Name (Last, First)	ID #
Signature	
Lecturer	Section #

UNIVERSITY OF MASSACHUSETTS AMHERST DEPARTMENT OF MATHEMATICS AND STATISTICS

Math 132

DRAFT Exam 1

February 19, 2009 7:00-8:30 p.m.

Instructions

- Turn off all cell phones and watch alarms! Put away iPods, etc.
- There are five (5) questions.
- Do all work in this exam booklet. You may continue work to the backs of pages and the blank page at the end, but if you do so indicate where.
- Do not use any other paper except this exam booklet and the one-page "cheat sheet" that you prepared.
- Organize your work in an unambiguous order. Show all necessary steps.
- Answers given without supporting work may receive 0 credit!
- If you use your calculator to do numerical calculations, be sure to show the setup leading to what you are calculating.
- Be ready to show your UMass ID card when you hand in your exam booklet.

QUESTION	PER CENT	SCORE
1	20	
2	20	
3	20	
4	20	
5	20	
TOTAL	100	

The printed exam will have 1 question per 1-2 pages with space for work.

1. $(2 \times 10\% = 20\%)$ Let

$$f(x) = \begin{cases} 6 & \text{if } x < 5, \\ 11 - x & \text{if } x \ge 5. \end{cases}$$

Let

$$G(x) = \int_{2}^{x} f(t) dt.$$

- (a) Calculate G(3) and G(8). [Hint: It may help to sketch first the graph of f(x).]
- (b) Calculate G'(3) and G'(8).
- 2. $(4 \times 5\% = 20\%)$ Calculate each of the following. Explicitly show any relevant substitution or algebraic or trigonometric manipulation. In the case of a definite integral, give an exact value and *not* a numerical approximation.

(a)
$$\int (3x+8)^{132} dx$$

(b)
$$\int \frac{x}{\sqrt{1-9x^4}} \, dx$$

(c)
$$\int_{1}^{2} \frac{e^{1/x}}{x^2} dx$$

(d)
$$\int \frac{\ln(\ln x)}{x} dx$$
. You may use the result that $\int \ln t dt = t \ln t - t + C$.

- 3. $(2 \times 10\% = 20\%)$ Soda leaks from a can at a rate of r(t) milliliters per minute at time t minutes.
 - (a) What does $\int_0^5 r(t) dt$ represent? (Be specific and include units in your answer.)
 - (b) If, actually, $r(t) = \frac{1}{(2+3t)^2}$, exactly how much liquid will have leaked out after 10 minutes?
- 4. (20%) Calculate the exact area of the region enclosed by the curve $y = x^2$, the curve $y = (x 1)^2$, and the x-axis.

Begin by sketching the two graphs and the region. On your sketch include a typical rectangular strip of width Δx or Δy , whichever you are using.

5. (20%) The region R in the right half-plane (where $x \ge 0$) that is enclosed by the curve $y = \sin x$, the line y = 1/2, and the y-axis is rotated around the x-axis.

Express as an integral the volume V of the solid obtained. (Do *not* evaluate this integral!) Include a two-dimensional and/or three-dimensional sketch to indicate how you arrive at that integral as your answer.