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Definition of a “fast” method:

A numerical method is fast if its execution time scales as O(N logk N) as the
problem size N grows where k = 0, 1, or 2.

Our goal is to develop methods whose complexity is O(N).
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Definition of a “direct solver:”

Given a computational tolerance ε, and a linear system

A u = b, (1)

a direct solver constructs an operator T such that

||A−1 − T|| ≤ ε.

Then an approximate solution to (1) is obtained by simply evaluating

uapprox = T b.

The matrix T is typically constructed in a compressed format that allows the
matrix-vector product T b to be evaluated rapidly.

Variation: Find factors B and C such that ||A− B C|| ≤ ε, and linear solves
involving the matrices B and C are fast.



Motivation A linear inversion scheme 1D BIEs 2D problems Periodic scattering Remarks and comments

Linear boundary value problems

We consider Laplace’s equation with
Dirichlet boundary condition:

Ω
Γ

{
−∆ u(x) = 0, x ∈ Ω,

u(x) = f (x), x ∈ Γ.

However, the solution techniques can be extended to linear boundary value
problems of the form {

Au(x) = g(x), x ∈ Ω,

B u(x) = f (x), x ∈ Γ,
(BVP)

where Ω is a domain in R2 or R3 with boundary Γ. For instance:

• The equations of linear elasticity.

• Stokes’ equation.

• Helmholtz’ equation (at least at low and intermediate frequencies).

• Time-harmonic Maxwell (at least at low and intermediate frequencies).
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Discretization of linear boundary value problems

↙

Direct discretization of the dif-
ferential operator via Finite Ele-
ments, Finite Differences, . . .

↓

Very large N × N linear system
that is sparse, and ill-conditioned.

↓

Fast solvers:
iterative (multigrid), O(N),
direct (nested dissection),
O(N3/2).

↘

Conversion of the BVP to a
Boundary Integral Operator
(BIE).

↓

Discretization of (BIE) using
Nyström, collocation, BEM, . . . .

↓

Dense N×N linear system that is
moderate in size and (often) well-
conditioned.

↓

Iterative solver accelerated by fast
matrix-vector multiplier, O(N).
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“Iterative” versus ”direct” solvers

Two classes of methods for solving an N × N linear algebraic system

A u = b.

Iterative methods:

Examples: GMRES, conjugate gradi-
ents, Gauss-Seidel, etc.

Construct a sequence of vectors
u1, u2, u3, . . . that converge to the
solution.

Many iterative methods only need to
know A action on vectors.

Often require problem specific pre-
conditioners.

In some cases, these are O(N)
solvers.

Direct methods:

Examples: Gaussian elimination,
LU factorizations, matrix inversion,
etc.

Deterministic. Always returns the so-
lution.

Robust.

Great for multiple right hand sides.

Have often been considered too slow
for high performance computing.

(Directly access elements of A.)

(Exact except for rounding errors.)
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Incomplete literature review — direct solvers based on data-sparsity:

1991 Data-sparse matrix algebra / wavelets, Beylkin, Coifman, Rokhlin, et al

1993 Fast inversion of 1D operators V. Rokhlin and P. Starr

1996 scattering problems, E. Michielssen, A. Boag and W.C. Chew,

1998 factorization of non-standard forms, G. Beylkin, J. Dunn, D. Gines,

1998 H-matrix methods, W. Hackbusch, B. Khoromskijet, S. Sauter, . . . ,

2000 Cross approximation, matrix skeletons, etc., E. Tyrtyshnikov.

2002 O(N3/2) inversion of Lippmann-Schwinger equations, Y. Chen,

2002 “Hierarchically Semi-Separable” matrices, M. Gu, S. Chandrasekharan.

2002 (1999?) H2-matrix methods, S. Börm, W. Hackbusch, B. Khoromskijet,
S. Sauter.

2004 Inversion of “FMM structure,” S. Chandrasekharan, T. Pals.

2004 Proofs of compressibility, M. Bebendorf, S. Börm, W. Hackbusch, . . . .

2006 Accelerated nested diss. via H-mats, L. Grasedyck, R. Kriemann, S. LeBorne
[2007] S. Chandrasekharan, M. Gu, X.S. Li, J. Xia. [2010], P. Schmitz and
L. Ying.

2010 construction of A−1 via randomized sampling, L. Lin, J. Lu, L. Ying.
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Overview

• Linear inversion scheme

• One dimensional boundary integral equations

• Finite element solver

• Quasiperiodic scattering
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Data sparse formats

Most “fast direct methods” exploit rank-deficiencies in the off-diagonal blocks
of large dense matrices.

The most well-known formats are the H-matrix and H2-matrix formats of
Hackbusch and co-workers.

This talk will describe methods based on the so called Hierarchically
Semi-Separable (HSS) matrix format:

• The HSS format is conceptually similar to H-matrix and H2-matrix
formats in many ways: There is a tree structure on the index vector, a
tessellation of the coefficient matrix, low-rank approximations to certain
off-diagonal blocks, etc.

• Out of the box, the HSS format is more restrictive than the H / H2

formats. However, when it works, it achieves very high performance in
terms of both speed and accuracy.

• With certain modifications, the HSS format can be used for most problems
that can be handled using H / H2 matrices.
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What does it mean for a matrix to be low rank?

Let M be an m × n matrix where m ≤ n.

The Singular Value Decomposition (SVD) of M is a matrix factorization

M = UΣV∗

where U and V are square unitary matrices and Σ is an m × n matrix with only
positive real diagonal entries σj , j = 1, . . . ,m.

The values σj for j = 1, . . . ,m are called the singular values.

The ε-rank of a matrix is the number k of singular values greater than ε.

A matrix is numerically low rank if k << m.
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Intuition for inversion of Hierarchically Semi-Separable matrices

Consider a linear system
A q = f,

where A is a “block-separable” matrix consisting of p × p blocks of size n × n:

A =


D11 A12 A13 A14

A21 D22 A23 A24

A31 A32 D33 A34

A41 A42 A43 D44

 . (Shown for p = 4.)

Core assumption: Each off-diagonal block Aij admits the factorization

Aij = Ui Ãij V∗j
n × n n × k k × k k × n

where the rank k is significantly smaller than the block size n. (Say k ≈ n/2.)

The critical part of the assumption is that all off-diagonal blocks in the i ’th row
use the same basis matrices Ui for their column spaces (and analogously all
blocks in the j ’th column use the same basis matrices Vj for their row spaces).
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Intuition for inversion of Hierarchically Semi-Separable matrices

We get A =


D11 U1 Ã12 V∗2 U1 Ã13 V∗3 U1 Ã14 V∗4

U2 Ã21 V∗1 D22 U2 Ã23 V∗3 U2 Ã24 V∗4
U3 Ã31 V∗1 U3 Ã32 V∗2 D33 U3 Ã34 V∗4
U4 Ã41 V∗1 U4 Ã42 V∗2 U4 Ã43 V∗3 D44

 .
Then A admits the factorization:

A =

 U1

U2

U3

U4


︸ ︷︷ ︸

=U


0 Ã12 Ã13 Ã14

Ã21 0 Ã23 Ã24

Ã31 Ã32 0 Ã34

Ã41 Ã42 Ã43 0


︸ ︷︷ ︸

=Ã

 V∗
1

V∗
2

V∗
3

V∗
4


︸ ︷︷ ︸

=V∗

+

 D11

D22

D33

D44


︸ ︷︷ ︸

=D

,



Motivation A linear inversion scheme 1D BIEs 2D problems Periodic scattering Remarks and comments

Intuition for inversion of Hierarchically Semi-Separable matrices

We get A =


D11 U1 Ã12 V∗2 U1 Ã13 V∗3 U1 Ã14 V∗4

U2 Ã21 V∗1 D22 U2 Ã23 V∗3 U2 Ã24 V∗4
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U4 Ã41 V∗1 U4 Ã42 V∗2 U4 Ã43 V∗3 D44

 .
Then A admits the factorization:

A = U Ã V∗ + D,
p n × p n p n × p k p k × p k p k × p n p n × p n
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Intuition for inversion of Hierarchically Semi-Separable matrices

Lemma: [Variation of Woodbury] If an N × N matrix A admits the
factorization

A = U Ã V∗ + D,

then

A−1 = E (Ã + D̂)−1 F∗ + G,
p n × p n p n × p k p k × p k p k × p n p n × p n

where (provided all intermediate matrices are invertible)

D̂ =
(
V∗ D−1 U

)−1
, E = D−1 U D̂, F = (D̂ V∗ D−1)∗, G = D−1 − D−1 U D̂ V∗ D−1.

Note: All matrices set in blue are block diagonal.
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Intuition for inversion of Hierarchically Semi-Separable matrices

The Woodbury formula inverts a p k × p k matrix instead of a p n× p n matrix.

The cost is reduced from (p n)3 to (p k)3.

This is not “fast” yet.

But, Ã admits a compressed representation so we can create a telescoping
factorization.

(Recall: A has p × p blocks, each of size n × n and of rank k.)
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Intuition for inversion of Hierarchically Semi-Separable matrices

Using a telescoping factorization of A:

A = U(3)(U(2)(U(1) B(0) (V(1))∗
)

+ B(1))(V(2))∗ + B(2))(V(3))∗ + D(3),

we have a formula

A−1 = E(3)(E(2)(E(1) D̂(0) F(1))∗ + D̂(1))(F(2))∗ + D̂(2))(V(3))∗ + D̂(3).

Block structure of factorization:
U(3) U(2) U(1) B(0) (V(1))∗ B(1) (V(2))∗ B(2) (V(3))∗ D(3)

All matrices are now block diagonal except D̂(0), which is small.
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What is the role of the basis matrices Ui and Vj?

Recall our toy example:

A =


D11 U1 Ã12 V∗2 U1 Ã13 V∗3 U1 Ã14 V∗4

U2 Ã21 V∗1 D22 U2 Ã23 V∗3 U2 Ã24 V∗4
U3 Ã31 V∗1 U3 Ã32 V∗2 D33 U3 Ã34 V∗4
U4 Ã41 V∗1 U4 Ã42 V∗2 U4 Ã43 V∗3 D44

 .
We see that the columns of U1 must span the column space of the matrix
A(I1, I

c
1 ) where I1 is the index vector for the first block and I c1 = I\I1.

A(I1, I
c
1 )

The matrix A
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We see that the columns of U2 must span the column space of the matrix
A(I2, I

c
2 ) where I2 is the index vector for the first block and I c2 = I\I2.

A(I2, I
c
2 )

The matrix A
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Model Problem

Ω
Γ

Consider the problem

−∆u(x) = 0, x ∈ Ω,

u(x) = g(x), x ∈ Γ.

The solution can be represented as a double layer potential

u(x) =

∫
Γ

∂νG(x, y)φ(y)ds(y), x ∈ Ω,

where ν is the outward normal and G(x, y) is the fundamental solution

G(x, y) = − 1

2π
log |x− y|.

Then the boundary charge distribution φ satisfies the boundary integral
equation

1

2
φ(x) +

∫
Γ

∂νG(x, y)φ(y)ds(y) = g(x)
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How do you discretize integral equations?

Recall: An integral can be approximated via quadrature by∫ b

a

f (x)dx ∼
N∑
j=1

f (xj)wj

where a ≤ x1 < . . . < xN ≤ b are the called the quadrature nodes and {wj}Nj=1

are called the quadrature weights.



Motivation A linear inversion scheme 1D BIEs 2D problems Periodic scattering Remarks and comments

How do you discretize integral equations?

Plugging this into the integral equation, we get

g(x) =
1

2
φ(x) +

∫
Γ

∂νG(x, y)φ(y)ds(y)

∼ 1

2
φ(x) +

N∑
j=1

∂νG(x, xj)φ(xj)wj

Looking for the solution at the quadrature nodes leads to a linear system where
the i th row is given by

g(xi ) =
1

2
φ(xi ) +

N∑
j=1

∂νG(xi , xj)φ(xj)wj
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Model problem

So we want to solve

Aφ = (
1

2
I + D)φ = g,

where D is a matrix that approximates the integral operator

∫
Γ

∂νG(x, y)φ(y)ds(y).

Properties of A:

• Dense matrix.

• Size is determined by the number of discretization points.

• Data-sparse/structured matrix.
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Model problem

Γ2

A(I2, I
c
2 )

The contour Γ. The matrix A.
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Model problem

Singular values of A(I2, I
c
2 )

0 10 20 30 40 50 60 70 80 90 100
10

−18

10
−16
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−10

10
−8

10
−6

10
−4

10
−2

10
0

σ
j(

A
(I

2
,
Ic 2

))

j

To precision 10−10, the matrix A(I2, I
c
2 ) has rank 29.
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Model problem

Remark: In an HSS representation, the ranks are typically higher than in an
H-matrix representation.

Specifically, the block A(I2, I
c
2 ) would typically be considered “inadmissible.”

Instead, in an H-matrix representation, you would compress blocks such as
A(I2, I4):

Γ2

Γ4

A(I2, I4)

The contour Γ. The matrix A.
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Model problem

Singular values of A(I2, I
c
2 ) and A(I2, I4):

0 10 20 30 40 50 60 70 80 90 100
10

−20

10
−15

10
−10

10
−5

10
0

σ
j(

A
(I

2
,
Ic 2

))

σ
j(

A
(I

2
,
I 4

))

j

To precision 10−10, the matrix A(I2, I
c
2 ) has rank 29.

To precision 10−10, the matrix A(I2, I4) has rank 13.
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Model problem

Choice of basis matrices (our approach is non-standard):

Recall: The HSS structure relies on factorizations such as (for k < n)

Aσ,τ = Uσ Ãσ,τ V∗τ
n × n n × k k × k k × n

For HSS matrix algebra to be numerically stable, it is critical that the basis
matrices Uτ and Vτ be well-conditioned.

The gold-standard is to have Uτ and Vτ be orthonormal (i.e.
σj(Uτ ) = σj(Vτ ) = 1 for j = 1, 2, . . . , k), and this is commonly enforced.

We have decided to instead use interpolatory decompositions in which:

1. Uτ and Vτ each contain the k × k identity matrix as a submatrix.

2. Uτ and Vτ are “reasonably” well-conditioned.

3. Ãσ,τ is a submatrix of A for all σ, τ .

Our choice leads to some loss of accuracy, but vastly simplifies the task of
computing compressed representations in the context of integral equations. For
instance, if the original A represents a Nyström discretization, then the HSS
representation on each level is also a Nyström discretization, only with modified
diagonal blocks, and on coarser discretizations.
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Numerical examples

All numerical examples were run on standard office desktops.

Most of the programs are written in Matlab (some in Fortran 77).

The reported CPU times have two components:

(1) Pre-computation (inversion, LU-factorization, constructing a Schur
complement)

(2) Time for a single solve once pre-computation is completed
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Numerical examples

We invert a matrix approximating the operator

[Aφ](x) =
1

2
φ(x)−

∫
Γ

D(x, y)φ(y) ds(y), x ∈ Γ,

where D is the double layer kernel associated with Laplace’s equation,

D(x, y) =
1

2π

n(y) · (x− y)

|x− y|2 ,

and where Γ is either one of the contours:

Smooth star Star with corners Snake
(local refinements at corners) (# oscillations ∼ N)

Examples from “A direct solver with O(N) complexity for integral equations on

one-dimensional domains,” A. Gillman, P. Young, P.G. Martinsson, 2012.
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Numerical examples
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The graphs give the times required for:

• Computing the HSS representation of the coefficient matrix.

• Inverting the HSS matrix.

Within each graph, the four lines correspond to the four examples considered:
� Smooth star ◦ Star with corners � Snake ∗ Smooth star (Helmholtz)
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Numerical examples

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
−4

10
−3

10
−2

10
−1

Transform inverse Matrix vector multiply

N

T
im

e
in

se
co

n
d

s

The graphs give the times required for:

• Transforming the computed inverse to standard HSS format.

• Applying the inverse to a vector (i.e. solving a system).

Within each graph, the four lines correspond to the four examples considered:
� Smooth star ◦ Star with corners � Snake ∗ Smooth star (Helmholtz)
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Numerical examples
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The graphs give the error in the approximation, and the forwards error in the
inverse.

Within each graph, the four lines correspond to the four examples considered:
� Smooth star ◦ Star with corners � Snake
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Numerical examples
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Within each graph, the four lines correspond to the four examples considered:
� Smooth star ◦ Star with corners � Snake
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Performance of direct solver for a torus domain

As a model problem we consider a single layer potential on a torus:

[Aσ](x) = σ(x) +

∫
Γ

log |x − y |σ(y) dA(y), y ∈ Γ,

where Γ is the domain

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−0.2

0

0.2

The domain in physical space



Motivation A linear inversion scheme 1D BIEs 2D problems Periodic scattering Remarks and comments

Performance of direct solver for a torus domain
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Observe that for a BIE with N = 25 600, the inverse can be applied in 0.09
seconds.
The asymptotic complexity is:

Inversion step: O(N1.5) (with small scaling constant)
Application of the inverse: O(N)
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Current state of “fast” direct solvers for 2D BIEs

Applying the computed inverse is good... Cost O(N).

The cost of storing the inverse is acceptable. O(N) with a modest constant.

The cost of computing the inverse is less than desirable. O(N1.5)

In the case of 1D BIEs, the ranks of an m ×m off-diagonal block scale as
O(logm) as m grows.

In the case of 2D BIEs, the ranks of an m ×m off-diagonal block scale as
O(m0.5) as m grows. Thus matrices of size m0.5 ×m0.5 are beginning inverted.

How are we going to fix this?
It turns out that these matrices are HSS.

We are currently developing a linear scaling technique that utilizes this fact.
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Finite element matrices

Let Ω = {m}Ni=1 ⊂ Z2 be a square lattice
with N nodes and u(i) denote the tempera-
ture of node i and let f(i) denote an external
heat source. Then the equilibrium equations
read

[Au](i) = f(i), ∀ i ∈ Ω,

The operator A is an N × N sparse matrix corresponding to a 5 point stencil .



Motivation A linear inversion scheme 1D BIEs 2D problems Periodic scattering Remarks and comments

Finite element matrices

Constant coefficient example for a 5× 5 grid

A =


B −I 0 0 0
−I B −I 0 0
0 −I B −I 0
0 0 −I B −I
0 0 0 −I B


where

B =


4 −1 0 0 0
−1 4 −1 0 0
0 −1 4 −1 0
0 0 −1 4 −1
0 0 0 −1 4


and I is the 5× 5 identity matrix.
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Definition of the Schur Complement:

Ω1 →

←− Ω2

[
A11 A12

A21 A22

] [
u1

u2

]
=

[
f1

f2

]

The Schur complement of the matrix A is the operator S defined by

S = A11 − A12A
−1
22 A21.
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Nested Dissection

Step 1: Partition the box into small boxes. For each box, identify the internal
nodes (marked in blue) and eliminate them by computing the Schur
complement for each box.

⇒
Step 1
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Nested Dissection

Step 2: Merge boxes by eliminating a series of vertical interior connections
creating rectangular boxes.

⇒
Step 2
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Nested Dissection

Step 3: Merge rectangular boxes by eliminating a series of horizontal interior
connections.

⇒
Step 3
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Nested Dissection

Step 4: Repeat step 2.

⇒
Step 4
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Nested Dissection

Step 5: Repeat step 3.

⇒
Step 5
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Merge two Schur Complements

Γ1 Γ3 Γ4 Γ2

Ωw Ωe

Supposing that the interior edges are unloaded, the global equilibrium equation
equation now reads

S11 A12 S13 0
A21 S22 0 S24

S31 0 S33 A34

0 S24 A43 S44




u1

u2

u3

u4

 =


f1

f2

0
0

 ,
where Aij are the relevant sub-matrices A.
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Merge two Schur Complements

Γ1 Γ3 Γ4 Γ2

Ωw Ωe

The Schur complement of the large box is

S =

[
S11 A12

A21 S22

]
−
[

S13 0
0 S24

] [
S33 A34

A43 S44

]−1 [
S31 0
0 S42

]
.
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Nested Dissection

Nested dissection as presented has complexity O(N1.5).

It can be accelerated to O(N) since the dense matrices have structure.
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Numerical example

N Tsolve Tapply M e1 e2

(sec) (sec) (MB)

5122 7.98 0.007 8.4 5.56e − 7 6.04e − 7

10242 26.49 0.014 18.6 4.72e − 7 4.98e − 7

20482 98.46 0.020 33.1 2.89e − 7 2.90e − 7

40962 435.8 0.039 65.6 - -

Tsolve Time required to build the solution operator

Tapply Time required to apply the solution operator (of size 4
√
N × 4

√
N)

M Memory required to store the solution operator
e3 The l2-error in the vector S−1 r where r is a unit vector of

random direction.
e4 The l2-error in the first column of S−1.

“An O(N) algorithm for constructing the solution operator to elliptic boundary value

problems in the absence of body loads,” A. Gillman, P.G. Martinsson.
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Related work:

Solvers of this type have attracted much attention recently, including:

• H-LU factorization of coefficient matrices by L. Grasedyck, S. LeBorne,
S.Börm, et al. (2006)

• Multifrontal methods accelerated by HSS-matrix algebra: J. Xia,
S. Chandrasekaran, S. Li. (2009)

Currently large effort at Purdue in this direction. (J. Xia, M. V. de Hoop,
et al). Massive computations on seismic wave propagation.

• L. Ying & P. Schmitz — general meshes in 2D, Cartesian meshes in 3D,
etc. (2010).
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Quasiperiodic scattering

d

ui

x

y

Ω

• Let Ω ⊂ R denote one obstacle. Then the collection of obstacles is
expressed as ΩZ = {x : (x + nd , y) ∈ Ω for some n ∈ Z}.

• The obstacles are hit by an incident plane wave uinc = eik·x where
|k| = ω.

• Our goal is to find the total field utotal = uinc + u.

• Utilize the fact that each part of the field is quasiperiodic:

ie. u(x + d , y) = αu(x , y) where α = eiκ
id denotes the Bloch phase.
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Quasiperiodic scattering

d

ui

x

y

Ω

(∆ + ω2)u(x) = 0 x ∈ R \ ΩZ

u(x) = uinc(x) x ∈ ∂ΩZ

u ‘radiative′ as y→ ±∞
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Single object scattering

Consider the problem

(∆ + ω2)u(x) = 0 x ∈ R \ Ω
u(x) = uinc(x) x ∈ ∂Ω
u ‘radiative′ far from Ω

The solution can be represented as a double layer potential

u(x) =

∫
Γ

∂νGω(x, y)τ(y)ds(y), x ∈ Ω,

where ν is the outward normal and Gω(x, y) is the fundamental solution

Gω(x, y) =
i

4
H

(1)
0 (ω|x− y|).

Then the boundary charge distribution τ satisfies the boundary integral
equation

−1

2
τ(x) +

∫
Γ

∂νGω(x, y)τ(y)ds(y) = uinc(x)
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Quasiperiodic scattering
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Replace Gω(x, y) by Gω,QP(x) :=
∑
m∈Z

αmGω(x−md).

This has some problems...



Motivation A linear inversion scheme 1D BIEs 2D problems Periodic scattering Remarks and comments

Quasiperiodic scattering

x

y
u(  )x

ξξ

τ

L R

Ω

By using Gω(x, y) and enforcing periodicity by introducing “boundaries”, the
problems can be avoided. The result is the following (N + M)× (N + M) linear
system [

A B
C Q

] [
τ
ξ

]
=

[
−uinc

0

]
,

where A is N × N and Q is M ×M. Typically, M < 200.

L. Greengard and A. Barnett (2010)
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A fast quasiperiodic solver
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ui
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Ω

[
A B
C Q

] [
τ
ξ

]
=

[
−uinc

0

]
By using HSS algebra and the Schur complement, we construct a fast
technique for applying the inverse of the system.

ξ = (Q− CA−1B)−1A−1uinc

τ = A−1uinc − A−1Bξ
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A fast quasiperiodic solver

d

ui

x
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Ω

[
A B
C Q

] [
τ
ξ

]
=

[
−uinc

0

]

By using HSS algebra and the Schur complement, we construct a fast
technique for applying the inverse of the system.

ξ = (Q− CA−1B)−1A−1uinc

τ = A−1uinc − A−1Bξ
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Numerical example

ω = 10

 

 

[
A B
C Q

] [
τ
ξ

]
=

[
−uinc

0

]

The size of A varies while M = 90 is fixed.
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Numerical example
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The four lines correspond to:
◦ Compress � Invert � Transform Inv. — Block solve
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Numerical example
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The four lines correspond to:
◦ Compress � Invert � Transform Inv. — Block solve - - - Dense
For N = 8192, the new technique can do 394 solves in the time it takes the
dense solver to do one.
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Concluding remarks and comments

Assertions:
• Fast direct solvers excel for problems on 1D domains.

• Integral operators on the line.
• Boundary Integral Equations in R2.
• Boundary Integral Equations on rotationally symmetric surfaces in R3.
• (Low frequency) Quasiperiodic Scattering in R2.

• Existing fast direct solvers for “finite element matrices” associated with
elliptic PDEs in R2 work very well. In R3, they can be game-changing in
specialized environments.

Predictions:

• For BIEs associated with non-oscillatory problems on surfaces in R3, an
O(N) complexity (with a modest constant) solver will exist.

• Randomized methods will be extremely helpful.

• Direct solvers for scattering problems will find users, even if expensive.
O(N1.5) or O(N2) flop counts may be OK, provided parallelization is
possible.

• Direct solvers will provide a fantastic tool for numerical homogenization.



Motivation A linear inversion scheme 1D BIEs 2D problems Periodic scattering Remarks and comments

Performance of direct solver for a torus domain
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Errors for the same problem as the previous slide.
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Quasiperiodic scattering

d
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Ω

Replace Gω(x, y) by Gω,QP(x) :=
∑
m∈Z

αmGω(x−md).

This has some problems...

• Wood’s anomalies

• Difficulty in evaluation

• Converges in disk
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