\qquad

Signature \qquad
\qquad Section (A, B, C, etc.) \qquad

UNIVERSITY OF MASSACHUSETTS AMHERST
DEPARTMENT OF MATHEMATICS AND STATISTICS

Math 132
DRAFT Final Exam
May 19, 2009
4:00-6:00 p.m.

Instructions

- Turn off all cell phones and watch alarms! Put away iPods, etc.
- Do all work in this exam booklet. You may continue work to the backs of pages and the blank page at the end, but if you do so indicate where.
- Do not use any other paper except this exam booklet and the one-page "cheat sheet" that you prepared. (Do not hand in your cheat sheet.)
- Organize your work in an unambiguous order. Show all necessary steps.
- Answers given without supporting work may receive 0 credit!
- If you use your calculator to do numerical calculations, be sure to show the setup leading to what you are calculating.
- Be prepared to show your UMass ID card when you hand in your exam booklet to your own instructor or TA as you exit the room.

QUESTION	PER CENT	SCORE
1	20	
2	20	
3	20	
4	20	
5	20	
TOTAL	100	

The printed exam will have 1 question per 1-2 pages with space for work.

1. $(2 \times 10 \%=20 \%)$ The parts of this question are not related.
(a) Evaluate the indefinite integral:

$$
\int x e^{-2 x} d x
$$

(b) Determine the derivative $f^{\prime}(x)$ of the function

$$
f(x)=\int_{1}^{x^{3}+1} \sin \left(\sqrt{1+t^{2}}\right) d t
$$

2. $(2 \times 10 \%=20 \%)$
(a) Let R be the unbounded plane region in the first quadrant enclosed by the x-axis, the y-axis, and the graph of the function $y=\frac{1}{1+x^{2}}$. Compute the area of R by setting up and evaluating an appropriate improper integral. (Include in your work a rough sketch of the region R.)
(b) Now let S be the bounded plane region enclosed by the x-axis, the y-axis, the line $x=1$, and the graph of that same function $y=\frac{1}{1+x^{2}}$. A solid is obtained by rotating S around the x-axis. Compute the volume of this solid by setting up and evaluating an appropriate definite integral. (Include in your work a sketch that shows a typical cross-section, disk, or washer consistent with the integral you set up.)
3. $(2 \times 10 \%=20 \%)$ The parts of this question are not related.
(a) Determine whether the series $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n(\ln n)^{2 / 3}}$ is absolutely convergent, conditionally convergent, or divergent.
(b) Find the interval of convergence of the power series $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{(x-2)^{n}}{n 4^{n}}$.
4. Curve C has polar equation $r=\sin \theta+\cos \theta$.
(a) (5%) Write parametric equations for the curve C.

$$
\left\{\begin{array}{l}
x= \\
y=
\end{array}\right.
$$

(b) (5%) Find the slope of the tangent line to C at its point where $\theta=\frac{\pi}{2}$.
(c) (10%) Calculate the length of the arc for $0 \leq \theta \leq \pi$ of that same curve C with polar equation $r=\sin \theta+\cos \theta$.
5. (a) (12%) Determine the Taylor polynomial $T_{2}(x)$ of degree 2 for the function $f(x)=x^{1 / 7}$ centered at $a=1$.
(b) (8%) Suppose we were to use the approximation $f(x) \approx T_{2}(x)$. Obtain an upper bound on the error of this approximation when $0.7 \leq x \leq 1.3$. Give your answer rounded (up) to 4 decimal places.

