\qquad

Signature

Lecturer \qquad Section (A, B, C, etc.)

UNIVERSITY OF MASSACHUSETTS AMHERST DEPARTMENT OF MATHEMATICS AND STATISTICS

Math 132
DRAFT Exam 3
April 23, 2008 7:00-8:30 p.m.

Instructions

- Turn off cell phones and watch alarms! Put away cell phones, iPods, etc.
- There are six (6) questions.
- Do all work in this exam booklet. You may continue work to the backs of pages and the blank page at the end, but if you do so indicate where.
- Do not use any other paper except this exam booklet and the one-page "cheat sheet" that you prepared.
- Organize your work in an unambiguous order. Show all necessary steps.
- Answers given without supporting work may receive 0 credit!
- If you use your calculator to do numerical calculations, be sure to show the setup leading to what you are calculating.
- Be prepared to show your UMass ID card when you hand in your exam booklet.

QUESTION	PER CENT	SCORE
1	16	
2	16	
3	24	
4	12	
5	16	
6	16	
TOTAL	100	

The printed exam will have 1 question per 1-2 pages with space for work.

1. $(2 \times 8 \%=16 \%)$
$(2 \times 8 \%=16 \%)$
(a) Express the repeating decimal $0.222 \cdots=0 . \overline{2}$ as a series $\sum_{n=1}^{\infty} a_{n}$. Use summation $\left(\sum\right)$ notation in your answer.
(b) Determine the exact sum of this series (as a rational number).

Use relevant methods for series-not some special formula you know about repeating decimals.
2. $(2 \times 8 \%=16 \%)$
$(2 \times 8 \%=16 \%)$
(a) Find the radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{3^{n}(x-2)^{n}}{n}$.
(b) Now find the interval of convergence of the same power series.
3. $(3 \times 8 \%=24 \%)$ Does the series converge? Why or why not? (Name the tests you use and indicate why the conditions needed for them to apply actually hold!)
(a) $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{3 n^{2}+2 n}{4 n^{2}-5}$
(b) $\sum_{n=1}^{\infty} \frac{\sin (2 n)}{n^{3}}$
(c) $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$
4. (a) (4\%) Approximate $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n!}$ by using its fourth partial sum S_{4}.
(b) (8\%) Obtain an upper bound on the error of your approximation. Do this without finding the exact sum of any infinite series.
5. (16%) Find the Taylor polynomial $T_{3}(x)$-the sum of the first four terms of the Taylor series-for $f(x)=8 x^{3}-6 x^{2}+5 x+3$ centered at $a=1$.
6. $(12 \%+4 \%=16 \%)$ Starting with the series expansion $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$, which is valid for $|x|<1 \ldots$
(a) Represent $g(x)=\frac{x}{1+4 x^{2}}$ by a power series in x.
(b) For which values of x does your power series actually have sum $g(x)$?

