Name (Last, First)	ID #
Signature	
Locturor	Section #

UNIVERSITY OF MASSACHUSETTS AMHERST DEPARTMENT OF MATHEMATICS AND STATISTICS

Math 132

Exam 1

February 21, 2008 7:00-8:30 p.m.

Instructions

- Turn off all cell phones and watch alarms! Put away iPods, etc.
- There are five (5) questions.
- Do all work in this exam booklet. You may continue work to the backs of pages and the blank page at the end, but if you do so indicate where.
- Do not use any other paper except this exam booklet and the one-page "cheat sheet" that you prepared.
- Organize your work in an unambiguous order. Show all necessary steps.
- Answers given without supporting work may receive 0 credit!
- If you use your calculator to do numerical calculations, be sure to show the setup leading to what you are calculating.
- Be ready to show your UMass ID card when you hand in your exam booklet.

QUESTION	PER CENT	SCORE
1	20	
2	20	
3	20	
4	20	
5	20	
TOTAL	100	

1. $(4 \times 5\% = 20\%)$ Calculate each of the following. Explicitly show any relevant substitution or algebraic or trigonometric manipulation. In the case of a definite integral, give an exact value and *not* a numerical approximation.

(a)
$$\int \frac{e^{3x}}{1 + e^{3x}} dx$$

(b)
$$\int \frac{\cos x}{\sqrt{2 - \sin x}} \, dx$$

1

Continuation of # 1.

(c)
$$\int_0^a x^2 \sqrt{x^3 + a^3} \, dx$$

(d)
$$\int \tan^2 x \ dx$$

- 2. $(2 \times 10\% = 20\%)$ A rabbit population starts with 4 rabbits and increases at a rate of n'(t) rabbits per week.
 - (a) What does $4 + \int_0^{26} n'(t) dt$ represent?

(b) If, actually, $n'(t) = e^{t/10}$, how many rabbits will there be after a year?

3. $(4 \times 5\% = 20\%)$ Evaluate each of the following expressions and give reasons for your answers:

(a)
$$\int \left(\frac{d}{dx} \sqrt{(\ln x)^2 + 1} \right) dx$$

(b)
$$\frac{d}{dx} \left(\int_0^{\sqrt{e}} \sqrt{(\ln x)^2 + 1} \ dx \right)$$

(c)
$$\frac{d}{du} \left(\int_{\pi}^{u} \sqrt{(\ln x)^2 + 1} \ dx \right)$$

(d)
$$\frac{d}{du} \left(\int_1^{\sin u} \sqrt{(\ln x)^2 + 1} \ dx \right)$$

4. (20%) Calculate the exact area of the region enclosed by the graphs of:

$$y = x^3, \qquad y = \sqrt{x}$$

Begin by sketching the two graphs and the region. On your sketch include a typical rectangular strip of width Δx or Δy , whichever you are using.

5. (20%) Compute the volume of the solid "cap" of a spherical ball of radius r consisting of all points whose height above the equator's plane is at least h.

This page left blank for additional work.