Name (Last, First)	ID #
Signature	
Lecturer	Section (A. B. C. etc.)

UNIVERSITY OF MASSACHUSETTS AMHERST DEPARTMENT OF MATHEMATICS AND STATISTICS

Math 132

DRAFT Final Exam

May 19, 2009 4:00-6:00 p.m.

Instructions

- Turn off all cell phones and watch alarms! Put away iPods, etc.
- Do all work in this exam booklet. You may continue work to the backs of pages and the blank page at the end, but if you do so indicate where.
- Do not use any other paper except this exam booklet and the one-page "cheat sheet" that you prepared. (Do *not* hand in your cheat sheet.)
- Organize your work in an unambiguous order. Show all necessary steps.
- Answers given without supporting work may receive 0 credit!
- If you use your calculator to do numerical calculations, be sure to show the setup leading to what you are calculating.
- Be prepared to show your UMass ID card when you hand in your exam booklet to your own instructor or TA as you exit the room.

QUESTION	PER CENT	SCORE
1	20	
2	20	
3	20	
4	20	
5	20	
TOTAL	100	

The printed exam will have 1 question per 1-2 pages with space for work.

- 1. $(2 \times 10\% = 20\%)$ The parts of this question are not related.
 - (a) Evaluate the indefinite integral:

$$\int xe^{-2x} dx$$

(b) Determine the derivative f'(x) of the function

$$f(x) = \int_{1}^{x^{3}+1} \sin\left(\sqrt{1+t^{2}}\right) dt.$$

- 2. $(2 \times 10\% = 20\%)$
 - (a) Let R be the unbounded plane region in the first quadrant enclosed by the x-axis, the y-axis, and the graph of the function $y = \frac{1}{1+x^2}$. Compute the area of R by setting up and evaluating an appropriate improper integral. (Include in your work a rough sketch of the region R.)
 - (b) Now let S be the bounded plane region enclosed by the x-axis, the y-axis, the line x=1, and the graph of that same function $y=\frac{1}{1+x^2}$. A solid is obtained by rotating S around the x-axis. Compute the volume of this solid by setting up and evaluating an appropriate definite integral. (Include in your work a sketch that shows a typical cross-section, disk, or washer consistent with the integral you set up.)
- 3. $(2 \times 10\% = 20\%)$ The parts of this question are not related.
 - (a) Determine whether the series $\sum_{n=2}^{\infty} \frac{(-1)^n}{n(\ln n)^{2/3}}$ is absolutely convergent, conditionally convergent, or divergent.
 - (b) Find the **interval** of convergence of the power series $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{(x-2)^n}{n \, 4^n}$.
- 4. Curve C has polar equation $r = \sin \theta + \cos \theta$.
 - (a) (5%) Write parametric equations for the curve C.

$$\begin{cases} x = \\ y = \end{cases}$$

- (b) (5%) Find the **slope** of the tangent line to C at its point where $\theta = \frac{\pi}{2}$.
- (c) (10%) Calculate the length of the arc for $0 \le \theta \le \pi$ of that same curve C with polar equation $r = \sin \theta + \cos \theta$.
- 5. (a) (12%) Determine the Taylor polynomial $T_2(x)$ of degree 2 for the function $f(x) = x^{1/7}$ centered at a = 1.
 - (b) (8%) Suppose we were to use the approximation $f(x) \approx T_2(x)$. Obtain an upper bound on the error of this approximation when $0.7 \le x \le 1.3$. Give your answer rounded (up) to 4 decimal places.

0