
ST505/S697R: Fall 2012. Homework 2 Solution.

1. 1a; problem 1.22 Below is the summary information (edited) from the regression (using R output); code at
end of solution as is code and output for SAS.

a) The estimated regression function is E(Y ) = 168.60000 + 2.03438 ∗ X , where Y is hardness and X is time.
The plot of data and fitted line is below. There are two ways to interpret the question of whether the linear
regression supplies a good fit. One is whether a straight line does a good job of modeling the expected value.
The answer to that seems to be yes from graphical inspection. A second way, and different way, to view the
question is how “tight” the fit is around the line. There is clearly variability in hardness at a fixed time. The
question of how this variability relates to how good the fit is will depend on how the fit will be used.

b) This is the fitted value at X = 40 is b0 + b140, which equals 249.975. You can get this directly or use the
predicted value in the output for a case with X = 40.

c) This is just β1 which is estimated by 2.03438

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 168.60000 2.65702 63.45 < 2e-16 ***

time 2.03437 0.09039 22.51 2.16e-12 ***

---

Residual standard error: 3.234 on 14 degrees of freedom
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Figure 1: Plot of data and fitted line.

1b; problem 1.26 a.) In SAS you can get the residuals using the p option in proc reg; in R using the residuals
function. Easy to see that they add to 0. Whenever we fit a regression model with an overall intercept
the residuals will add to 0. This is not the case if we fit with no intercept.

hardness time fits resids

1 199 16 201.150 -2.150

2 205 16 201.150 3.850
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3 196 16 201.150 -5.150

4 200 16 201.150 -1.150

5 218 24 217.425 0.575

6 220 24 217.425 2.575

7 215 24 217.425 -2.425

8 223 24 217.425 5.575

9 237 32 233.700 3.300

10 234 32 233.700 0.300

11 235 32 233.700 1.300

12 230 32 233.700 -3.700

13 250 40 249.975 0.025

14 248 40 249.975 -1.975

15 253 40 249.975 3.025

16 246 40 249.975 -3.975

b) The estimate of σ2 is σ̂2 = MSE = 10.45893 (10.5 in the R output).

The estimate of σ is the square root of this so σ̂ = 3.23403 (also root MSE on SAS output, Residual standard
error in R output)).

1c) The (estimated) standard error for b0 is 2.657 and for b1 is .09039. The CI for b0 is computed using
168.6 ± t(.975, 14)2.657 and for b1 using 2.03435 ± t(.975, 14).09039, where t(.975, 14) = 2.145. Using the
confints in R or clb in SAS yields 95% confidence intervals of

(Intercept),β0: [162.9013, 174.29875]
time, β1: [1.8405, 2.22825]

1d, problems 2.7 a and b:

a) Asking for a 99% confidence interval for β1, which is (1.7653, 2.30346). The interval can also be computed
directly using b1 ± t(.995, 14)s{b1} of obtained in either R (via confint with level = .99) or SAS (using clb with
alpha = .01).

Using R

> confint(regout,level=.99) #99% confidence intervals

0.5 % 99.5 %

(Intercept) 160.690457 176.509543

time 1.765287 2.303463

b) Testing H0 : β1 = 2 versus HA : β1 6= 2.

The t-statistic is t∗ = (2.03438 − 2)/0.09039 = .38035. With t(.975, 14) = 2.145, you do not reject H0 since
.38 < 2.145. The P-value is the sum of the area to the right of .38 and the left of -.38 under the t distribution
with 14 degrees of freedom. This actually equals .7094. Just using the t-tables, you can see that the area to
the right of .38 is somewhere between .3 and .4, so from the tables you know the p-value is between .6 and .7.

Note that we also accept accept H0 since the P-value is > .01.

- You can also test this directly using the 99% CI for β1 and reject H0 if 2 is not in the interval. Since 2 is in
the interval we do not reject H0. This is equivalent to doing the t-test.

1d: problem 2.16 You can get a) and b) in SAS directly from the output using the clm and cli option if you
include a new case in the data with Y missing (.) and X = 30. In R and for the other parts, the intervals can
be computed in various ways using either SAS or R as a calculator (as demonstrated for the Kishi example).
See code and output at end of solution that corresponds to this.

a) [227.4569, 231.8056] = 229.6313± (2.264)0.8285, where s{µ̂(30)} = 0.8285 is the standard error associated
with the estimated mean and t(.99, 14) = 2.624.
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Note that s2{µ̂(30)} = 0.8285 = 7.06+ 302(.0082)+ 2 ∗ 30 ∗ (−.2288), where s2{b0} = 7.06, s2{b1} = .0082 and
s{b0, b1} = −.2288 from the variance-covariance matrix of the coefficients

> vcov(regout) #this gives the variance-covariance

(Intercept) time

(Intercept) 7.0597768 -0.228789063

time -0.2287891 0.008171038

b) (220.8695, 238.3930) = 229.6313± (2.624)(10.45893 + 0.82852)1/2.

c) 229.6313± (2.264)((10.45893/10)+ 0.82852)1/2 = [226.2, 233.1].

d) The interval in c) is smaller since you are trying to predict the mean of 10 values which has less variability
(σ2/10) than one value.

e) 229.6313± (2 ∗ 5.24)1/2∗ 0.8285 = [226.95, 232.32], where F (.99, 2, 14) = 5.24 (obtained exactly using SAS or
R you could approximate using the entries for F (.975, 2, 12), F (.975, 2, 15), F (.99, 2, 12) and F (.99, 2, 15) from
the F table.)

1f.
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Figure 2: Individual CIs for means and Prediction intervals

1g.

1g: Problem 4.9

a) and b) Xj = 20, 30 and 40.

For Bonferroni, use b0+b1Xj±t(1−.10/6, 14)s{µ̂{Xj}}, with t(1−.10/6, 14) = 2.360 The Working-Hotelling/Scheffe
intervals use the same form but with the t value replaced by (2F (.90, 2, 14))1/2 = 2.3352. The Working-Hotelling
intervals will be smaller and more efficient since 2.335 < 2.360, but the difference is minor.

Scheffe intervals Bonferroni intervals estimate SE

X=20 206.755 211.821 206.728 211.847 209.288 1.08473

X=30 227.697 231.566 227.676 231.586 229.631 0.82847

X=40 246.816 253.134 246.783 253.168 249.975 1.35289
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c). Now doing prediction intervals for two future values at X1 = 30 and X2 = 40. Use
b0 + b1Xj ± t(1 − .10/4, 14)s{predj}, with t(1 − .10/4, 14) = 2.145 and s2{predj} = MSE + s2{µ̂(Xj)}. The
Scheffe intervals use the same form but with the t value replaces by (2F (.90, 2, 14))1/2 = 2.3352. The Bonferroni
intervals should be used here since shorter.

Bonferroni Scheffe SEpredj

X=30 222.471, 236.792 221.836, 237.427 3.33846

X=40 242.456, 257.494 241.789, 258.161 3.50560

2. Problem 2. a) The estimate of β0 is .07471, of β1 is 2.10983, of σ2 is .06307, and of σ is .2511 = (.06307)1/2.

b) 2.10983± 1.96(.01194) = [2.08643, 2.13323]

c) H0 : β1 = 0. t∗ = 2.10983/.01194 = 176.67. The p-value for this is the area to the right of 176.67 plus the
area to the left of - 176.67 under the standard normal (use this since the degrees of freedom is 3164). Since the
area to the right of 3.291 is equal to .0005 (see table) we know the P-value is less than 2*.0005 = .0001.

As a probability, the P-value is the probability of getting a value of the |t∗| greater than or equal to the value
of the observed absolute value, under the null hypothesis. Here, it is the probability that |t∗| > 176.67 where t∗

is distributed t with 3164 degrees of freedom, which is for practical purposes the standard normal distribution.

d) Ŷh = 3.5917966, s{Ŷh} = 0.0066024 = (s2{b0} + X2

hs2{b1} + 2Xhs{b0, b1})
1/2, s{pred} = 0.2512242 =

(MSE + s12{Ŷh})
1/2.

Use z = 1.96 in getting the intervals.

Confidence interval for E(Y) at X = 1.667 is [3.5788559, 3.6047373]

Prediction interval for Y at X = 1.667, is [3.0993972, 4.084196].

3. Problem 3. Below are results for designs 1 and 2. Here I’ve given parts of the SAS output. Similar results
apply for R. The first part of each program gives you the true standard errors of the estimated coefficients. The
expected values of b0, b1 and MSE are known to be exactly β0 and β1 and σ2 (0, 1 and .0225) respectively.

To choose between designs we can do that in terms of the true standard errors of the estimated coefficients go.
The second design is better because the standard errors are smaller. We know the estimators are unbiased for
both unbiased so we can just compare variance or standard errors to make that decision.

- The second part of the output gives summary statistics over the thousands of simulated values. The fact
that the means of the three variables are not exactly the true parameters is because we are running a limited
number of simulations. The histograms represent the sampling distribution of these estimators (this is not the
exact sampling distribution because of a limited number of simulations but it will be close).

- If you thought of which design is better for estimating σ2 you’d have to rely on the simulation results since
I didn’t tell you the variance of MSE. From the simulation results it looks like design 2 is a little better. In
fact the two designs are equivalent from this perspective. It can be shown that the standard deviation
of MSE is (2σ4/(n − 2))1/2 ( = .01006 here), which only depends on the design through n. All designs with
the same n are equally good for estimating σ2. This may surprise you.

Homework 2, number 3 Design 1

coefficients: beta0 = 0 beta1 = 1

sigma2 0.0225 sigma = 0.15

number of simulations 1000

n = 12 xvalues = 7.67

6.31

6.14

7.07
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6.39

5.95

6.53

6.55

5.34

5.74

4.94

7.07

using normal errors

THEORETICAL VARIANCES AND STANDARD DEVIATION

variance of b0 = 0.1413792 sd of b0 = 0.3760042

variance of b1 = 0.0035056 sd of b1 = 0.0592078

The MEANS Procedure

Variable N Mean Std Dev Minimum Maximum

--------------------------------------------------------------------------------

B0 1000 0.0228333 0.3734848 -1.2547479 1.3339013

B1 1000 0.9966975 0.0588648 0.7961849 1.1947983

MSE 1000 0.0226470 0.0102871 0.0033132 0.0705808

--------------------------------------------------------------------------------

And here are results from design 2.

Homework 2, number 3 Design 2 1

coefficients: beta0 = 0 beta1 = 1

sigma2 0.0225 sigma = 0.15

number of simulations 1000

n = 12 xvalues = 5.3

5.3

5.3

5.3

5.3

6

6

7

7

7

7

7

using normal errors

THEORETICAL VARIANCES AND STANDARD DEVIATION

variance of b0 = 0.1181024 sd of b0 = 0.3436603

variance of b1 = 0.0030981 sd of b1 = 0.0556606

The MEANS Procedure

Variable N Mean Std Dev Minimum Maximum

--------------------------------------------------------------------------------

B0 1000 0.0081894 0.3404172 -1.0216963 1.1265641

B1 1000 0.9987300 0.0549423 0.8055471 1.1717619

MSE 1000 0.0225139 0.0098290 0.0037846 0.0690602

--------------------------------------------------------------------------------
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