\qquad

Signature \qquad
\qquad
Lecturer
Section \# \qquad

UNIVERSITY OF MASSACHUSETTS AMHERST
DEPARTMENT OF MATHEMATICS AND STATISTICS

Math 132 Exam $1 \quad$ February 21, 2008
7:00-8:30 p.m.

Instructions

- Turn off all cell phones and watch alarms! Put away iPods, etc.
- There are five (5) questions.
- Do all work in this exam booklet. You may continue work to the backs of pages and the blank page at the end, but if you do so indicate where.
- Do not use any other paper except this exam booklet and the one-page "cheat sheet" that you prepared.
- Organize your work in an unambiguous order. Show all necessary steps.
- Answers given without supporting work may receive 0 credit!
- If you use your calculator to do numerical calculations, be sure to show the setup leading to what you are calculating.
- Be ready to show your UMass ID card when you hand in your exam booklet.

QUESTION	PER CENT	SCORE
1	20	
2	20	
3	20	
4	20	
5	20	
TOTAL	100	

1. $(4 \times 5 \%=20 \%)$ Calculate each of the following. Explicitly show any relevant substitution or algebraic or trigonometric manipulation. In the case of a definite integral, give an exact value and not a numerical approximation.
(a) $\int \frac{e^{3 x}}{1+e^{3 x}} d x$
(b) $\int \frac{\cos x}{\sqrt{2-\sin x}} d x$

Continuation of \# 1 .
(c) $\int_{0}^{a} x^{2} \sqrt{x^{3}+a^{3}} d x$
(d) $\int \tan ^{2} x d x$
2. $(2 \times 10 \%=20 \%)$ A rabbit population starts with 4 rabbits and increases at a rate of $n^{\prime}(t)$ rabbits per week.
(a) What does $4+\int_{0}^{26} n^{\prime}(t) d t$ represent?
(b) If, actually, $n^{\prime}(t)=e^{t / 10}$, how many rabbits will there be after a year?
3. $(4 \times 5 \%=20 \%)$ Evaluate each of the following expressions and give reasons for your answers:
(a) $\int\left(\frac{d}{d x} \sqrt{(\ln x)^{2}+1}\right) d x$
(b) $\frac{d}{d x}\left(\int_{0}^{\sqrt{e}} \sqrt{(\ln x)^{2}+1} d x\right)$
(c) $\frac{d}{d u}\left(\int_{\pi}^{u} \sqrt{(\ln x)^{2}+1} d x\right)$
(d) $\frac{d}{d u}\left(\int_{1}^{\sin u} \sqrt{(\ln x)^{2}+1} d x\right)$
4. (20\%) Calculate the exact area of the region enclosed by the graphs of:

$$
y=x^{3}, \quad y=\sqrt{x}
$$

Begin by sketching the two graphs and the region. On your sketch include a typical rectangular strip of width Δx or Δy, whichever you are using.
5. (20%) Compute the volume of the solid "cap" of a spherical ball of radius r consisting of all points whose height above the equator's plane is at least h.

This page left blank for additional work.

