Name (Last, First)	ID #
,	
Signature	
~- 	
Locturor	Section (A. B. C. etc.)

UNIVERSITY OF MASSACHUSETTS AMHERST DEPARTMENT OF MATHEMATICS AND STATISTICS

Math 132

DRAFT Final Exam

May 19, 2008 8:00-10:00 a.m.

Instructions

- Turn off cell phones and watch alarms! Put away cell phones, iPods, etc.
- There are six (6) questions.
- Do all work in this exam booklet. You may continue work to the backs of pages and the blank page at the end, but if you do so indicate where.
- Do not use any other paper except this exam booklet and the one-page "cheat sheet" that you prepared. (Do *not* hand in your cheat sheet.)
- Organize your work in an unambiguous order. Show all necessary steps.
- Answers given without supporting work may receive 0 credit!
- If you use your calculator to do numerical calculations, be sure to show the setup leading to what you are calculating.
- Be prepared to show your UMass ID card when you hand in your exam booklet to your own instructor or TA as you exit the room.

QUESTION	PER CENT	SCORE
1	16	
2	16	
3	18	
4	16	
5	16	
6	18	
TOTAL	100	

The printed exam will have 1 question per 1-2 pages with space for work.

- 1. $(2 \times 8 = 16\%)$ The parts of this question are not directly related!
 - (a) If f(1) = 12, if the derivative f' is continuous, and if $\int_1^4 f'(x) dx = 17$, then what is the value f(4)?
 - (b) Express the derivative g'(x), for $0 < x < \pi/2$, as simply as possible if:

$$g(x) = \int_{1/2}^{\sin x} \sqrt{1 - y^2} \, dy$$

- 2. $(2 \times 8\% = 16\%)$
 - (a) Calculate the area of the bounded region R enclosed by the curves

$$y = x^3 + 4$$
, $y = 4x^2 - 4x + 4$.

(b) The same region R as in (a)—enclosed by

$$y = x^3 + 4$$
, $y = 4x^2 - 4x + 4$

- —is rotated around the x-axis. Express the volume of the resulting solid as an integral but do **not** actually evaluate that integral. And do **not** attempt to "simplify" the function inside the integral.
- 3. $(3 \times 6 = 18\%)$ Use techniques of symbolic integration to evaluate:

(a)
$$\int x e^{-x} dx$$

(b)
$$\int \frac{x}{\sqrt{x^2 + \frac{9}{16}}} dx$$

(c)
$$\int \frac{x^2}{\sqrt{1+x^2}} dx$$

- 4. A spiral has polar equation $r = e^{-2\theta}$ for $0 \le \theta < \infty$.
 - (a) (6%) Write parametric equations for this spiral.
 - (b) (10%) Find the length of the entire spiral for $0 \le \theta < \infty$. (*Hint:* This is easier to do if you work directly with the arc length formula for polar coordinates—and *not* the more general parametric formula.)
- 5. $(2 \times 8 = 16\%)$ Determine whether the series converges absolutely, converges conditionally only, or else diverges—and why.

0

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{3^n + \ln n}$$

- (b) $\sum_{n=1}^{\infty} (-1)^n \frac{3^n}{n^2 \cdot 2^n}$
- 6. (a) (6%) Starting with the Maclaurin series expansion of e^x , express the function e^{-x^2} as the sum of a power series. Use summation (\sum) notation.
 - (b) (6%) Use (a) to express $\int_0^{0.4} \frac{e^{-x^2}-1}{x} dx$ as the sum of a series of numbers. Use \sum notation or give at least the first five terms of the series.
 - (c) (6%) What is the least number of terms of that numerical series you would need so as to approximate that integral with error magnitude less than 10^{-8} ?

[When answering this question, do not actually make the approximation, and do not evaluate the integral from (b)!]