.
(a) $a_{n}=e^{n}\left(n^{2}+3\right)$
(b) $a_{n}=\sqrt{n+1}-\sqrt{n}$
7. Determine if the following series are convergent or divergent. If convergent, find the sum of the series.
(a) $\sum_{\mathrm{n}=1}^{\infty} \frac{3 \mathrm{n}}{2 \mathrm{n}-1}$
(b) $\quad \sum \frac{(-1)^{n}}{\pi^{n}}$

