\qquad

Signature \qquad
\qquad Section (A, B, C, etc.) \qquad

UNIVERSITY OF MASSACHUSETTS AMHERST
DEPARTMENT OF MATHEMATICS AND STATISTICS

Math 132
DRAFT Final Exam
May 19, 2008
8:00-10:00 a.m.

Instructions

- Turn off cell phones and watch alarms! Put away cell phones, iPods, etc.
- There are six (6) questions.
- Do all work in this exam booklet. You may continue work to the backs of pages and the blank page at the end, but if you do so indicate where.
- Do not use any other paper except this exam booklet and the one-page "cheat sheet" that you prepared. (Do not hand in your cheat sheet.)
- Organize your work in an unambiguous order. Show all necessary steps.
- Answers given without supporting work may receive $\mathbf{0}$ credit!
- If you use your calculator to do numerical calculations, be sure to show the setup leading to what you are calculating.
- Be prepared to show your UMass ID card when you hand in your exam booklet to your own instructor or TA as you exit the room.

QUESTION	PER CENT	SCORE
1	16	
2	16	
3	18	
4	16	
5	16	
6	18	
TOTAL	100	

The printed exam will have 1 question per 1-2 pages with space for work.

1. $(2 \times 8=16 \%)$ The parts of this question are not directly related!
(a) If $f(1)=12$, if the derivative f^{\prime} is continuous, and if $\int_{1}^{4} f^{\prime}(x) d x=17$, then what is the value $f(4)$?
(b) Express the derivative $g^{\prime}(x)$, for $0<x<\pi / 2$, as simply as possible if:

$$
g(x)=\int_{1 / 2}^{\sin x} \sqrt{1-y^{2}} d y
$$

2. $(2 \times 8 \%=16 \%)$
(a) Calculate the area of the bounded region R enclosed by the curves

$$
y=x^{3}+4, \quad y=4 x^{2}-4 x+4
$$

(b) The same region R as in (a)-enclosed by

$$
y=x^{3}+4, \quad y=4 x^{2}-4 x+4
$$

-is rotated around the x-axis. Express the volume of the resulting solid as an integral but do not actually evaluate that integral. And do not attempt to "simplify" the function inside the integral.
3. $(3 \times 6=18 \%)$ Use techniques of symbolic integration to evaluate:
(a) $\int x e^{-x} d x$
(b) $\int \frac{x}{\sqrt{x^{2}+\frac{9}{16}}} d x$
(c) $\int \frac{x^{2}}{\sqrt{1+x^{2}}} d x$
4. A spiral has polar equation $r=e^{-2 \theta}$ for $0 \leq \theta<\infty$.
(a) (6%) Write parametric equations for this spiral.
(b) (10%) Find the length of the entire spiral for $0 \leq \theta<\infty$.
(Hint: This is easier to do if you work directly with the arc length formula for polar coordinates-and not the more general parametric formula.)
5. $(2 \times 8=16 \%)$ Determine whether the series converges absolutely, converges conditionally only, or else diverges - and why.
(a) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{3^{n}+\ln n}$
(b) $\sum_{n=1}^{\infty}(-1)^{n} \frac{3^{n}}{n^{2} \cdot 2^{n}}$
6. (a) (6%) Starting with the Maclaurin series expansion of e^{x}, express the function $e^{-x^{2}}$ as the sum of a power series. Use summation $\left(\sum\right)$ notation.
(b) (6%) Use (a) to express $\int_{0}^{0.4} \frac{e^{-x^{2}}-1}{x} d x$ as the sum of a series of numbers. Use \sum notation or give at least the first five terms of the series.
(c) (6%) What is the least number of terms of that numerical series you would need so as to approximate that integral with error magnitude less than 10^{-8} ?
[When answering this question, do not actually make the approximation, and do not evaluate the integral from (b)!]

