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I.  Observational Properties of 
Type Ia Supernovae
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Supernovae Types
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Cosmological Observations of 
Type Ia Supernovae

• The combination of the identification of the Branch normal population of 
Type Ia supernovae and advancements in observational technology in the 
1980s and 90s made it feasible to employ Ia events as cosmological 
probes. (Zwicky, 1939; Colgate, 1979)
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Type Ia Supernovae Light Curves

• Optical Type Ia light curves are powered by the decay of radioactive 
Ni-56 (half life of 6.077 days) and Co-56 (half life of 77.27 days) 
(Truran, 1969; Colgate & McKee, 1969)  
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Standardizing Light Curves - 
The Phillips Relation

• Most known Type Ia supernovae fit 
a universal light curve with a free 
parameter specified by the width 
of the curve. (Phillips, 1993)

• The Phillips relation allows 
astronomers to use Type Ia events 
as standardizable candles of 
cosmological distances, and the 
characterization of dark energy 
(Riess et al, 1998; Perlmutter et al, 
1999)
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White Dwarf Nuclear Energetics
• Fermi energy for N relativistic electrons in a fully 

degenerate white dwarf of radius R, number density n, 
simply estimated by Heisenberg and Pauli -

EF ∼ h̄n
1/3

c ∼

h̄N1/3c

R

• Total energy is

E = NEF + EG ∼

h̄N4/3c

R
−

GN2m2
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R
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• On August 24, 2011 Palomar Transient Factory (PTF) 
discovered 2011fe in the pinwheel galaxy M101 at a distance 
of 21 million light years

• Combination of early-time light curves, X-ray and Hubble 
limits directly constrains the primary progenitor to a C/O 
white dwarf for the first time (Nugent et al, 2011; Bloom et al, 
2012) 

SN 2011fe
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Challenges for SD and DD Channels
• For both channels - insufficient number of progenitor systems to 

account for observed rates (eg, Di Stefano 2010a,b)

• For SD - Absence of detectable H-alpha in normal SN 2005cf and 
subluminous SN 2005am. (Leonard, 2007; but also Justham, 2011, Ilkov 
& Soker, 2012)

• Also for SD - Steady-burning requires a narrow range of accretion 
rates (Townsley & Bildsten, 2003)

• For DD - why not an accretion-induced collapse to a neutron star? 
(Nomoto & Kondo, 1991, Saio & Nomoto, 1998, Saio & Nomoto, 
2004)
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Key Outstanding Theoretical 
Questions

• What mechanisms lead to Type Ia supernovae in both 
the single- and double-degenate channels? 

• Under what conditions do we achieve a successful 
explosion? In double degenerate, why not an accretion-
induced collapse?

• Are our models consistent with expected  isotopic 
abundances, and nuclear energy yields?

• Can theoretical models yield useful predictions in X-
ray and UV?
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II.  The Single Degenerate 
Channel
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Single Degenerate Type Ia Progenitors : 
Chandrasekhar Mass, Relativistically-Degenerate 

C/O White Dwarfs

R = 2000 km

R = 1000 km

Outer Convective Core

Radiative Envelope

Central Burning Region

M ! 1.4 M!
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Single Degenerate Type Ia Supernovae
Mechanisms

Flame Ignition

Pure Deflagration

Deflagration to Detonation Transition

Gravitationally-Confined Detonation

Khokhlov (1991)

Plewa, Calder, Lamb (2004)Niemeyer, Hillebrandt, Woosley (1996)

Nomoto, Thielemann, Yokoi (1984)
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Rayleigh-Taylor Instability
• Dense fuel overlaying rarefied ash is Rayleigh-Taylor 

unstable

• Classic Rayleigh-Taylor instability predicts linear

Smallest wavelengths grow fastest.

• Width of mixing layer in self-similar phase,

(von Neuman & Fermi, 1953)

• Unlike classic Rayleigh-Taylor instability, reactive 
flame stabilizes surface of flame
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• Timescale for development of Rayleigh-Taylor instability 

• Flame-crossing timescale

• Two timescales are comparable at

• On scales <       , action of flame “polishes” the surface, stabilizing it against 
Rayleigh-Taylor.
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3-D Simulation of a Type Ia 
Detonation

• Background is a cold white dwarf model in 
initial equilibrium with initial mass 1.365 
Msun with a nuclear equation of state.

• Nuclear bubble is ignited within a spherical 
region slightly offset from the center of 
the white dwarf.

• Simulation numerically integrates the fully-
coupled Euler, Poisson, and ADR PDEs 
forward in time. 

Rbub

RWD
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Fundamental Equations

∂ρ

∂t
+ ∇ · (vρ) = 0

• Equations solved are Euler equations of hydrodynamics 
coupled to Poisson’s equation for self-gravity and an 
advection-diffusion reaction model of combustion front :

∂ρv

∂t
+ ∇ · (vvρ) = −∇P − ρ∇Φ

E = U +
1

2
ρv2

∇
2
Φ = 4πGρ

∂φ

∂t
+ v ·∇φ = κ∇2φ +

1

τ
R(φ)

∂ρE

∂t
+ ∇ · [v (ρE + P )] = ρv ·∇Φ + ρεnuc
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Numerical Methods

• Equations of hydrodynamics are solved with an explicit, 
piecewise parabolic method (Colella & Woodward, 1984).

• Self-gravity is solved using a multipole method. 

• Source terms for gravity, nuclear burning are operator-split.
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Animation of 3D Simulation of Type Ia 
Supernova GCD Through Deflagration
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Animation of 3D Simulation of Type 
Ia Supernova GCD Through 

Detonation
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The Problem of 
Intermediate Mass Elements

• Initial GCD models studied 
underproduced intermediate 
mass elements and overproduced 
Ni. 

• Consequently, initial GCD 
models were generally too 
luminous in comparison to 
Branch normal Ia events.

• We have subsequently explored 
the dependence of the nuclear 
energy release in the deflagration 
phase.
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Verification of Flame 
Models

• Thickness of carbon-burning flame                                in the conditions of 
interest, much smaller than typical grid cell ~ 1 km.

• How does buoyancy-driven combustion in a stratified medium differ from 
turbulent nuclear burning on an isotropic turbulent background?

• Is it possible to describe the burning rate by a single characteristic turbulent 
timescale? 

• If so, what scale dominates burning - large or small? Integral scale? Fire-
polishing scale? Kolmogorov scale?

10�5cm� 104cm
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Adaptive Gridding

• Typical models have finest resolution 
equivalent to 700  cell zones across the initial 
diameter of the white dwarf progenitor, 8192 
zones across the problem domain.

• With adaptive meshing, a single typical 
simulation followed from ignition to 
detonation requires roughly 5 104 CPU hours 
on current hardware; about 2 days of wall 
clock time on 103 CPUs.

AMR Grid Refinement
of Flame Bubble
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Flame Bubble Resolution Study
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Full-Star Deflagration 
Resolution Study
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Single-Degenerate Channel 
Summary

• Three-dimensional single-degenerate models can now, for the first 
time, successfully detonate and produce typical brightness SNe Ia.

• Most of the burning in occurs on large scales above fire-polishing scale, 
and models which resolve this scale are converged.

• Models have predictive capabilities for observational astronomers - in 
both EM (including optical, UV, and X-ray) as well as gravitational waves
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III. The Double-Degenerate 
Channel
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• Recent work based upon delay-time distribution 
and on 2011fe are consistent with double-
degenerates as the origin for some of SNe Ia.

• Multiple observations of DTD show a power law       
at late times, consistent with DD channel.  (Gal-
Yam & Maoz, 2004, Totani et al, 2008, Badenes et 
al, 2010, Maoz et al, 2010)

• Null detections in radio and X-rays in 2011fe 
constrain mass outflows from SD channel.  
Moreover, early optical and Swift UV light curves 
rule out dense circumstellar matter <        cm

Double-Degenerate Channel

1010
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Delay Time Distribution
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Final Merger of C/O WDs

• Two decades of simulations of final merger of DD channel have finally 
achieved consensus that mass transfer is unstable.  (Mochkovitch & 
Livio 1989, 1990, Benz et al, 1990, Rasio & Shapiro, 1995, Segretain et 
al, 1997,  Motl et al, 2001, D’Souza et al, 2004,  Guerrero et al, 2004, 
Loren-Aguilar et al, 2009ab, Dan et al, 2011)
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• Assuming a Shakura-Sunyaev viscosity, accretion timescale of disk 

• The heating timescale is then approximately

A Model of  Sub-Chandra 
Channel SNe Ia

⌧acc =
Mdisk

Ṁ
= ↵�1

⇣rdisk
h

⌘2
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⇣ ↵
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Or, approximately 10 hours.
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• The sub-Chandra DD channel presents new computational challenges :

Simulating the Sub-Chandra 
DD Channel

Single-Degenerate Double-Degenerate

Hydrodynamic
Magnetohydrodynamic (or    

disk model)

Non-rotating, or Slowly-Rotating 
WD

Rotating WD Merger + Thick 
Disk

Evolution over Dynamical Timescale
Evolution over Viscous 

Timescale

↵
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• Several strategies exist for mitigating these challenges :

Simulating the Sub-Chandra 
DD Channel

Double-Degenerate Physics Numerical Methods

Magnetohydrodynamics
Unsplit Higher-Order 

Godunov Solver

Rotating WD Merger + Thick Disk Corotating Frame

Evolution over Viscous Timescale
Super-Timestepping

Higher-Order Schemes
Fully-Implicit Methods
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• In general, CPU time for an Eulerian simulation is simply

Feasibility of Simulating the DD 
Sub-Chandra Channel SNe Ia

tCPU = N�

Number of Spacetime Grid Points CPU Time Per Advance

• At a nominal spatial resolution of            (~ 100 km), CFL timestep ~ 5 
ms, and therefore 10 hr represents       timesteps. 107

10242

tCPU = 30 khr

✓
N

1024

◆2

• For 2-D,  this is equivalent to roughly 2 days of wall clock time on a 512-
core cluster. 

Sunday, April 29, 12



Summary : 
 Lessons Learned and Open Questions

• 3-D model simulations demonstrate :

• Successful detonations of Type Ia supernovae in 3D.

• Convergence when fire-polishing scale is resolved.

• Significant challenges remain :

• Can we constrain or possibly rule out some models of SD SN Ia by 
next-generation simulations containing improved initial conditions and 
models of turbulent nuclear burning? 

• Do sub-Chandra DD merger models yield SNe Ia and not AIC?

• Can simulated X-ray and UV spectra yield further constraints to the 
SNe Ia progenitors?
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 “As long as a branch of science offers an 
abundance of problems, so long is it alive; a lack 
of problems foreshadows extinction or the 
cessation of independent development… It is by 
the solution of problems that the investigator tests 
the temper of his steel; he finds new methods and 
new outlooks, and gains a wider and freer 
horizon.”

     -- David Hilbert, 1900 
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