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Linear Algebra Background

Sparse matrix: Matrix where most entries are zero

Orthogonal: V TV = I

Column rank: Number of linearly independent column vectors
of a matrix

QR decomposition: A = QR where QTQ = I , R upper
triangular

Krylov subspace: Kj(A, v) = span{v ,Av ,A2v , ...,Aj−1v}



Linear Algebra Background

Singular Value Decomposition (SVD): Let A ∈ R`×n with
` ≥ n.

Then we can write A = UΣV T with U ∈ R`×n,

Σ = diag[σ1, σ2, ..., σn] ∈ Rn×n, V ∈ Rn×n such that

UTU = In, V TV = In.

- U is the matrix of left singular vectors

- V is the matrix of right singular vectors

- Σ is the diagonal matrix of singular values



Lanczos Bidiagonalization

m step Lanczos Bidiagonalization

ATQm+1 = PmB
T
m+1,m + αm+1pm+1e

T
m+1

APm = Qm+1Bm+1,m

Pm = [p1, ..., pm] ∈ Rn×m : Orthogonal matrix

Qm+1 = [q1, ..., qm+1] ∈ R`×m+1 : Orthogonal matrix

Bm+1,m ∈ Rm+1×m : Lower bidiagonal matrix

pm+1 ∈ Rn : Residual vector

αm+1 ∈ R

(Golub, Kahan 1965)



Bm+1,m Matrix

Bm+1,m =



α1 0
β2 α2

β3 α3

. . .
. . .

0 αm

βm+1





Algorithm

1. Compute β1 = ||q1||; q1 = q1/β1

2. Compute p1 = ATq1; α1 = ||p1||; p1 = p1/α1

for j = 1 : m

3. Compute qj+1 = Apj − qjαj

3a. Reorthogonalization: qj+1 = qj+1 − Q(1:j)(QT
(1:j)qj+1)

4. Compute βj+1 = ||qj+1||; qj+1 = qj+1/βj+1

5. Compute pj+1 = ATqj+1 − pjβj+1

5a. Reorthogonalization: pj+1 = pj+1 − P(1:j)(PT
(1:j)pj+1)

6. Compute αj+1 = ||pj+1||; pj+1 = pj+1/αj+1

end



Problem

Solve the least squares problem

min
x∈Rn
||b − Ax ||2

A ∈ R`×n is a large sparse matrix

Requires an iterative method

Assume A has full column rank

Iterative algorithms: GMRES, CG, CGNR, LSQR, LSMR

Improve the convergence speed of LSQR



Outline of LSQR

Based on the Lanczos Bidiagonalization method

Iteration begins:

- Initial guess x0 and initial residual r0 = b − Ax0

- Set q1 = r0/||r0||2 and p1 = ATq1/||ATq1||2

Process continues:

- Generates an orthonormal set of vectors {q1, q2, ..., qm} for

Km(AAT , q1) = span{q1,AA
Tq1, (AA

T )2q1, ..., (AA
T )m−1q1}

- Generates an orthonormal set of vectors {p1, p2, ..., pm} for

Km(ATA, p1) = span{p1,A
TAp1, (A

TA)2p1, ..., (A
TA)m−1p1}



Outline of LSQR

Approximate solution xm ∈ x0 + Km(ATA, p1)

Residual vector rm = b − Axm ∈ Km(AAT , q1)

Let A = UnΣnV
T
n be the SVD of A

- Un ∈ R`×n and Vn ∈ Rn×n orthogonal matrices
- Σn = diag [σ1, ..., σn] ∈ Rn×n where 0 < σ1 ≤ σ2 ≤ ... ≤ σn

The mth residual of LSQR satisfies (Bjork, 1990):

||rm − r+||2 ≤ 2
(σn − σ1

σn + σ1

)m
||r0 − r+||2

where r+ = b − AA+b
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Convergence Properties

LSQR can exhibit slow convergence for ill-conditioned
matrices and when the solution vector has components in the
direction of the singular vectors associated with the smallest
singular values (Bjork, 1990).

We have developed a preconditioned LSQR method that
during preconditioning steps computes the solution and
reduces the upper bound on the residual norm simultaneously.
After an acceptable number of preconditioning steps, the
method reverts to LSQR until convergence.
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Using an Augmented Krylov Subspace

The idea is to compute an approximate solution xm and
residual rm from augmented Krylov subspaces respectively:

Km(AAT , u1, ..., uk , q1) = span{u1, ..., uk , q1,AA
Tq1, ..., (AA

T )m−k−1q1}

Km(ATA, v1, ..., vk , p1) = span{v1, ..., vk , p1,A
TAp1, ..., (A

TA)m−k−1p1}

where u1, ..., uk and v1, ..., vk are the left and right singular
vectors corresponding to the k smallest singular values of A,
respectively.



Theorem 1

Theorem 1. Let A ∈ R`×n with the singular value
decompositions as before and extract the minimum residual
solution xm from the space x0 + Km(ATA, v1, ..., vk , p1) then

||rm − r+||2 ≤ 2
(σn − σk+1

σn + σk+1

)m−k
||r0 − r+||2

Proof: (Baglama, Reichel, Richmond, 2012)



Augmenting with Singular Vectors
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Example of Theorem 1. A is the 1850× 712 matrix ILLC1850 and the

right-hand side b is ILLC1850 RHS1 from the Matrix Market Collection.



Motivation

Singular values/vectors not known prior to the start.

How to generate good approximations to the singular
values/vectors while simultaneously updating the solution?

We use a restarted LSQR method augmented with Harmonic
Ritz vectors. We can restart on the augmented space since
the residual of LSQR and the residual of the Harmonic Ritz
vectors are multiples of the same vector.

Morgan (1991, 2000, 2002) implemented a similar idea using
a restarted GMRES method augmented with approximate
eigenvectors for solving linear systems.
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Theorem 2

Theorem 2. Let A ∈ R`×n with the singular value
decompositions as before and extract the minimum residual
solution xm of from the augmented Krylov subspace
x0 + Km(ATA, y1, p1) where y1 is an approximate right
singular vector to v1. Let ζ represent the angle between y1
and v1, then

‖rm − r+‖ ≤ 2

(
σn − σ2

σn + σ2

)m−1

‖r0 − r+‖+ ||A
TA||2
σ1

tan (ζ) · |ω1|

ω1 is the coefficient of u1 in the expansion of b in terms of
the left singular vectors Proof: (Baglama, Reichel, Richmond,
2012)



Lanczos Bidiagonalization

m step Lanczos Bidiagonalization

ATQm+1 = PmB
T
m+1,m + αm+1pm+1e

T
m+1

APm = Qm+1Bm+1,m

Pm = [p1, ..., pm] ∈ Rn×m : Orthogonal matrix

Qm+1 = [q1, ..., qm+1] ∈ R`×m+1 : Orthogonal matrix

Bm+1,m ∈ Rm+1×m : Lower bidiagonal matrix

pm+1 ∈ Rn : Residual vector

αm+1 ∈ R

(Golub, Kahan 1965)



Connection to LBD for AAT

The connection to the Lanczos decomposition for AAT

A(ATQm+1 = PmB
T
m+1,m + αm+1pm+1e

T
m+1)

AATQm+1 = Qm+1Bm+1,mB
T
m+1,m + αm+1Apm+1e

T
m+1

Apm+1 is unknown, equating just the first m columns gives:

AATQm = QmBmB
T
m + αmβm+1e

T
m (1)

The Harmonic Ritz values, θj , of (1) are the eigenvalues of
the eigenvalue problem (Paige et. al 1993):

((BmB
T
m ) + α2

mβ
2
m+1(BmB

T
m )−1eme

T
m )gj = θjgj



Harmonic Ritz Values

Compute the Harmonic Ritz values without forming BmB
T
m

Let Bm+1,m = Ũm+1,mΣ̃mṼ
T
m be the SVD of Bm+1,m

- Ṽm ∈ Rm×m and Ũm+1,m ∈ Rm+1×m orthogonal matrices

- Σ̃m = diag [σ̃1, ..., σ̃m] ∈ Rm×m where 0 < σ̃1 ≤ σ̃2 ≤ ... ≤ σ̃m

Harmonic Ritz values of AATQm = QmBmB
T
m + αmβm+1e

T
m

θj = σ̃2
j



Harmonic Ritz Vectors

Eigenvectors of
((BmB

T
m ) + α2

mβ
2
m+1(BmB

T
m )−1eme

T
m )gj = θjgj

[g1, ..., gm] = (Im βm+1B
−T
m em)Ũm+1,m

The Harmonic Ritz vector of AAT associated with the
Harmonic Ritz value of θj = σ̃2

j is defined as:

ûj = Qmgj



Harmonic Ritz Vectors

Residual errors associated with different Harmonic Ritz pairs
{θj , ûj} are multiples of the same vector

AAT ûj − θj ûj = (αmβm+1e
T
mgj)Qm+1

(
−βm+1B

−T
m em

1

)

Define rharmm = Qm+1

(
−βm+1B

−T
m em

1

)



Stability

Accurate computation of B−Tm em can be difficult when BT
m

has a large condition number

BT
m+1,m = BT

m [Im βm+1BT
mem]

[
−βm+1B

−T
m em

1

]
is in the null space of BT

m+1,m, which

contains only one vector, ũm+1

Use rharmm = Qm+1

[
−βm+1B

−T
m em

1

]
= Qm+1

1
ũm+1,m+1

ũm+1
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Augmentation

We need to make sure we are augmenting by vectors that
keep the Lanczos relations

AT Q̂k+1 = P̂k B̂
T
k+1,k + αk+1p̂k+1e

T
k+1

AP̂k = Q̂k+1B̂k+1,k

Qk+1 = [û1, ..., ûk , r
harm
m ] not an orthogonal matrix

What should Q̂k+1, P̂k , B̂k+1,k be to keep the above equations
valid?



Augmentation

Compute QR-decomposition of

[
g1, g2, . . . , gk rharmm

0

]

To keep a valid Lanczos Factorization:
Q̂k+1 = Qm+1Q, (`× k + 1)
P̂k+1 = PmṼk , (n × k)
B̂T
k+1,k = Σ̃kR

−1
k,k+1

Continue the Lanczos Bidiagonalization with next vector p̂k+1

and apply m − k steps of the LBD:

AT [Q̂k+1 Q̂m−k ] = [P̂k P̂m−k ]B̂T
m+1,m + α̂m+1p̂m+1e

T
m+1

A[P̂k P̂m−k ] = [Q̂k+1 Q̂m−k ]B̂m+1,m
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Convergence Criteria

The algorithm is typically restarted multiple times.

Storage requirements are kept small.

Accept {σ̃j , q̂j , p̂j} as an approximate singular triplet:√
||Ap̂j − σ̃j q̂j ||22 + ||AT q̂j − σ̃j p̂j ||22 ≤ δ||A||2



Restarted LSQR Algorithm

1. Given x0 ∈ Rn and ε

2. Compute r0 = b − Ax0, β1 = ||r0||, and q1 = r0/β1

3. Generate Qm+1,Pm,Bm+1,m via LBD algorithm

4. Solve min
y
||β1e1 − Bm+1,my ||2 using QR

5. Compute xm = x0 + Pmy and r lsqrm = r0 + APmy

6. If ||AT r lsqrm ||2 ≤ ε||AT r0||2 stop. Otherwise restart using

x0 = xm and r0 = r lsqrm

r lsqrm = Qm+1γm+1Q
(Bm+1,m)

em+1



Theorem 3

Theorem 3. The residual vector of the restarted LSQR
method, r lsqrm , and the residual vector of the Augmented
Harmonic Lanczos bidiagonalization method, rharmm , are
multiples of each other as long as Bm+1,m is unreduced.

Moreover, rharmm and r lsqrm are multiples of Qm+1ũm+1 where
ũm+1 is the null space vector of BT

m+1,m

Proof: (Baglama, Reichel, Richmond, 2012)

With the previous theorem, we can restart LSQR on the
augmented space

By Theorem 1, doing this reduces the upper bound of the
norm of the residual.
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ALSQR Overview

Compute m steps of the Lanczos Bidiagonalization algorithm
updating the solution and residual vectors via LSQR algorithm
at each step.

Compute Harmonic Ritz values and Harmonic Ritz vectors.

Compute residuals of Harmonic Ritz approximations.

If all k are converged, restart and begin standard LSQR on
augmented space until convergence.

else restart on augmented space and continue m− k iterations
of LBD and repeat.



Rank Deficient Case

Linearly dependent columns/zero singular value(s)

Non-unique solution

Convergence to x+ as long as x0 in range of AT

Preconditioning step does not augment the Krylov subspace
with vectors that approximate the null space vectors of A

Approximate solution xm taken from an augmented Krylov
subspace that is contained in the range of AT
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Example using the 1850× 712 matrix ILLC1850 and the right-hand side
b is ILLC1850 RHS1 from the Matrix Market Collection
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Example using the 236× 236 matrix E05R0000 and the right-hand side b is
E05R0000 RHS1 from the Matrix Market Collection.
Description: These matrices are from modeling 2D fluid flow in a driven cavity. The
matrices are non-symmetric and indefinite. They are difficult to solve using iterative
methods like preconditioned Krylov subspace methods, because it is difficult to find an
effective preconditioner. The intended use of these matrices are for testing iterative
solvers



E20R0100

Example using the 4241× 4241 matrix E20R0100 and the right-hand side b is
E20R0100 RHS1 from the Matrix Market Collection. The size of the subspace
must be increased to around 140 to get good approximations, or else staggering
occurs
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Figure: Example using the 656× 656 matrix CK656 and the right-hand side b
is a random vector.
Description: The matrix has several multiple eigenvalues and clustered
eigenvalues. The eigenvalues occur in clusters of order 4; each cluster consists
of two pairs of very nearly multiple eigenvalues
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Example using the 468× 468 matrix NOS5 and the right-hand side b is a
random vector.

Description: Linear Equations in structural engineering



Conclusion/Future work

Focus on changing the number of vectors to augment by
dynamically

Block routine

Creating preconditioning matrix

Applying idea to other iterative solvers

Using Refined Harmonic Ritz Values/Vectors for
approximations



Thank You

Thank You

A Preconditioned LSQR Algorithm

James Baglama, Lothar Reichel, and Dan Richmond

Email: dan@math.uri.edu

MATLAB code alsqr.m will be available
http://www.math.uri.edu/∼jbaglama
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