$\qquad$ ID \# $\qquad$

## Signature

$\qquad$

## Lecturer

$\qquad$ Section \# $\qquad$

UNIVERSITY OF MASSACHUSETTS AMHERST
DEPARTMENT OF MATHEMATICS AND STATISTICS
Math 132
DRAFT Exam 2
March 26, 2008
7:00-8:30 p.m.

## Instructions

- Turn off all cell phones and watch alarms! Put away iPods, etc.
- Do not use a calculator; do not use any "cheat sheet" or other paper.
- Do all work in this exam booklet. You may continue work to backs of pages and the blank page at the end, but if you do so indicate where.
- Organize your work in an unambiguous order. Show all necessary steps.
- Answers given without supporting work may receive 0 credit!
- Be ready to show your UMass ID card when you hand in your exam booklet.

| QUESTION | PER CENT | SCORE |
| :---: | :---: | :---: |
| 1 | 10 |  |
| 2 | 10 |  |
| 3 | 10 |  |
| 4 | 10 |  |
| 5 | 10 |  |
| 6 | 10 |  |
| 7 | 10 |  |
| 8 | 10 |  |
| 9 | 10 |  |
| 10 | 100 |  |
| TOTAL |  |  |
| 2 |  |  |

1. $(10 \%)$ A car moves forward on a straight road. The following table gives the car's speed $v(t)$, in feet per second, at various times $t$, in seconds:

| $t(\mathrm{sec})$ | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $v(t)(\mathrm{ft} / \mathrm{sec})$ | 3 | 8 | 11 | 13 | 14 | 12 | 9 | 6 | 1 |

Approximate the total distance the car travels over the time interval [0, 40] by using the Trapezoidal Rule with $n=\mathbf{4}$ (four) subintervals.
2. $(2 \times 5 \%=10 \%)$ Determine whether the given sequence converges, and why; if it does, find its limit.
(a) The sequence $\left\{1,-\frac{2}{3}, \frac{4}{9},-\frac{8}{27}, \frac{16}{81}, \ldots\right\}=\left\{(-2 / 3)^{n-1}\right\}_{n=1}^{\infty}$.
(b) The sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ where $s_{n}=\frac{5 n^{5}+2 n^{3}+7}{6 n^{6}+4}$.
3. ( $10 \%$ ) Evaluate:

$$
\int\left(x^{2} \sqrt{x}+e^{-2 x}\right) d x
$$

4. ( $10 \%$ ) Evaluate:

$$
\int \frac{1}{x \ln x} d x
$$

5. $(10 \%)$ Evaluate:

$$
\int x \ln (1+5 x) d x
$$

6. $(10 \%)$ Evaluate:

$$
\int \frac{\cos ^{3} x}{\sin ^{4} x} d x
$$

7. (10\%) Evaluate:

$$
\int \frac{x^{2}+1}{x^{2}+x-6} d x
$$

8. (10\%) Evaluate:

$$
\int \frac{4}{\sqrt{x^{2}-8 x}} d x
$$

9. (10\%) If the improper integral converges, determine its value; if it diverges, say so and indicate why:

$$
\int_{-3}^{1} \frac{x+1}{\sqrt{x+3}} d x
$$

10. ( $10 \%$ ) Using integration by parts gives

$$
\int e^{-2 x} \cos x d x=e^{-2 x} \sin x+2 \int e^{-2 x} \sin x d x
$$

and then using integration by parts for $\int e^{-2 x} \sin x d x$ gives

$$
\int e^{-2 x} \sin x d x=-e^{-2 x} \cos x-2 \int e^{-2 x} \cos x d x
$$

Use this information to find $\int e^{-2 x} \cos x d x$.

