Name (Last, First)	ID #
Signature	
Lecturer	Section #

UNIVERSITY OF MASSACHUSETTS AMHERST DEPARTMENT OF MATHEMATICS AND STATISTICS

Math 132

DRAFT Exam 2

March 26, 2008 7:00-8:30 p.m.

Instructions

- Turn off all cell phones and watch alarms! Put away iPods, etc.
- \bullet Do not use a calculator; do not use any "cheat sheet" or other paper.
- Do all work in this exam booklet. You may continue work to backs of pages and the blank page at the end, but if you do so indicate where.
- Organize your work in an unambiguous order. Show all necessary steps.
- Answers given without supporting work may receive 0 credit!
- Be ready to show your UMass ID card when you hand in your exam booklet.

QUESTION	PER CENT	SCORE
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
TOTAL	100	

The printed exam will have 1 question per page with space for work.

1. (10%) A car moves forward on a straight road. The following table gives the car's speed v(t), in feet per second, at various times t, in seconds:

Approximate the total distance the car travels over the time interval [0, 40] by using the **Trapezoidal Rule** with n = 4 (**four**) subintervals.

2. $(2 \times 5\% = 10\%)$ Determine whether the given sequence converges, and why; if it does, find its limit.

(a) The sequence
$$\left\{1, -\frac{2}{3}, \frac{4}{9}, -\frac{8}{27}, \frac{16}{81}, \dots\right\} = \left\{\left(-2/3\right)^{n-1}\right\}_{n=1}^{\infty}$$
.

(b) The sequence
$$\{s_n\}_{n=1}^{\infty}$$
 where $s_n = \frac{5n^5 + 2n^3 + 7}{6n^6 + 4}$.

3. (10%) Evaluate:

$$\int \left(x^2\sqrt{x} + e^{-2x}\right) dx$$

4. (10%) Evaluate:

$$\int \frac{1}{x \ln x} \, dx$$

5. (10%) Evaluate:

$$\int x \ln(1+5x) dx$$

6. (10%) Evaluate:

$$\int \frac{\cos^3 x}{\sin^4 x} \, dx$$

7. (10%) Evaluate:

$$\int \frac{x^2+1}{x^2+x-6} \ dx$$

8. (10%) Evaluate:

$$\int \frac{4}{\sqrt{x^2 - 8x}} \ dx$$

9. (10%) If the improper integral converges, determine its value; if it diverges, say so and indicate why:

0

$$\int_{-3}^{1} \frac{x+1}{\sqrt{x+3}} \ dx$$

10. (10%) Using integration by parts gives

$$\int e^{-2x} \cos x \, dx = e^{-2x} \sin x + 2 \int e^{-2x} \sin x \, dx,$$

and then using integration by parts for $\int e^{-2x} \sin x \, dx$ gives

$$\int e^{-2x} \sin x \, dx = -e^{-2x} \cos x - 2 \int e^{-2x} \cos x \, dx.$$

Use this information to find $\int e^{-2x} \cos x \ dx$.