$\qquad$

Signature $\qquad$
$\qquad$
Lecturer
Section \# $\qquad$

UNIVERSITY OF MASSACHUSETTS AMHERST
DEPARTMENT OF MATHEMATICS AND STATISTICS

Math 132
DRAFT Exam 1
February 19, 2009
7:00-8:30 p.m.

## Instructions

- Turn off all cell phones and watch alarms! Put away iPods, etc.
- There are five (5) questions.
- Do all work in this exam booklet. You may continue work to the backs of pages and the blank page at the end, but if you do so indicate where.
- Do not use any other paper except this exam booklet and the one-page "cheat sheet" that you prepared.
- Organize your work in an unambiguous order. Show all necessary steps.
- Answers given without supporting work may receive 0 credit!
- If you use your calculator to do numerical calculations, be sure to show the setup leading to what you are calculating.
- Be ready to show your UMass ID card when you hand in your exam booklet.

| QUESTION | PER CENT | SCORE |
| :---: | :---: | :---: |
| 1 | 20 |  |
| 2 | 20 |  |
| 3 | 20 |  |
| 4 | 20 |  |
| 5 | 20 |  |
| TOTAL | 100 |  |

The printed exam will have 1 question per 1-2 pages with space for work.

1. $(2 \times 10 \%=20 \%)$ Let

$$
f(x)= \begin{cases}6 & \text { if } x<5 \\ 11-x & \text { if } x \geq 5\end{cases}
$$

Let

$$
G(x)=\int_{2}^{x} f(t) d t
$$

(a) Calculate $G(3)$ and $G(8)$.
[Hint: It may help to sketch first the graph of $f(x)$.]
(b) Calculate $G^{\prime}(3)$ and $G^{\prime}(8)$.
2. $(4 \times 5 \%=20 \%)$ Calculate each of the following. Explicitly show any relevant substitution or algebraic or trigonometric manipulation. In the case of a definite integral, give an exact value and not a numerical approximation.
(a) $\int(3 x+8)^{132} d x$
(b) $\int \frac{x}{\sqrt{1-9 x^{4}}} d x$
(c) $\int_{1}^{2} \frac{e^{1 / x}}{x^{2}} d x$
(d) $\int \frac{\ln (\ln x)}{x} d x$. You may use the result that $\int \ln t d t=t \ln t-t+C$.
3. $(2 \times 10 \%=20 \%)$ Soda leaks from a can at a rate of $r(t)$ milliliters per minute at time $t$ minutes.
(a) What does $\int_{0}^{5} r(t) d t$ represent? (Be specific and include units in your answer.)
(b) If, actually, $r(t)=\frac{1}{(2+3 t)^{2}}$, exactly how much liquid will have leaked out after 10 minutes?
4. $(20 \%)$ Calculate the exact area of the region enclosed by the curve $y=x^{2}$, the curve $y=(x-1)^{2}$, and the $x$-axis.

Begin by sketching the two graphs and the region. On your sketch include a typical rectangular strip of width $\Delta x$ or $\Delta y$, whichever you are using.
5. (20\%) The region $R$ in the right half-plane (where $x \geq 0$ ) that is enclosed by the curve $y=\sin x$, the line $y=1 / 2$, and the $y$-axis is rotated around the $x$-axis.

Express as an integral the volume $V$ of the solid obtained. (Do not evaluate this integral!) Include a two-dimensional and/or three-dimensional sketch to indicate how you arrive at that integral as your answer.

