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1 Introduction

1.1 Some examples

• Calibration of measurement of cholesterol.

Have prepared samples with known concentration of cholesterol x. These are

known as standards. Run a sample through the measuring device and record
Y . (In some calibration problems Y might not even be in the same units

as x; for example in a radioassay, the Y is a radioactive count while x is a
concentration). We want to understand how Y relates to x. One reason is to
use this relationship when you analyze a sample with an unknown x and want

to estimate the x. This is called inverse “prediction”.

• Nutritional Requirements

An individual is measured at various levels of nitrogen intake (by controlling

diet) and in each case a measure of nitrogen balance is obtained. The objective
is to first build a model for how balance relates to intake and then determine

an individual’s nitrogen requirement; defined to be the intake at which the
expected balance is 0.

• Strength of finger joints.

One way to laminate wood together is with the use of finger joints. The process
involves applying a certain amount of pressure (X1) for a certain amount of
time (X2). The objective is to estimate how pressure and time influence the

breaking strength Y of the piece of wood (or test hypotheses that a variable or
variables plays no role). Once we build a model the goal is to predict breaking

strength when a piece is made using a particular pressure and time and attach
uncertainty to that prediction.

• LA county epidemiologic data.

Sample of 200 employees of Los Angles County. Data obtained in 1950 and
1962 on various quantities including systolic and distolic blood pressure, height,

weight, serum cholesterol, clinical status (normal, heart disease status) and
year of death (if died before 1962). i) Examine relationships among various

variables within a year. ii) How do certain measures in 1952 help predict

4



outcome variables in 1962? ii) Is presence or absence of heart disease related
to blood pressure, cholesterol, etc and if so in what manner.

• Determining arterial blood pressure in the lungs.(Ex. 8.13 in book) Outcome:

Y = arterial blood pressure measured by invasive procedure. X1 = empty
rate of blood pumping into heart (measured by radio-nuclide imaging). X2 =
ejection rate of blood pumped from heart into lungs (measured by radionu-

clide imaging). X3 = blood gas measure. Which variables help, and how, in
determining Y ?

• In the contested 2004 presidential election, there were claims that their were

irregularities in the balloting in Palm Beach County causing people to vote for
Pat Buchanan when they meant to vote for Al Gore. Using data from other

counties, a model can be built on how the proportion of votes for Buchanan
relates to certain characteristics of the county. The resulting model can be used
to predict what the proportion in Palm Beach County should have been (using

a prediction interval), which can be used to assess how irregular the Buchanan
vote in Palm Beach actually was.

• Examine the relationship of proportion of students passing MCAS to demo-

graphic and socio-economic variables associated with the school district.

• Relating years of education, age, gender and other factors to wages.

1.2 Data Structure

n “units” in the data. For the ith unit in the sample, i = 1, . . . , n, we have

(Yi, Xi1, . . . , Xik), where Y = response variable and the X’s are variables of poten-
tial interest in terms of their effect on Y . These will be referred to as explanatory

variables, but may also be called regressors, predictors or predictor variables, inde-
pendent variables, covariates, etc.
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1.3 Objectives of regression analysis.

• Estimation and Model building.

Investigate the relationship between Y and the X’s; that is see how, if at all,
Y changes with the X’s. Which X’s are most important in explaining the

changes in Y ?

This could be viewed as simply a data description/descriptive statistics

problem. In this case no attention is given to the notion of some kind of
probabilistic model which generated the data. It is simply curve fitting and

involves fitting a function f(X1, . . . , Xk; β) to the data, where β contains some
coefficients in the model. Or we might do the fit nonparametrically without
specifying some functional form.

Statistical Inference is a more formal venture and requires a probabilistic

model for how the data was generated. This model will involve parameters
which explain how Y changes as the X’s change and the objective is to make
inferences on those parameters. Inferences are only sensible to do if the model

assumptions are reasonable.

Within a particular model, we might want to estimate the coefficients in a

model, the expected response at a particular combination of parameters or
variability around the regression line.

• Prediction.

After the data is used to fit a model relating Y to the explanatory variables,
a new ”unit” is to be observed with known X values and the objective is to

predict the value of Y which will occur. Can do this from a simple curve fitting
perspective but will not have any way to attach a measure of uncertainty to

the prediction. We want to attach uncertainty to the predictions.

• Inverse “prediction” (also called calibration).

After the data is used to fit a model relating Y to the explanatory variables,

a new ”unit” (or units) is observed with a response yo, but the explanatory
variables for the unit are not known. The objective is to estimate the unknown
X value (or values).
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1.4 Regression model for the data

Before the study is run Yi is a random variable, while the explanatory variables
may be either fixed, random or a combination of the two. Regression models for

the data arise by specifying the distribution of Yi given Xi1, . . . , Xik. When some
of the explanatory variables can be random, this is interpreted as the conditional
distribution of Yi given that the explanatory variables take on values Xi1 . . . , Xik.

Whether the model makes sense and how to interpret it depends on how the data
was obtained!

The function f(Xi1, . . . , Xik; β) defined by

E(Yi|Xi1, . . . , Xik) = f(Xi1, . . . , Xik; β)

is called the regression of Y on X1, . . . , Xk. E(Yi|Xi1, . . . , Xik) denotes the ex-

pected value of Yi given Xi1, . . . , Xik. β is a vector containing the coefficients.

This can also be represented as:

Yi = f(Xi1, . . . , Xik; β) + ǫi,

where ǫi is a random variable (”noise”, ”error”) with mean 0; that is E(ǫi) = 0.

Specification of the model for the data involves:

- specifying the regression function f . This models the mean behavior.

- specifying the variance of ǫi, denoted σ2{ǫi}.
- specifying any covariance/correlation structure among the ǫi. The covariance

of ǫi and ǫj is denoted σ{ǫi, ǫj}. More generally, specifying dependence among the

errors.

Note that since we are conditioning on the X’s as fixed constants, σ2{ǫi} is

the same as the variance of Yi given Xi1, . . . , Xik, and σ{ǫi, ǫj} is the same as the
covariance of Yi and Yj given Xi1, . . . , Xik.
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Modeling the variance

In general the variance of ǫi, may change over i and, more specifically, it often
changes as some function of the X values. When σ2{ǫi} changes with i we refer to
the resulting model as having heteroscedasticity. How the variance changes as

the X change can sometimes be of as much interest as changes in the mean.

The homogeneity of variance assumption is that

σ2{ǫi} = σ2

and the resulting model is referred to as a homoscedastic model.

We have uncorrelated errors if ǫi, and ǫj are uncorrelated for each pair i 6= j.

This is implied by the assumption that the errors are independent.

Classifying regression models by the form of f .

1. Linear regression model.

Yi = β0 + β1Xi1 + . . . + Xi,p−1βp−1 + ǫi

where Xi1, . . . , Xi,p−1 are functions of the original explanatory variables Xi1, . . . , Xik.
When p > 2, this is typically referred to as a multiple linear regression

model.

β = (β0, β1, . . . , βp−1)
′ is a p × 1 vector of regression coefficients with β0 being

the intercept. The β0 is not essential to the definition of this as a linear

regression model and in some problems is omitted.

2. Simple Linear Regression Model: One explanatory variable X1.

Yi = β0 + β1Xi1 + ǫi.

3. Polynomial model of degree q in one variable X1:

Yi = β0 +β1Xi1 +β2X
2
i1 + . . .+βqX

q
i1 +ǫi = β0 +β1Xi1 +β2Xi2 + . . .+βqXiq +ǫi,

where Xij = Xj
i1.
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4. A model with two variables and interactions:

Yi = β0 + β1Xi1 + β2Xi2 + β3Xi1Xi2 + ǫi = β0 + β1Xi1 + β2Xi2 + β3Xi3 + ǫi

Note that these models are linear in the parameters and not necessarily in the
X values. Models which are not linear in the parameters are referred to as
nonlinear models.

1.5 Brief comments on statistical inference

We start with a regression model as specified in section 1.4. This involves specifying

the regression function f as well as the variance and covariance structure of the
errors. It may also mean specifying the actual distribution of the Y ’s (as opposed

to just specifying the mean and variance/covariance structure).

Using the model, methods of estimating the parameters in the model (the β’s,
σ2, etc.) are developed. The most common approaches are least squares and

maximum likelihood estimation, with maximum likelihood requiring distributional
assumptions.

The estimators of the unknown parameters are random; they have uncertainty
in them before the data is collected. Being random variables they have some
distribution, commonly referred to as the sampling distribution. The sampling

distribution tells us how good the estimators are . Often we will work with just
the mean and the variance of the distribution.

NOTE: Estimator refers to the random version before the data is collected.
Estimate is used to refer to the specific numerical value obtained after the data

is collected. So, estimators are random variables, but estimates are numbers.

Using the notation of the book let bj be the estimator of βj . (Note that we use
the bj whether we are discussing it as an estimator or an estimate; there should

really be two different notations to avoid any confusion but you should be able to
tell from the context how it is being used.)

E(bj) − βj equals the bias of bj. If E(bj) = βj then we say it is an unbiased

estimator.
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var(bj) denoted σ2{bj} is the variance of the estimator and the square root of

this σ{bj} is the standard deviation of bj and is also called the standard error of
bj.

The sampling distributions are used to develop confidence intervals and tests

of hypotheses about unknown parameters, develop prediction intervals, develop
estimators, confidence intervals and tests for ”inverse prediction”.

1.6 Data Collection Schemes and More on Regression Modeling

There are many ways in which data used for regression analysis arises. The manner

in which data is collected influences how we interpret the regression model and how
reasonable the traditional assumptions are. Typically things will get classified as

designed experiments or observational studies, but this simple classification scheme
lacks enough detail to cover all the situations of interest. Here is a very broad
overview.

There are n units in the study. These n units in the study are either:

1. Not sampled; that is there was no ”probabilistic sampling” of units. It may be
that the n units make up the whole population of interest or it may be that

the n units are a convenience sample or arise in some other way.

2. Arise from a probabilistic sampling of some finite population.

(a) Simple Random Sampling

(b) Stratified Sampling

(c) Other sampling schemes (can be complicated).

3. Arise from observations from some ”process” (infinite population).

For example, sampling products from a production line.

The explanatory variables arise by either

1. Being attached to the unit. In this case when the units are randomly selected

the explanatory variables are random variables. When the units are fixed, the
explanatory variables are fixed.
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2. Being assigned to the units. In this case the X value is under the control of

the experimenter and can be assigned to the units. Examples include assigning
doses of fertilizers to plants, assigning doses of drugs to patients, choosing

temperature and pressure settings to use in a manufacturing process, etc. The
assignment of the n units to the different X values which can be assigned is
often done using a completely randomized design.

There can be any combination of selection of units in tandem with either observ-

ing explanatory variables or experimentally assigning them to the units. This leads
to a variety of different settings all leading to data used for regression analyses.

Understanding exactly what the model means and what assumptions are reason-

able can be a much harder/subtler problem than you think.

Here is some brief discussion about the model in simpler cases:

1. Designed experiments.

In a designed experiment the X values are under the control of the experi-

menter and can be assigned to units. This includes assigning doses to plants
or people, assigning fertilizer levels to plants, setting temperature and pressure

for a factory production run, etc. Actually, defining the regression model for
these settings in detail is not that easy, but here is the basic idea. Consider a

population of units that can be used in the experiment. Suppose that all k of
the predictor variables can be manipulated and assigned to units. Suppose you

pick a unit at random and assign it values X1, . . . , Xk. Once you assign these
values the response Y is still random. The distribution of Y , over the random-
ization to a unit and over any additional randomness after assigning the X

values, is what we mean by the distribution of Y |X1, . . . , Xk. The regression
model is defined in terms of this distribution.

2. Finite Populations

For ease of notation, consider a single explanatory variable. Consider a finite

population of size N with values of the response and the explanatory variable
attached to each unit in the population. What is the population regression

model? Suppose that there are J distinct values X∗
1 , . . . , X

∗
J of the explana-

tory variable in the population. Further, suppose there are Nj values in the
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population which have the value X∗
j for the explanatory variables and we label

the values of response associated with these units as Y ∗
j1, . . . , Y

∗
jmj

. The distri-
bution of Y ∗

j1, . . . , Y
∗
jmj

is the distribution of (Y |X∗
j ); the mean of these values

is E(Y |X∗
j ) = m(X∗

j ) say and the variance of these values is σ2{Y | X∗
j }, call

it v(X∗
j ). This defines the population regression model of Y on X; the means

are then typically assumed to follow a model m(X∗
j ) = f(X∗

j , β).

If the data is obtained by a simple random sample of n units out of the N units,

then the explanatory variable on the ith unit is random. With Xi denoting the
observed value of the explanatory variable for the ith unit selected (obviously

Xi must take on one of the values from X∗
1 , . . . , X

∗
J) it can be shown that the

conditional distribution of Yi given Xi has mean f(Xi, β) and variance v(Xi).

There are many other complex ways to sample or have regression data arise. As
we encounter various examples, we will discuss the meaning of the population

model and how the sampling affects the assumptions.

2 Simple Linear Regression

One explanatory variable X with:

Yi = β0 + β1Xi + ǫi,

with E(ǫi) = 0 (or E(Yi|Xi) = β0 + β1Xi)

Model is a straight line with slope β1 and intercept β0.

Descriptive standpoint: fit a straight line of the form b0 + b1X to the data
with no concern about the random nature of Y .

Statistical inference: View β0 and β1 and functions of them as unknown

quantities (parameters) that we want to estimate from the data.

How to estimate the parameters? An estimator is a random quantity and

so has some distribution with a mean (expected value) and variance. How do we
judge an estimator?

• Bias
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• Variance (or standard error =
√

variance).

• Mean squared error (bias squared + variance)

• Consistency (As sample size increases estimator “gets closer” to true value).

The behavior of an estimator (bias, standard error, etc.) is dependent
on what assumptions are made about the error terms,the ǫi’s !!! This can
effect our choice of an estimator.

Constant variance assumption: σ2{ǫi} = σ2.

Uncorrelated error assumption σ{ǫi, ǫj} = 0 for each pair i 6= j.

(Note: Independence is a stronger assumption than uncorrelated. Independence

implies uncorrelated but the converse is not true. The verbal description given in
item 5 on page 11 of the book is for independence, not for being uncorrelated.)

2.1 Estimation and sampling properties

The least squares estimators are b0 and b1 chosen to minimize
Q(b0, b1) =

∑
i(Yi − (b0 + b1Xi))

2.

Analytical expressions for the solution are given in equations (1.10a) and (1.10b)
in the book.

b1 =

∑n
i=1(Xi − X̄)(Yi − Ȳ )

∑n
i=1(Xi − X̄)2

b0 = Ȳ − b1X̄.

Properties of the least squares estimators:

Note: For now, we are considering the sampling behavior with X1, . . . , Xn treated

as fixed; so these properties are conditional on the X values. This means we are
thinking of the random behavior of the estimators as results from the random be-

havior of the ǫi with fixed X’s.

• As long as E(ǫi) = 0 the least squares estimators are unbiased.
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E(b0) = β0 and E(b1) = β1.

This is true regardless of the variance/covariance structure of the error terms.

Define T =
∑n

i=1(Xi − X)2.

Assuming constant variance σ2 and uncorrelated errors (Holds unless
mentioned otherwise)

• Variance of b0.

σ2{b0} = σ2




1

n
+

X
2

T





σ{b0} =
[
σ2{b0}

]1/2
= Standard error of b0.

• Variance of b1.

σ2{b1} =
σ2

T

σ{b1} = Standard error of b1.

• Covariance of b0 and b1.

cov(b0, b1) = σ{b0, b1} =
−σ2X

T

• If in addition we assume that the ǫi are normally distributed, then b0 and b1 are

maximum likelihood estimators. In addition each of b0 and b1 are normally
distributed and jointly (b0, b1) follow a bivariate normal distribution.

The ith fitted value is Ŷi = b0 + b1Xi and the ith residual is ei = Yi − Ŷi.

Estimating σ2:

σ̂2 = MSE =
n∑

i=1

e2
i /(n − 2)

is an unbiased estimator of σ2; that is E(MSE) = σ2. MSE stands for mean

square error (which sounds a lot like but is not the same as mean squared error of
an estimator).
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Under normality (n − 2)MSE/σ2 follows a chi-square distribution with n-2 de-

grees of freedom and is independent of (b0, b1).

2.2 Inferences for the regression coefficients.

s2{b0} = MSE




1

n
+

X
2

T





estimates the variance of b0.

s{b0} =
[
s2{b0}

]1/2

is estimated standard error of b0 (though often referred to as just the standard

error).

Similarly define s2{b1} = MSE
T with s{b1} = the estimated standard error of b0.

Under normality of the errors :

(bj − βj)/s{bj} ∼ t(n − 2) (t with n − 2 degrees of freedom)

Without normality of the errors this is approximately true for n large enough in
which case the confidence intervals and tests that follow will be approximately cor-

rect. How large n needs to be actually depends on the x’s

• A confidence interval of level 1 − α for β0 is given by

b0 ± t(1 − α/2; n − 2)s{b0}.
• A confidence interval of level 1 − α for β1 is given by

b1 ± t(1 − α/2; n − 2)s{b1}.

Interpretation of confidence intervals

Our interpretation of confidence interval is a relative frequentist interpretation
at this point. A confidence interval of level 1 − α has the property that before
the experiment is run the probability is 1 − α that the random confidence interval
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will contain the true parameter of interest. Hence, 1 − α can be viewed as the

proportion of times the interval would be successful in the long run over repeated
carrying out of the experiment. (A reminder that at this point we are conditioning

on the X1, . . . , Xn as fixed so the randomness in the experiment is just over the ǫ’s. )
Once we have the data and construct the interval, the interval is either successful or
it isn’t; you don’t know. From the relative frequentist perspective it doesn’t make

sense to say something like “the probability is .95 that β1 is between 4 and 10, say,
since this statement is either true or false. In order to make statements like this

one needs to accept the use of subjective probability in which probabilities can
be assigned to things that are not random. In this case the probability measures

belief, with 0 meaning you are sure the statement is false and 1 means you are
sure the statement is true. This is implemented using Bayesian Statistics in
which some prior information about the parameters is postulated, and after the

data is collected this information is updated to create a distribution (the posterior
distribution) which is used to obtain subjective probabilities about the parameters.

Testing Hypotheses

Consider H0 : βj = c, H0 : βj ≤ c, or H0 : βj ≥ c, where c is a specified constant.

Under normality a t-test of such hypotheses is based on

t∗ =
bj − c

s{bj}

If βj = c, then t∗ (viewed as a random variable before we collect the data) follows
a t-distribution with n-2 degrees of freedom; that is t∗ ∼ t(n− 2). For a test of size

α,

H0 : βj = c, HA : βj 6= c: reject H0 if |t∗| > t(1 − α/2, n − 2).

H0 : βj ≤ c, HA : βj ≥ c: reject H0 if t∗ > t(1 − α, n − 2).

H0 : βj ≥ c, HA : βj ≤ c: reject H0 if t∗ < −t(1 − α, n − 2).

Special case: Testing for slope = 0 H0 : β1 = 0 versus HA : β1 6= 0. The
test statistic is t∗ = b1/s{b1}.
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Relationship between confidence intervals and tests:

Consider the test of H0 : β1 = 0 versus HA : β1 6= 0. The test of size α can be

expressed as reject H0 if the confidence interval of level 1−α for β1 does not contain
0. In general, for an arbitrary parameter θ, a natural way to test H0 : θ = c versus

HA : θ 6= c is to reject H0 if a a confidence interval of level 1 − α for θ does not
contain the constant c. This is completely general and is NOT limited to intervals

based on t-statistics. This can be extended to testing one-sided alternatives by
using “one-sided confidence bounds” rather than confidence intervals.

The advantage of using a confidence interval rather than just testing at some

desired size is that it provides more information than the test. Hypothesis testing
is set up to lead to a conclusion of either reject H0 or not reject H0. This ap-

proach is both limited in what information it conveys and can lead to difficulties
in interpretation.

P-Values.

The P-value associated with a hypothesis test can be defined in two equivalent
ways.

1. Suppose a test about θ rejects H0 for t∗ large where t∗ is some test statistic.

Let t∗(obs) be the observed value of the test statistic (so this is a fixed value).
Then

P − value = Max
θ satisfying H0

[Probθ(t
∗ > t∗(obs))] .

Probθ(t
∗ > t∗(obs)) is the probability that t∗ (considered as a random variable

before the start of the experiment) is at least as big as the observed value in

your data (t∗(obs)) when the value of the parameter is θ. A small P-value
indicates the data is not consistent with H0 while a large value indicates the

data does not contradict H0. For a test statistic which rejects H0 for t∗ small,
just reverse the inequality so P = Max

θ satisfying H0
[Probθ(t

∗ < t∗(obs))] .

2. Define the P-value as the smallest value of α for which a test of size α would
reject H0. That is the P-value is such that if the size α is greater than or equal

to the P-value then you reject H0 but if the α is less than the P-value you do
not reject H0.
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Example: Assessment of labs in ARM (Acid Rain Monitoring) project.

Along with regular water samples, the labs are sent “blind” samples (they don’t know they are special) which have
know level of values of interest (pH, alkalinity) etc. Look at relationship between Y = measured = value returned by
lab and X = true value. The SAS code below shows some of the basics in running SAS and performing a regression
analysis. The data is for one lab using their pH measurements.

option ls=80 nodate;

goptions reset=all;

title ’Ph example’;

data a; /* This data set will be a temporary sas file with name

’a’ . In this example we don’t need to refer to this

name as if there is only one temporary sas file in use,

any procedure will automatically use it. */

infile ’c:\s505\ph.dat’; /* specifies file to read from */

input true measured; /* names input variables */

proc print;

run;

proc univariate; /* descriptive statistics on var true */

var true;

run;

proc gplot; /* creates high resolution plot*/

plot measured*true;

run;

proc plot vpercent=50; /* low resolution plot*/

plot measured*true;

run;

/* Proc reg with some options (there are others we will explore)

- covb produces variance-covariance matrix of coefficients.

- clb gives CI’s for coefficients. The default is 95% CI’s.

- p gives predicted values and residuals for each observation */

proc reg;

id true; /* This will list the X variable also in listing

of predicted values and residuals */

model measured=true/covb clb p;

plot measured*true; /* this will produce scatterplot and

plot fitted line. Produces higher resolution

plot in graph window. */

run;

proc reg;

model measured=true/clb alpha=.02; /* produces 98% confidence interval*/

run;

*****OUTPUT IS EDITED. FULL ANALYSIS WILL BE SHOWN IN CLASS *****

Ph example

Obs true measured

1 7.67 7.37
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2 6.31 6.36

...

12 7.07 6.76

The UNIVARIATE Procedure

Variable: true

Moments

N 12 Sum Weights 12

Mean 6.30833333 Sum Observations 75.7

Std Deviation 0.76386378 Variance 0.58348788

....

Plot of measured*true. Legend: A = 1 obs, B = 2 obs, etc.

measured |

|

| A

7 + A

| A

|

| AA B

6 + A A

|

| A

|

5 + A

| A

|

|

4 +

|

---+--------+--------+--------+--------+--------+--------+--------+--

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

true

The REG Procedure Dependent Variable: measured

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 6.45221 6.45221 323.49 <.0001

Error 10 0.19946 0.01995

Corrected Total 11 6.65167

Root MSE 0.14123 R-Square 0.9700

Dependent Mean 6.13333 Adj R-Sq 0.9670

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -0.19161 0.35402 -0.54 0.6002

true 1 1.00263 0.05575 17.99 <.0001

Variable DF 95% Confidence Limits

Intercept 1 -0.98041 0.59719

true 1 0.87842 1.12684
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Covariance of Estimates

Variable Intercept true

Intercept 0.1253282569 -0.019603613

true -0.019603613 0.0031075741

Output Statistics

Dep Var Predicted

Obs true measured Value Residual

1 7.67 7.3700 7.4986 -0.1286

2 6.31 6.3600 6.1350 0.2250

12 7.07 6.7600 6.8970 -0.1370

Figure 1: Plot from plot option within proc reg.

2.3 General linear combinations of the regression coefficients

θ = c0β0 + c1β1,

for constants c0 and c1. Note that the individual regression coefficients are special
cases; e.g., β1 corresponds to c0 = 0 and c1 = 1.

θ̂ = c0b0 + c1b1

is an unbiased estimator of θ and is the best linear unbiased estimator (BLUE) of
θ. If normality is assumed for the errors, it is the maximum likelihood estimator
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(and in this case is best in the sense of having the smallest possible variance among
all possible unbiased estimators.)

V (θ̂) = σ2{c0b0 + c1b1} = c2
0σ

2{b0} + c2
1σ

2{b1} + 2c0c1σ{b0, b1}.

s2{c0b0 + c1b1} = MSE



c2
0




1

n
+

X
2

T



 + c2
1

1

T
+ 2c0c1

−X

T





is an estimate of the variance of c0b0 + c1b1.

Under normality, for any constants c0 and c1

c0b0 + c1b1 − (c0β0 + c1β1)

s{c0b0 + c1b1}
∼ t(n − 2)

where ∼ t(n − 2) means follows a t-distribution with n-2 degrees of freedom.

This can be used for confidence intervals and tests as was done for the coefficients.

2.4 Estimating the regression function at a specific Xh.

At X = Xh the expected value of Y is in books notation

E{Yh} = β0 + β1Xh

Ŷh = b0 + b1Xh.

This notation can be confusing as it looks like we are estimating a value of Y .
THAT IS NOT THE CASE. Rather we are estimating the expected value of Y

at a value of X = Xh. An alternate notation we will use, which also provides some
advantages later is

µ(Xh) = β0 + β1Xh, µ̂(Xh) = b0 + b1Xh.

E{Yh} = β0 +β1Xh is of the form c0β0 + c1β1 with c0 = 1 and c1 = Xh, so results

of previous section apply.

V (Ŷh) = σ2{Ŷh} = σ2{b0} + X2
hσ

2{b1} + 2Xhσ{b0, b1} = σ2



1

n
+

(Xh − X̄)2

T




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T =
∑

i(Xi − X̄)2.

Note that the precision is smallest when estimating the expected response at

Xh = X̄.

Estimated standard error: s{Ŷh} (or s{µ̂(Xh)}

s2{Ŷh} = MSE



1

n
+

(Xh − X̄)2

T



 .

And a confidence interval for E{Yh} is

b0 + b1Xh ± t(1 − α/2; n − 2)s{Ŷh}.

NOTE: As n gets big the estimated standard error will get small in general and
the confidence interval for will get small and therefore be tight around E{Yh}. The
uncertainty here is all due to uncertainty in the estimation of the coefficients. (To

be precise we need T to get bigger as n gets bigger.)

2.5 Prediction intervals

A new Y observation will be taken on a unit with explanatory variable Xnew.
Denote this random response by Ynew.

Notation

Here in notes book (section 2.5)

Xnew Xh

Ynew Yh(new)

Ŷnew Ŷh.

Predict what Ynew will be using Ŷnew = b0 + b1Xnew.

NOTE: The point estimate is the same as if we were estimating the expected

value of Y at X = Xnew, but the problem (and the associated variance) is different.

Find a prediction interval of level 1 − α for Ynew; that is, find a random interval
(L, U) such that P (L ≤ Ynew ≤ U) = 1−α. Notice that unlike confidence intervals
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(where the quantity in the middle is a fixed parameter) L, U and Ynew are all random
and the probability is over all random quantities. The prediction interval is given

by

Ŷnew ± t(1 − α/2, n − 2)s{pred}

where

s2{pred} = MSE



1 +
1

n
+

(Xnew − X)2

T



 .

NOTES: i) s2{pred} is estimating the variance Ŷnew − Ynew, which is V (Ŷnew) +

V (Ynew) (why?) and equals

σ2



1

n
+

(Xh − X̄)2

T



 + σ2.

ii) Here as n gets big the later two parts of the estimated variance will generally
get smaller and the major term in the estimated variance is MSE, which will
converge to σ2. The prediction interval will not keep getting smaller but always

retains a component due to the noise in an individual observation (reflected in σ2).

EXAMPLE: Returning to the pH example we will demonstrate additional fea-

tures of proc reg to get confidence intervals and prediction intervals.

- clm produces a confidence interval for the expected response at the X in that
observation

- cli produces a prediction interval for a future response taken at the X in that
observation.

- The p option prints out predicted values even if there were no confidence

intervals specified.

- Note that in the data listing that std error mean predict is the standard error

associated with the estimated mean, what we denoted s{Ŷh} (or s{µ̂(Xh)}). It
has nothing to do with prediction. The standard error for prediction cannot be
printed directly in proc reg. It can however be saved to an output file using stdi=

as illustrated below.
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- If you want to get confidence or prediction intervals associated with an Xh not

in the data, you can add a case to the original data file that has a missing value
(denoted with a .) for the Y value and the value of Xh for X.

- The output command within proc reg will create a temporary SAS file which

has the original data plus what is specified to be saved. In this example we used p =
, r = , and stdi = for predicted values, residuals and standard errors for prediction.

The name on the right side is of your choosing. There are many other quantities
that can be saved in the output statement (see the online documentation for the

names used and other details).

- data step not listed again -

proc reg;

id true;

model measure=true/ cli clm p;

/* The following creates a temporary sas file result will have

the original data plus variables called yhat, resid and stdi */

output out=result p = yhat r=resid stdi=sepred;

run;

title ’listing of SAS file result’;

proc print data =result nooobs;

run;

*** these come from the clm, cli and p options (not from the output command).

Output Statistics

Dependent Predicted Std Error

Obs true Variable Value Mean Predict 95% CL Mean

1 7.67 7.3700 7.4986 0.0862 7.3066 7.6906

2 6.31 6.3600 6.1350 0.0408 6.0442 6.2258

3 6.14 6.1200 5.9646 0.0418 5.8713 6.0578

4 7.07 6.9600 6.8970 0.0589 6.7658 7.0282

5 6.39 6.2500 6.2152 0.0410 6.1238 6.3066

6 5.95 5.9300 5.7741 0.0454 5.6729 5.8752

7 6.53 6.3500 6.3556 0.0426 6.2607 6.4505

8 6.55 6.3400 6.3756 0.0429 6.2800 6.4713

9 5.34 4.9300 5.1625 0.0676 5.0117 5.3132

10 5.74 5.5200 5.5635 0.0516 5.4485 5.6785

11 4.94 4.7100 4.7614 0.0865 4.5687 4.9541

12 7.07 6.7600 6.8970 0.0589 6.7658 7.0282
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Obs true 95% CL Predict Residual

1 7.67 7.1300 7.8672 -0.1286

2 6.31 5.8075 6.4625 0.2250

3 6.14 5.6364 6.2927 0.1554

4 7.07 6.5561 7.2379 0.0630

5 6.39 5.8875 6.5429 0.0348

6 5.95 5.4435 6.1046 0.1559

7 6.53 6.0269 6.6843 -0.005584

8 6.55 6.0467 6.7045 -0.0356

9 5.34 4.8135 5.5114 -0.2325

10 5.74 5.2285 5.8986 -0.0435

11 4.94 4.3924 5.1304 -0.0514

12 7.07 6.5561 7.2379 -0.1370

Sum of Residuals 0

listing of SAS file result

Obs true measure yhat resid sepred

1 7.67 7.37 7.49859 -0.12859 0.16544

2 6.31 6.36 6.13500 0.22500 0.14700

3 6.14 6.12 5.96456 0.15544 0.14729

4 7.07 6.96 6.89701 0.06299 0.15300

5 6.39 6.25 6.21522 0.03478 0.14707

6 5.95 5.93 5.77406 0.15594 0.14835

7 6.53 6.35 6.35558 -0.00558 0.14751

8 6.55 6.34 6.37564 -0.03564 0.14761

9 5.34 4.93 5.16245 -0.23245 0.15659

10 5.74 5.52 5.56350 -0.04350 0.15037

11 4.94 4.71 4.76140 -0.05140 0.16561

12 7.07 6.76 6.89701 -0.13701 0.15300

Plotting options in SAS:

You can do some plots within proc reg. The following illustrate some plots that would come after the model
statement in proc reg.

plot measure*true/conf; /* smoothed conf. intervals for mean */

plot measure*true/pred; /* smoothed prediction intervals */

plot measure*true/conf pred; /* smooth conf and prediction intervals both*/

plot measure*true p.*true lclm.*true uclm.*true/overlay;

plot (measure p. lcl. ucl.)*true/overlay; /*(equivalent to line above)*/

You can also save certain quantities to a SAS file via the output command and then use either proc plot (for
lineprinter plots/low resolution) or proc gplot (for high resolution plots). You can gain full control over the plot using
gplot using various commands including symbol statements, axis statements and goptions. The next illustration does
a plot using gplot from the output data set. Note that within the plot in gplot you can use y*x=n where n indicates
explicitly which symbol to use. You can’t do this directly with the plot within reg.

/* shows how to save other things to a sas file (here
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result2) and then control plotting */

proc reg data=a;

model measure=true;

output out=result2 p = yhat r=resid lclm=lowerm uclm=upperm

lcl=lowerp ucl=upperp;

run;

proc sort data=result2;

by true;

run;

goptions reset=all;

symbol1 v=star color=black;

symbol2 v=p i=spline color= red;

symbol3 v=plus i=spline color=blue;

symbol4 v=plus i=spline color=blue;

proc gplot data=result2;

plot measure*true=1 yhat*true=2 lowerm*true=3 upperm*true=4/overlay;

run;

Figure 2: Plot from plot within proc reg using pred and conf options.
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2.6 More on hypothesis testing:

• Does a large P-value mean that there is strong evidence that H0 is true? NO.

Do not interpret not rejecting H0 as proof that H0 is true, even with a large
P-value associated with the test. When we do not reject H0, we might have

made a Type II error (not rejecting H0 when in fact H0 is false). We have not
controlled the probabilities of a Type II error. Confidence intervals will assist
us in our interpretation as will knowing something about the power of the test;

more about power later.

• Does a small P-value (highly significant test) mean that an important relation-
ships exists? NO.

While you may have concluded that β1 6= 0, the magnitude of β1 may be small
enough that it is not scientifically significant. Once again confidence intervals

on β1 will assist in the scientific interpretation.

The two points above, point out that whether we reject H0 or do not reject

H0 there can often be difficulty with the interpretation of the conclusion of the
test. A simple reporting of the P-value associated with a test with

no further information is often useless. One could also argue that H0 will
rarely be exactly true when it contains a single point (such as H0 : β1 = 0) and

with enough data we will almost always reject H0. This suggests we should not
approach the problem via testing but utilize confidence intervals or if testing
is to be done it be done via a confidence interval.

• Does a small P-value (highly significant test) mean that X is good at predicting

Y ? NO.

The key component in the ability of X to predict Y is σ2, the variance of Y

given X, the variability around the regression line. A highly significant test
of β1 = 0 simply means that we have concluded the slope is not 0, it says

nothing about the size of σ2. The ability of X to predict Y should be assessed
via examination of MSE (which estimates σ2) and prediction intervals. Note

though that part of the width of the prediction interval comes from uncertainty
in knowing the coefficients and you should examine how this piece relates to
the piece due to MSE.
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2.7 Simultaneous inferences

Suppose we have g items of interest (either parameters or future values) and the
interval for the jth item will be estimated using an interval Cj, then the simul-

taneous confidence level is the probability that all g intervals are successful,
where being successful means the confidence interval contains the parameter it is
estimating or the prediction interval contains the random future value it is trying

to predict; that is the simultaneous confidence level is

P (C1 successful ∩ C2 successful ∩ ...Cg successful).

If each interval has level 1−α∗ when considered by itself, the simulta-
neous confidence level is not 1 − α∗. A lower bound is 1 − gα∗

A quick and easy way to get the intervals to have simultaneous confidence level
at least 1− α can be developed using Bonferroni’s method.. For g intervals get

confidence level 1 − α/g for each separate interval.

Simultaneous confidence intervals for β0 and β1. b0±t(1−α/4; n−2)s{b0},
b1 ± t(1 − α/4; n − 2)s{b1}.

Simultaneous Bonferroni intervals for g mean values β0+β1X
∗
j = µ{X∗

j },
j = 1 to g.

b0 + b1X
∗
j ± t(1 − α/(2g); n − 2)s{µ̂{X∗

j }}.
Simultaneous Bonferroni prediction intervals for g future values, Ynewj

corresponding to Xnewj
, j = 1 to g,

b0 + b1X
∗
j ± t(1 − α/(2g); n − 2)s{predj}.

REMARKS:

1. The Bonferroni method is completely general and can be applied in any situa-

tion, not just those utilizing t-type intervals as above.

2. This method can also be used to test simultaneously a collection of g null

hypotheses, say H01, H02, . . . , H0g. Consider

H0 : H01 true ∩ H02 true ∩ . . . ∩ H0g true .
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We want to test H0 the null hypothesis that all g null hypotheses are true. If

we have individual test for each H0j, each of size α∗, then a test of H0 which
rejects H0 if we reject any H0j has a simultaneous size less than or equal to

gα∗. So, if we want a test of this form of H0 of size less than or equal to α,
then the individual tests should be carried out at size α∗ = α/g.

3. All the confidence intervals and/or tests do not have to use a common confi-
dence level or size. If the confidence interval Cj has confidence level 1 − αj,

then the simultaneous coverage rate is greater than or equal to 1−∑
j αj . If the

test of H0j has size αj then the simultaneous size is ≤ ∑
j αj . So choosing the

αj in any way so
∑

j αj = α will yield a simultaneous confidence level ≥ 1 − α
or a simultaneous test of size ≤ α.

2.7.1 Confidence Band for the regression line

It is possible in some problems to construct simultaneous confidence intervals for

infinitely many values. In the simple linear regression problem, suppose we want
intervals for {µ{X} = β0 + β1X, for all X}. If C(X) is the interval for µ{X} then

we want P (µ{X} ∈ C(X), for all X) = 1 − α. When we consider the intervals
C(X) over all X, this creates a two-dimensional region. In two-dimensions we can

interpret the simultaneous confidence intervals as a confidence band for the
regression line since the probability the line {β0 + βX , for all X} is contained
by the region is 1 − α. This is done using what is generally known as Scheffe’s

method and in the case of simple linear regression yields what are known as
Working-Hotelling Bands; these are given by

b0 + b1X ± (2F (1 − α, 2, n − 2))1/2s{µ̂{X}}.

2.7.2 Scheffe type intervals for finite number of means or predictions

When g gets very big the Bonferroni intervals can perform badly in that the inter-

vals are bigger than is needed (although we want simultaneous level 1 − α, we get
something quite a bit bigger.)
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Simultaneous Scheffe intervals for g mean values β0 + β1X
∗
j = µ{X∗

j }, j
= 1 to g.

b0 + b1X
∗
j ± (2F (1 − α, 2, n − 2))1/2s{µ̂{X∗

j }}.

Simultaneous Scheffe prediction intervals for Ynewj
corresponding to Xnewj

,
j = 1 to g,

b0 + b1Xnewj
± (gF (1 − α, g, n − 2))1/2s{predj}.

EXAMPLE:In this example we model nitrogen balance versus nitro-

gen intake for the purpose of determining nitrogen requirement. The
data is from Kishi et al. (J. of Nutrition, 1978; “Requirement and utilization of

egg protein by Japanese young men with marginal intakes of energy”). Individuals
were randomized to one of three nitrogen intake levels (using a controlled diet).
Nitrogen balance was determined. There is one observation per individual so the

error term in the regression model consist of both among and within individual
variability. The data consists of kcal (caloric input), ni (nitrogen intake), niq (an

adjusted intake measure based on the protein source used) and balance (nitrogen
balance).

In this example we will use the built in options in proc reg to get various confi-

dence and prediction limits. We will then demonstrate how you can use SAS as a
“calculator” and use built in functions to compute things. We will then use these

features to get simultaneous confidence and prediction intervals and show how to
plot a simultaneous confidence band (which is not an automatic option in SAS).

options linesize=80;

title ’Nitrogen intake-balance study’;

data a;

infile ’kishi.dat’;

input kcal ni niq nbal;

proc reg;

id ni;

model nbal=ni/covb clb clm cli;

plot nbal*ni/conf;

plot nbal*ni/pred;

run;
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Figure 3: Nitrogen balance versus nitrogen intake from Kishi et al. (1978.

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 2160.44968 2160.44968 195.03 <.0001

Error 29 321.24452 11.07740

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -34.05202 1.81476 -18.76 <.0001

ni 1 0.41616 0.02980 13.97 <.0001

Parameter Estimates

Variable DF 95% Confidence Limits

Intercept 1 -37.76362 -30.34042

ni 1 0.35522 0.47711

Covariance of Estimates

Variable Intercept ni

Intercept 3.2933527705 -0.051061172

ni -0.051061172 0.0008880204

Output Statistics

Dep Var Predicted Std Error

Obs ni nbal Value Mean Predict 95% CL Mean

1 31.6 -22.7000 -20.9012 0.9762 -22.8979 -18.9046

Obs ni 95% CL Predict Residual

1 31.6 -27.9951 -13.8074 -1.7988

... other cases omitted

/* COMPUTING PREDICTION INTERVALS AND CONFIDENCE INTERVALS FOR THE

INTAKE-BALANCE DATA DIRECTLY. THIS SHOWS HOW TO CALCULATE WITHIN THE
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DATA STEP IN SAS AND TAKE ADVANTAGE OF SOME BUILT IN FEATURES OF IT.

CALCULATING THIS WAY THE SAS DATA SET a HAS ONE RECORD IN IT WITH ANYTHING

WHICH IS CALCULATED BEING A VARIABLE IN THAT RECORD */

options ls=80 nodate;

data a;

/* enter various values from proc reg output*/

b0= -34.05202;

b1= .41616;

s2b0=3.2933527705;

s2b1=0.0008880204;

sb0b1 = -0.051061172;

mse = 11.07740;

n = 31;

seb0=sqrt(s2b0);

seb1=sqrt(s2b1);

/* GET 95% CONFIDENCE INTERVAL AND PREDICTION INTERVAL AT INTAKE = 31.6

WHICH IS THE INTAKE FOR FIRST OBSERVATION IN THE SAMPLE. */

tval = tinv(.975,n-2); /* gets value of t distribution with

n-2 degrees of freedom with area

.975 to left of it */

yhat = b0 + b1*31.6;

seyhat = sqrt(s2b0 + (31.6**2)*s2b1 + 2*31.6*sb0b1);

l95m= yhat - tval*seyhat;

u95m = yhat + tval*seyhat;

sepred = sqrt(seyhat**2 + mse);

l95i = yhat - tval*sepred;

u95i = yhat + tval*sepred;

/* Simultaneous 95% ci’s on beta0 and beta 1*/

alpha = .05;

tval2 = tinv(1-alpha/4,n-2);

lbeta0s=b0-(tval2*seb0); ubeta0s=b0+(tval2*seb0);

lbeta1s=b1-(tval2*seb1); ubeta1s=b1+(tval2*seb1);

/* SIMULTANEOUS CONFIDENCE INTERVALS ON THE MEAN/EXPECTED VALUE

FOR BALANCE AT intake = 30,60 and 80*/

/* USING BONFERONNI */

tbon = tinv(1-(alpha/(2*3)),n-2);

yhat30 = b0 + b1*30;

se30 = sqrt(s2b0 + (30**2)*s2b1 + 2*30*sb0b1);

l30m = yhat30 - tbon*se30; u30m = yhat30 + tbon*se30;

yhat60 = b0 + b1*60;

se60 = sqrt(s2b0 + (60**2)*s2b1 + 2*60*sb0b1);

l60m = yhat60 - tbon*se60; u60m = yhat60 + tbon*se60;

yhat80 = b0 + b1*80;

se80 = sqrt(s2b0 + (80**2)*s2b1 + 2*80*sb0b1);

l80m = yhat80 - tbon*se80; u80m = yhat80 + tbon*se80;

/* USING SCHEFFE */
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f= finv(1-alpha,2,n-2);

/* gets value of F distribution with 2 and

n-2 degrees of freedom with area

1 - alpha to left of it */

mult = sqrt(2*f);

l30ms = yhat30 - mult*se30; u30ms = yhat30 + mult*se30;

l60ms = yhat60 - mult*se60; u60ms = yhat60 + mult*se60;

l80ms = yhat80 - mult*se80; u80ms = yhat80 + mult*se80;

run;

title ’confidence intervals and pred. intervals at intake=31.6’;

proc print; var yhat l95m u95m l95i u95i;

run;

title ’simultaneous CIs on coefficients’;

proc print; var b0 lbeta0s ubeta0s lbeta1s ubeta1s;

run;

title ’simultaneous CIs for means at 30,60,80 Bonferonni’;

proc print; var l30m u30m l60m u60m l80m u80m;

run;

title ’simultaneous CIs for means at 30,60,80 Scheffe’;

proc print; var l30ms u30ms l60ms u60ms l80ms u80ms;

run;

confidence intervals and pred. intervals at intake=31.6

Obs yhat l95m u95m l95i u95i

1 -20.9014 -22.8980 -18.9047 -27.9952 -13.8075

simultaneous CIs on coefficients

Obs b0 lbeta0s ubeta0s lbeta1s ubeta1s

1 -34.0520 -38.3418 -29.7622 0.34572 0.48660

simultaneous CIs for means at 30,60,80 Bonferonni

Obs l30m u30m l60m u60m l80m u80m

1 -24.1446 -18.9899 -10.6131 -7.55178 -3.04165 1.52321

simultaneous CIs for means at 30,60,80 Scheffe

Obs l30ms u30ms l60ms u60ms l80ms u80ms

1 -24.1840 -18.9504 -10.6365 -7.52836 -3.07658 1.55814

Now we show how you can get values to plot a confidence band for the regression line. These are the Working-
Hotelling bands

options ls=80 nodate;

title ’Getting and plotting simultaneous confidence band’;

data a;

b0= -34.05202; b1= .41616;

s2b0=3.2933527705; s2b1=0.0008880204; sb0b1 = -0.051061172;

mse = 11.07740; n = 31;

seb0=sqrt(s2b0); seb1=sqrt(s2b1);

f = finv(.95,2,n-2); mult = sqrt(2*f);

do x=30 to 80 by .5;

yhat=b0+b1*x;
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sey = sqrt(s2b0 + (x**2)*s2b1 + 2*x*sb0b1);

l95c = yhat - mult*sey;

u95c = yhat + mult*sey;

output;

end;

proc print; var x yhat l95c u95c;

run;

goptions reset=all hsize=3 vsize=3;

title1 c=black f=swiss ’Simultaneous Confidence band’;

symbol1 l=1 i=spline;

symbol2 l=2 i=spline;

proc gplot data=a;

plot yhat*x =1 l95c*x=2 u95c*x=2/overlay;

run;

Getting and plotting simultaneous confidence band

Obs x yhat l95c u95c

1 30.0 -21.5672 -24.1840 -18.9504

2 30.5 -21.3591 -23.9450 -18.7733

47 53.0 -11.9955 -13.5760 -10.4151

101 80.0 -0.75922 -3.0766 1.55814

Figure 4: Kishi et al. example, confidence band
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2.8 Inverse Prediction/estimation

New unit has unknown value Xnew which we want to estimate. Observe Ynew from:

Ynew = β0 + β1Xnew + ǫnew

X̂new = (Ynew − b0)/b1.

• Approximate variance to attach to this estimate?

s2{predX} =
1

b2
1

(MSE + s2{b0} + X̂2
news2{b1} + 2X̂news{b0, b1})

=
MSE

b2
1



1 +
1

n
+

(X̂new − X)2

T





(This is based on a first order Taylor series expression for X̂new as an approxi-
mate linear function of b0, b1 and Ynew. Since X̂new is a non-linear function of

these variables we can’t get the variance exactly).

• Approximate confidence interval for Xnew: X̂new ± t(1 − α/2, n− 2)s{predX}.
This is often called a “Wald” interval. If there is much uncertainty in b1 (as

often happens with small samples) this method is unreliable.

• A better method using “Fieller’s method.

This derives from the fact that

h(Xnew) =
Ynew − (b0 + b1Xnew)

[σ2 + σ2{b0} + X2
newσ2{b1} + 2Xnewσ{b0, b1}]1/2

is distributed t with n−2 degrees of freedom. The set of Xnew where h(Xnew)2 ≤
t2, where t = t(1− α/2, n− 2), turns out to be a confidence set for Xnew. The

result is:

If a test of size α of H0 : β1 = 0 rejects H0 (equivalent to c1 > 0 with c1 as
below) the Fieller interval is

c01

c1
±

[
c2
01 − c0c1

]1/2

c1
,
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c0 = (Ynew − b0)
2 − t2(MSE + s2{b0})

c1 = (b1)
2 − t2s2{b1}

c01 = (Ynew − b0)b1 + t2s{b0, b1}
When the P-value for the test of H0 : β1 = 0 is rather small the approximate
interval will be similar to Fieller’s method. In general it is recommended that

the Fieller method be used. If β1 is not signficantly different than 0 (c1 ≤ 0)
then you are in trouble and should really not be doing inverse prediction.

Intuitively a reasonable way to get a confidence “set” for Xnew is to take the
set

C = {X such that the prediction interval at X contains the observed Ynew}

This gives a nice graphical interpretation and in fact when c1 > 0 it gives exacly
Fieller’s interval above.

Example: Return to the pH example. Suppose that lab analyzes a sample

and returns a response Ynew = 6. Xnew is the true pH of the sample. X̂new =
(6 − (−.10161))/1.002633 = 6.1735. The approximate standard error for this is

0.146796, The approximate CI is [5.8482687, 6.5024316] and the Fieller interval is
[5.8436504, 6.5029045]. The two intervals are very close since the test for β1 = 0 is

highly signficant.

2.9 Regulation/inverse estimation

Estimate X such that E(Y |X) = m (fixed), or estimate

X(m) = (m − β0)/β1

Estimate is X̂(m) = (m − b0)/b1 (but biased).

Approximate confidence interval:

X̂(m) ± t(1 − α/2)s{X̂(m)},
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s2{X̂(m)} =
1

b2
1

[s2{b0} + X̂(m)2s2{b1} + 2X̂(m)s{b0, b1}

=
MSE

b2
1



1

n
+

(X̂(m) − X)2

T



 .

Fieller’s method: Get an interval for X(m) if the slope is significantly different
than 0. Use the earlier formula for the Fieller interval in inverse prediction but now

with c0 = (m − b0)
2 − t2s2{b0} and c01 = (m − b0)b1 + t2s{b0, b1} and c1 as before.

The Fieller confidence set is the same as getting set of X values where confidence
interval for E(Y |X) contain m.

Example: In nitrogen intake-balance example, the objective was to determine
the intake X at which the expected value balance equals 0 (m = 0).

X̂(0) = −(−37.76362)/.41516 = 81.8235, s{X̂(0)} = 2.257597

Approximate CI is (77.206, 86.441). Fieller interval: (77.659, 87.055).

For the use of Fieller’s method in both the inverse prediction and regulation
problems, if we reject H0 : β1 = 0 with a test of size α then the confidence set C

will be a finite interval. If not (i.e., we we fail to reject H0) then the confidence
set will be either the whole real line (−∞,∞) or the complement of a finite inter-

val. We show in class why such regions would occur when we view the confidence
set as arising from a graphical interpretation utilizing the prediction intervals or

confidence intervals for the means.

3 Decomposing variability and the Analysis of Variance

(Will be looked at more generally later for multiple linear regression.)

Total uncorrected sum of squares: SSTOU =
∑

i Y
2
i .

Total corrected sum of squares: SSTO =
∑

i(Yi − Y )2

(SSTO/(n − 1) = sample variance of Yi’s)
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SST0 = SSTOU − SS(mean), where SS(mean) = nY
2
.

Error sum of squares: SSE =
∑

i(Yi − Ŷi)
2 =

∑
i e

2
i .

Sum of squares due to regression: SSR = SSTO − SSE

SSTO = SSR + SSE and SSTOU = SS(mean) + SSTO + SSR + SSE.

Define MSR = SSR/(2 − 1), MSE = SSE/(n − 2), F ∗ = MSR/MSE.

H0 : β1 = 0: Can F ∗ = t∗2 and a test based on F ∗ is equivalent to the t-test that

we already have.

General result: If t∗ ∼ t(d) (read ∼ as “is distributed as”), then t∗2 ∼ F (1, d)
(is distributed F with 1 and d degrees of freedom) and t(1−α/2, d)2 = F (1−α, d).

3.1 R2 and correlation

Coefficient of multiple determination: R2 = SSR/SSTO = 1− SSE/SSTO

= proportion of “total variablility” in the Y ’s explained by X.

Sample correlation between X and Y is

r =

∑
i(Xi − X)(Yi − Y )

[∑
i(Xi − X)2 ∑

i(Yi − Y )2
]1/2

.

It can be shown that r = sign(b1)R and so R = |r|. r is a measure of the linear
relationship between X and Y .

R2 is by far the most popular measure that users like to use to assess whether

they have a good model or not.

- It is difficult to interpret the implications of an R2 of a certain size except

for the extreme case of R = 1 (perfect linear relationship between Y and X so
SSE = 0). - A large value of R2 does not mean you can predict well nor does a
small value of R2 mean you cannot predict very well?

- When you can control the X values, the expected value of R2 depends on which
Xi’s are used.
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R2 of limited value in assessing a model by itself.

The below demonstrates how the positioning of the X values can alter R2. In

each case the regression fit (coefficients and MSE) are identical, but the R2 changes
dramatically with higher R2 for the more spread out X’s and smaller R2 when the

X’s are compressed.

OBS TRUE TRUE2 TRUE3 MEASURE1 MEASURE2 MEASURE3

1 7.67 10.3933 6.98917 7.11280 9.84337 6.43016

2 6.31 6.3133 6.30917 6.81000 6.81335 6.80916

3 6.14 5.8033 6.22417 6.43080 6.09325 6.51519

4 7.07 8.5933 6.68917 7.08600 8.61339 6.70415

5 6.39 6.5533 6.34917 6.31960 6.48337 6.27866

6 5.95 5.2333 6.12917 6.24180 5.52324 6.42144

7 6.53 6.9733 6.41917 6.33884 6.78336 6.22771

8 6.55 7.0333 6.42917 6.26880 6.75342 6.14764

9 5.34 3.4033 5.82417 4.46500 2.52320 4.95045

10 5.74 4.6033 6.02417 5.43300 4.29332 5.71792

11 4.94 2.2033 5.62417 4.60720 1.86327 5.29318

12 7.07 8.5933 6.68917 6.48600 8.01339 6.10415

Dependent Variable: MEASURE1

Root MSE 0.42369 R-square 0.7823

Dependent Variable: MEASURE2

Root MSE 0.42369 R-square 0.9700

Dependent Variable: MEASURE3

Root MSE 0.42369 R-square 0.4733

BELOW IS SAME FOR ALL THREE RUNS

Sum of Mean

Source DF Squares Square F Value Prob>F

Error 10 1.79510 0.17951

Parameter Standard T for H0:

Variable DF Estimate Error Parameter=0 Prob > |T|

INTERCEP 1 -0.191766 1.06205091 -0.181 0.8603

TRUE 1 1.002656 0.16723670 5.995 0.0001
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4 Random Regressors and Correlation models

Suppose now that we have a a pair of random variables (Y, X∗) and X is the
realized/observed value of the predictor. X∗ is the random variable and X is the

value it takes on.

The book begins with using Y1 and Y2 rather than Y and X and then makes

the connection to regression using Y1 = Y and Y2 = X. They use X for both the
random variable and the observed value. This is notationally convenient but it can
lead to confusion in understanding what is going on. After awhile I will do the

same thing, but be aware there is a difference.

Define: E(Y ) = µY , V (Y ) = σ2
Y , E(X∗) = µX , V (X∗) = σ2

X Cov(Y, X∗) = σXY ,

ρ = σXY /σXσY . (Population correlation)

The book makes it sound a bit like you need to choose between a regression
model, with the X’s treated as fixed, or a correlation model, with random X’s.

That is not the case. You can consider a regression model in either case. In the
case where the predictor was random then when we talk about the behavior of

Y |X we are if we are more careful about writing it referring to the conditional
distribution of Y given X∗ = X.

If we assume the conditional regression model

Yi|Xi = β0 + β1Xi + ǫi

with E(ǫi|Xi) = 0 and V (ǫi|Xi) = σ2 holds, then we can proceed with infer-

ences for the β’s and σ2 as before.

What relationships are there between the parameters in the conditional regression
model and the parameters in the joint distribution of (Y, X∗)?

If the conditional regression model holds then (regardless of the actual distribu-
tions involved):

• β1 = σXY /σ2
X , implying ρ = β1(σx/σY ).

• β0 = µy − β1µX .
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• σ2 = σ2
Y − β2

1σ
2
X .

Going in the other direction. If we assume that (Y, X∗) have a bivariate normal

distribution (this is the model focused on in section 2.11 of the book) then this
implies the condition regression model above with the additional assumption that

ǫi has a normal distribution. The relationship between the two sets of parameters
are as above (expressed in different notation in equations (2.80abc) in the book.

The parameters in the bivariate/joint model are estimated unbiasedly by

µ̂Y = Ȳ , µ̂X = X̄ , σ̂2
Y = s2

Y , σ̂2
X = s2

X , σ̂XY = SXY

SXY =
∑n

i=1(Xi − X̄)(Yi − Ȳ )/(n − 1), S2
X =

∑n
i=1(Xi − X̄)2/(n − 1) and S2

Y

similar.

Notice that from our least squares approach (and a little algebra) b1 = SXY /S2
X,

b0 = Ȳ − b1X̄

MSE = σ̂2 =
n − 1

n − 2

[
S2

Y − b2
1S

2
X

]

ρ̂ = r = SXY /SXSY and ρ̂2 = R2.

So estimating the parameters from the perspective of the bivariate model for
(Y, X) agrees (with a little modification in σ̂2) with the approach using the condi-

tional regression model.

• Under the bivariate normal model, independence of Y and X is equivalent
to ρ = 0 (but in general ρ = 0 does not imply independence). Since ρ =

β1(σX/σY ), where β1 is the slope in the conditional regression model for Y |X.
Hence our t-test of β1 = 0 that we developed under fixed predictors is also

testing ρ = 0 (and independence) under the normal model.

• Without joint normality, the t-test for β1 is not necessarily testing indepen-
dence. A distribution free test of independence is based on the use of the
Spearman rank correlation. See example below.
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Example: Brain Size and Intelligence. This is taken from DASL (Data and
Story Library) web site at Carnegie Mellon.

Abstract: Are the size and weight of your brain indicators of your mental capac-
ity? In this study by Willerman et al. (1991) the researchers use Magnetic Reso-
nance Imaging (MRI) to determine the brain size of the subjects. The researchers

take into account gender and body size to draw conclusions about the connection
between brain size and intelligence.

Willerman et al. (1991) conducted their study at a large southwestern univer-
sity. They selected a sample of 40 right-handed Anglo introductory psychology stu-

dents who had indicated no history of alcoholism, unconsciousness, brain damage,
epilepsy, or heart disease. These subjects were drawn from a larger pool of intro-
ductory psychology students with total Scholastic Aptitude Test Scores higher than

1350 or lower than 940 who had agreed to satisfy a course requirement by allow-
ing the administration of four subtests (Vocabulary, Similarities, Block Design, and

Picture Completion) of the Wechsler (1981) Adult Intelligence Scale-Revised. With
prior approval of the University’s research review board, students selected for MRI

were required to obtain prorated full-scale IQs of greater than 130 or less than 103,
and were equally divided by sex and IQ classification. The MRI Scans were per-
formed at the same facility for all 40 subjects. The cans consisted of 18 horizontal

MR images. The computer counted all pixels with non-zero gray scale in each of
the 18 images and the total count served as an index for brain size.

Since the sampling was done in a way that sampled from four different groups;
two IQ levels crossed by gender, we need to account for that. Can’t just view
as a sample of 40 from the total population since controlled the sample sizes so
there were 10 from each category. We will carry out regression analysis separately
for each group. The 10 in the group are a random sample from the associated
population (e.g., females with FSIQ scores less than 103).

data a;

infile ’c:\s597\data\Brain.dat’;

input Gender $ FSIQ VIQ PIQ Weight Height mriCount;

if fsiq > 129then iqgroup=1;

if fsiq < 104 then iqgroup=2; run;

proc print;

var gender fsiq mricount iqgroup; run;

proc sort;

by gender iqgroup; run;
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proc reg;

model fsiq=mricount;

plot fsiq*mricount/conf;

plot fsiq*mricount/pred;

by gender iqgroup; run;

proc reg;

model fsiq=mricount;

plot fsiq*mricount/conf;

plot fsiq*mricount/pred; run;

proc corr;

var fsiq mricount;

by gender iqgroup; run;

--------------------------- Gender=Female iqgroup=1 -----------------------

Sum of Mean

Source DF Squares Square

Error 8 76.73939 9.59242

Root MSE 3.09716 R-Square 0.1290

Parameter Standard

Variable DF Estimate Error t Value Pr> |t|

Intercept 1 119.16618 13.94076 8.55 <.0001

mriCount 1 0.00001727 0.00001586 1.09 0.3082

--------------------------- Gender=Female iqgroup=2 -----------------------

Sum of Mean

Source DF Squares Square

Error 8 437.82194 54.72774

Root MSE 7.39782 R-Square 0.1839

Parameter Standard

Variable DF Estimate Error t Value Pr> |t|

Intercept 1 25.55433 47.67909 0.54 0.6066

mriCount 1 0.00007534 0.00005611 1.34 0.2162

---------------------------- Gender=Male iqgroup=1 ------------------------

Sum of Mean

Source DF Squares Square

Error 8 113.78297 14.22287

Root MSE 3.77132 R-Square 0.0557

Parameter Standard

Variable DF Estimate Error t Value Pr> |t|

Intercept 1 121.44475 24.84643 4.89 0.0012

mriCount 1 0.00001749 0.00002545 0.69 0.5114

---------------------------- Gender=Male iqgroup=2 ------------------------

Sum of Mean

Source DF Squares Square

Error 8 340.80641 42.60080

Root MSE 6.52693 R-Square 0.5107

Parameter Standard

Variable DF Estimate Error t Value Pr> |t|

Intercept 1 -11.92568 35.85256 -0.33 0.7480

mriCount 1 0.00011069 0.00003831 2.89 0.0202
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------------------------------ EVERYBODY ----------------------------

Sum of Mean

Source DF Squares Square

Error 38 19725 519.07660

Root MSE 22.78325 R-Square 0.1279

Parameter Standard

Variable DF Estimate Error t Value Pr> |t|

Intercept 1 5.16770 46.00819 0.11 0.9112

mriCount 1 0.00011915 0.00005047 2.36 0.0235

--------------------------- Gender=Female iqgroup=1 -----------------------

The CORR Procedure

Pearson Correlation Coefficients, N = 10

Prob > |r| under H0: Rho=0

FSIQ mriCount

FSIQ 1.00000 0.35910

0.3082

mriCount 0.35910 1.00000

0.3082

Spearman Correlation Coefficients, N = 10

Prob > |r| under H0: Rho=0

FSIQ mriCount

FSIQ 1.00000 0.25849

0.4708

--------------------------- Gender=Female iqgroup=2 -----------------------

FSIQ mriCount

FSIQ 1.00000 0.42887

0.2162

Spearman Correlation Coefficients, N = 10

FSIQ mriCount

FSIQ 1.00000 0.38298

0.2747

---------------------------- Gender=Male iqgroup=1 ------------------------

FSIQ mriCount

FSIQ 1.00000 0.23610

0.5114

Spearman Correlation Coefficients, N = 10

FSIQ mriCount

FSIQ 1.00000 -0.04295

0.9062

---------------------------- Gender=Male iqgroup=2 ------------------------

FSIQ mriCount

FSIQ 1.00000 0.71462

0.0202

Spearman Correlation Coefficients, N = 10

FSIQ mriCount

FSIQ 1.00000 0.67684

0.0316
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Recall that the Root MSE is σ̂, the estimate of the standard deviation in FSIQ scores at a
particular MRI count. We do not do very well in prediction as indicated by the Root MSE values
and the prediction plots (the accompanying plots will be shown in class.) Notice that the significance
of the slope is not indicative of how “good” the relationship is. For example, group 2 males have
a p-value of .0202 for the slope, but an R-square of .5107 and σ̂ = 6.53. This also seen in the run
with everybody, but that analysis would not be appropriate since we sampled by groups. We will
look later at how to compare regressions across groups. The output from proc corr has been edited.
It gives the sample correlation r as well as the P-value associated with a test for ρ = 0 under the
assumption of bivariate normality. This test is equivalent to the t-test for β1 = 0.

5 Simple residual analysis and other diagnostic measures for assessing
model assumptions in simple linear regression

ith residual: ei = Yi − Ŷi.

The residuals are random variables and hence have some expected value, variance and covari-
ance/correlation structure. Here we ignore the variance and covariance structure but these will be
used with more advanced diagnostic measures used later.

As random variables, each residual has expected value 0, that is E(ei) = 0 (if the model is
correct).

Also true that
∑n

i=1 ei = 0 (but this will not be true for a model fit with no intercept.)

The theoretical variance of ei is not σ2 (which is the variance of ǫi) but is approximately σ2 for
reasonable size n. (More on more sophisticated procedures not utilizing this approximation later in
the course.)

ith semi-studentized residual: ei/MSE1/2 = ei/σ̂.

In any of discussion below the plots can be with either residuals or semi-studentized residuals.
(There will be more sophisticated studentized residuals used later.)

• Assessing Linearity.

- Plot of Y versus X

- Plot of residual ei versus Xi or Ŷi.

- Test for lack of fit when there are multiple values (details later).

A systematic trend in the plot of the residuals versus an explanatory variable or the fitted
values indicates that there is a problem with the assumed regression model. If the model is
correct the residuals should, in general, center around 0 across the explanatory variables and
the fitted values.

Without linearity we have the wrong model for how E(Y |X) depends on X and
obviously inferences do not make sense.
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• Assessing constant variance.

- Plot of residual ei versus Xi or Ŷi.

- Plot of |ei| or e2
i versus Xi or Ŷi.

- Tests for equal variance (later).

If the regression model looks okay, a violation of the constant variance assumption will be
indicated by a change in the spread of the residuals as X or Ŷ changes.

This can also be seen (sometimes more easily) by plotting the absolute or squared residual
rather than the residual itself. In this case look to see constant variance is indicated by the
average absolute or squared residual not changing over X or Ŷ .

If variances are not constant, then standard errors for coefficients are incorrect
as are standard errors for confidence intervals on means, prediction, etc. All the
inferences are off, but by how much depends on how severe the assumption is
violated. The same is true if the errors are in fact correlated and we assume they
are not.

• Assessing independence or uncorrelatedness of error terms

How to do this often depends on knowing what might be causing the correlation. One place
this is a concern is when the observations are collected over different times. Assuming data is
ordered by time.

- Plot ei versus i.

- Plot ei+1 versus ei for i = 1, . . . , n − 1

An ad-hoc approach to testing is to analyze the correlation between ei+1 and ei. We’ll return
to handling data collected over time in more detail later.

• Assessing normality.

If the errors are not normal, tests, confidence intervals and prediction intervals will
not behave as advertised for small samples. As the sample size gets bigger (and
with some restrictions on how the X’s are chosen) inferences for the coefficients
and linear combinations of them (including the mean of Y at a given X) are ap-
proximately correct even without normality of the errors. For these purposes we
need normality most for small n, but this is where it is difficult to evaluate. Predic-
tion intervals as we have given them depend heavily on the normality assumption
regardless of n. This is because the distribution of the single Ynew is critical. Also
inferences for σ2 based on a chi-square depend on normality regardless of sample
size.

Get descriptive statistics on the residuals:

- stem-and-leaf plot, box plot, histogram and smoothed histogram.

- normal probability plots and associated tests for normality (but tests for normality can be
of limited value since often have little power (ability to detect non-normality) with small or
moderate sample size or can be overpowered (pick up small but unimportant deviations from
normality) with large sample sizes.
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Note: If there are unequal variances or correlation in the errors these need to be accounted for
(done later) before the normality assessment.

Cholesterol example: Calibration of serum cholesterol. Notice there are replicates (multiple samples with
the same true value). Residual plots indicates the linear fit has a problem, but need to judge just how bad the
consequences are in this case since the residuals are small relative to what we are estimating.

Working in SAS. Note: SAS 9.3 (newest version) automatically produces a number of residual plots when you
run the regression.

option ls=80 nodate;

title ’calibration of serum cholesterol’;

data a;

infile ’e:\s505\chol.dat’;

input true measured;

proc print;

run;

proc reg;

model measured=true/covb clb cli clm p;

plot measured*true;

plot r.*(true p.);

run;

Obs true measured

1 50 55

2 50 54

3 50 53

4 200 204

5 200 203

6 200 207

7 400 385

8 400 382

9 400 382

The REG Procedure

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 162559 162559 5625.07 <.0001

Error 7 202.29279 28.89897

Corrected Total 8 162761

Root MSE 5.37578 R-Square 0.9988

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 10.78829 3.24719 3.32 0.0127

true 1 0.93739 0.01250 75.00 <.0001
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Figure 5: Cholesterol fit

Figure 6: cholesterol residual versus x
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Example: Puffins: This example uses data from an article entitled “Breeding success of puffins on different
habitats on Great Island, Newfoundland” from Ecological Monographs. The variables are Y = nesting frequency of
puffins, X1 = grass cover, X2 = soil depth, X3 = angle of slope and X4 = distance from cliff edge.

Here we examine just a regression of Y on X = slope;

SAS code:

title ’puffin example ’;

options pagesize=60 linesize=80;

data a;

infile ’e:\s505\data\puffins.dat’;

input success grass soil slope distance;

run;

proc reg;

model success=slope/covb clb cli clm p;

plot success*slope/conf pred;

plot r.*(slope p.);

output out =result p=yhat r = resid;

/* saves predicted (now called yhat) and residual

(now called resid) to sass file result. This will

also have the original data. you could use these

to customize your own plots. For example

proc gplot data=result;

plot resid*yhat;

will plot the residual versus predicted value and you

can use other gplot options to make the graph fancier.

See below for plot using absolute residual */

run;

ods graphics off; /* in 9.3 this will send graphs to graph window

rather than to results window which is in html form.

Don’t use this if just want to save out of results window*/

proc univariate data=result plot normal; /* normal will do tests for

normality */

var resid;

hist resid/kernel(color = black); /* gives a histogram with smoothing*/

run;

/* get an isolated probability plot of the residuals*/

proc capability data=result noprint;

probplot resid;

run;

/* plot of absolute residual versus x */

data b;

set result;

absresid = abs(resid);

run;

proc gplot data=b;

plot absresid*slope;

run;

puffin example 1
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Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 1336.49664 1336.49664 83.28 <.0001

Error 36 577.71389 16.04761

Corrected Total 37 1914.21053

Root MSE 4.00595 R-Square 0.6982

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -0.02635 1.06591 -0.02 0.9804

slope 1 0.51404 0.05633 9.13 <.0001

The UNIVARIATE Procedure

Variable: resid (Residual)

Moments

N 38 Sum Weights 38

Mean 0 Sum Observations 0

Std Deviation 3.95144136 Variance 15.6138888

Skewness 0.43683797 Kurtosis -0.63306

Basic Statistical Measures

Location Variability

Mean 0.00000 Std Deviation 3.95144

Median -0.52545 Variance 15.61389

Mode -4.08595 Range 14.59826

Interquartile Range 5.87900

Tests for Normality

Test --Statistic--- -----p Value------

Shapiro-Wilk W 0.95571 Pr < W 0.1374

Kolmogorov-Smirnov D 0.104559 Pr > D >0.1500

Cramer-von Mises W-Sq 0.071923 Pr > W-Sq >0.2500

Anderson-Darling A-Sq 0.510691 Pr > A-Sq 0.1933

Other SAS plots and output in class.

R code and output.

# THIS FITS A SLR USING THE PUFFIN DATA AND DOES DIAGNOSTICS

# WITH THE RESIDUALS. IT ALSO HAS A NUMBER OF THE PREVIOUS

# THINGS WE HAVE DONE, PROGRAMMED IN TERMS OF JUST y and x

# SO IT CAN BE REUSED.

data<-read.table("e:/s505/data/puffins.dat") # no names

attach(data)

success<-V1; grass<-V2; soil<-V3; slope<-V4; distance<-V5 # rename the variables

# for convenience just relabel to y and x. Then you can

# reuse code without making many changes in variable names.
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Figure 7: Diagnostic plots from SAS 9.3

y<-success

x<-slope

regout<-lm(y ~x)

summary(regout)

anova(regout)

confint(regout)

vcov(regout)

fits <-fitted(regout)

residual<-residuals(regout)

par(mfrow=c(1,1)) #reset graph to single plot per page

plot(x,y,xlab="slope", ylab="success",main = "Puffin example")

lines(x,fits)

# confidence and prediction internvals
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xsort<-sort(x) # use xsort so don’t change

# order of original x’s

xvalues<-data.frame(xsort)

cat("confidence intervals for E(Y|X)")

cintervals<- predict(regout,xvalues,interval = "confidence","\n")

# cintervals #uncomment this if want a listing

cat("prediction intervals for E(Y|X)")

pintervals<- predict(regout,xvalues,interval = "predict","\n")

# pintervals #uncomment this if want a listing

lines(x, cintervals[,2],type="l",lty=2)

lines(x, cintervals[,3],type="l",lty=2)

lines(x, pintervals[,2],type="l",lty=3)

lines(x, pintervals[,3],type="l",lty=3)

# if want to plot and save the confidence and prediction

# intervals stop here or they will get overwritten. Then

# run block below to get residual plots

########Residual analysis: plots: one way ##########

par(mfrow=c(2,2)) # this makes the graph window have 4 panels

# with 2 rows and 2 columns

plot(x,residual)

plot(fits,residual)

hist(residual)

lines(density(residual)) # gets smooth histogram via

# density(residual), then overlays it.

qqnorm(residual)

## residual analysis, summary statistics and tests for normality

summary(residual)

shapiro.test(residual) # this just shows the Shapiro-Wilks test.

# other tests requiring installing the

# package nortest

# plot of absolute residual

par(mfrow=c(1,1))

absresid<-abs(residual)

plot(x,absresid)

Here is some of the output.

Residuals:

Min 1Q Median 3Q Max

-6.6561 -3.2452 -0.5255 2.3930 7.9421

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.02635 1.06591 -0.025 0.98

x 0.51404 0.05633 9.126 6.75e-11 ***
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---

Residual standard error: 4.006 on 36 degrees of freedom

Multiple R-squared: 0.6982, Adjusted R-squared: 0.6898

F-statistic: 83.28 on 1 and 36 DF, p-value: 6.745e-11

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

x 1 1336.50 1336.50 83.283 6.745e-11 ***

Residuals 36 577.71 16.05

---

> ## residual analysis, summary statistics and tests for normality

summary(residual)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-6.6560 -3.2450 -0.5255 0.0000 2.3930 7.9420

shapiro.test(residual) # this just shows the Shapiro-Wilks test.

Shapiro-Wilk normality test

data: residual

W = 0.9557, p-value = 0.1374
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Figure 8: Data and fit for Puffin example; from R.
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Figure 9: Residual plots for puffin data; from R.

Assessing Normality.

The normal probability plot plots the residual versus its approximate expected
value under normality (given by equation (3.6)). The book describes a correla-

tion test for normality (section 3.5) where they tests for zero correlation between
the residual and its expected value under normality. It is better to use the tests
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for normality (Shapiro-Wilk, Kolmogorov-Smirnov, Cramer-von Mises, Anderson-
Darling) given in SAS (and many other programs). Anderson-Darling is generally

thought to be the best of these. These tests are primarily based on the difference
between the cumulative distribution function of the observed data and the one

under normality. As always we have to be careful with testing. With small to
moderate sample sizes any of these tests can have low power (probability of cor-
rectly rejecting H0 : when the errors are not normally distributed). Unfortunately

it is with smallish sample sizes that we most need normality for our inferences to
be valid, but it is here that it is most difficult to assess. With large sample sizes

the tests can detect small, but possibly unimportant, deviations from normality.

More on assessing and testing for constant variance.

There are a variety of tests for equality of variance, all approximate. They
essentially break up depending on either

• There is a natural grouping of the data by the X values where the variance could
be considered essentially constant within each group and the test is designed to

test equal variances across the groups. Levene’s test and the Brown-Forsythe
test fall in this category. On pages 116-117 the book uses this for two groups.

Two notes though:

- This can be easily generalized (details later) to multiple groups.

- This should not be used unless the X’s within a group are very similar. It is
not recommended that you arbitrarily break the data into groups and use this
procedure.

• The variance is modeled as a function of either X or the mean of Y |X and one
tests for constant variance within this model. Having a model for the variance

will also be helpful when we account for unequal variances, if it exists.

Modelling the variance and using regression to assess constant vari-
ance.

Assume a model for σ2
i = V (ǫi) or σi as a function of Xi or µi(= β0 + β1Xi).

Examine the model using e2
i in place of σ2

i , |ei| in place of σi and/or Ŷi in place of
µi. Can get a rough test for constant variance within this framework.
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The model used in section 3.6 is log(σ2
i ) = γ0 +γ1Xi. One approach is to regress

log(e2
i ) versus Xi and use the t-test for γ1 = 0. This is easy to implement. The

Breusch-Pagan test in section 3.6 uses this model but gives a specialized test of
constant variance which is not! just testing γ1 in the regression of log(e2

i ) on Xi.

A very popular model for the variance (the so-called power model) is

σi = θ1µ
θ2
i ,

or log(σi) = log(θ1) + θ2log(µi), where µi = E(Yi|Xi). The variance is constant if
θ2 = 0.

Examine the model through a plot of log|ei| versus log(Ŷi), which should be
roughly linear if the model is correct. A test for slope = 0 in the regression of

log|ei| on log(Ŷi) is approximate test of the null hypothesis of constant variance
(assuming the model is okay.)

Esterase Assay example. The data is from Carroll and Ruppert’s Transfor-

mation and Weighting in Regression. Ester is the amount of esterase in a sample
and count is the number of bindings observed in a radioiumnoassay. The objective

is to model the radioactive binding counts as a function of the level of esterase.
In this example the variance is clearly increasing as the level of esterase increases.
This is seen from the original scatterplot, the residual plot and the plot of absolute

residual.

The plot of log(e2
i ) versus Xi does not look linear. A plot of log|ei| on log(Ŷi)

looks pretty linear so we’ll entertain the power model. A linear regression of log|ei|
on log(Ŷi) yields

Dependent Variable: labsr

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -1.44942 1.22119 -1.19 0.2380

lpred 1 0.89486 0.21516 4.16 <.0001

The slope .89486 is a rough estimate of θ2, while -1.44942 estimates log(θ1). The

t-test is testing constant variance via an approximate test of H0 : θ2 = 0.

title ’Esterase Hormone data ’;

data a;

infile ’c:\s505\ester.dat’;
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input ester count;

run;

proc reg;

model count=ester/covb;

plot r.*(ester p.);

output out=result p=yhat r=resid; run;

data c;

set result;

r2=resid**2;

ar=abs(resid);

labsr=log(abs(resid));

lpred=log(yhat); run;

proc gplot data=c;

title ’plots for esterase assay example’;

plot (count r2 ar)*ester labsr*lpred; run;

proc reg data=c;

model labsr=lpred;

run;

NOTE: Here and some later examples, I am leaving in low resolution line printer plots (this is for
convenience in terms of formatting). We’ll look at the good plots in class and I’ll also have the R
code and plots for these examples.
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Plot of ar*ester. Legend: A = 1 obs, B = 2 obs, etc.
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Plot of labsr*lpred. Legend: A = 1 obs, B = 2 obs, etc.
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Plot of logr2*ester. Legend: A = 1 obs, B = 2 obs, etc.
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5.1 Replicate data, tests for lack of fit and tests for constant variance.

Yij = response for ith observation in group j, i = 1 to nj, j = 1 to c groups.

One-way model: Yij = µj + ǫij

µ̂j = Ȳj =
∑

i Yij/nj.

SSPE =
∑

j
∑

i(Yij − Ȳj)
2 MSPE = SSPE/(n − c).

Testing equal means in the one-way model/The one-way analysis of

variance.

Assuming uncorrelated errors with constant variance and normality (or large
sample sizes). Consider the null model that all µj are equal. This is tested with

Fanova = MSG/MSPE, where MSG = SSG/(c − 1) with SSG =
∑

j nj(Ȳj − Ȳ )2.
Compare using an F with c−1 and n−c degrees of freedom. (This can be motivated

using the General linear test approach which we will do later). For two groups this
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is equivalent to the two sample t-test. In SAS, this test can be run using proc

anova or proc glm.

Testing for linearity in regression framework.

H0 : θj = β0 + β1Xj, HA : θj not specified.

(I’ve used θj rather than µj in book, since we have used µi for the expected value

of Yi where i indexes the overall order in the sample.)

SSLF = SSE − SSPE, MSLF = SSLF/(c− 2),Flof = MSLF/MSPE

Compare using an F with c-2 and n-c degrees of freedom.

Levene and Brown-Forsythe test for equal variances.

Working with the residuals and assuming have the model correct. Divide obser-

vations into c groups, where the X’s are similar in each group. (Later with more
than one predictor we could group on the fitted values.) Form residuals with eij

being the ith residual in group j. The various Levene type tests run a one way

anova on values dij chosen such that under equal variance we would expect the d’s
to have common expected value. This means using Fanova above but with d’s in

place of Y ’s.

Levene’s (not modified) test uses either dij = |eij − ēj| or dij = (eij − ēj)
2,

where ēj =
∑

i eij/nj. The modified Levene’s test, also called Brown-Forsythe test
uses dij = |eij − ẽj| where ẽj is the median of the eij in group j. These test can be
carried out by constructing the appropriate d value and running a one-way analysis

of variance.

NOTE: If we run Levene’s test in Anova directly with the grouping (no regression

model and residuals used) then it corresponds to running a one-way anova F-test
on dij = |Yij − Ȳj| or dij = (Yij − Ȳj)

2.
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Example: Using the cholesterol data to test for lack of fit. Also runs Levene’s
test for equal variance across the three groups (within a model that allows a separate
mean for each group, not within the linear regression framework.)

option ls=80 nodate;

data a;

infile ’a:\chol.dat’;

input true measured; run;

proc means;

class true;

var measured; run;

proc reg; model measured=true; run;

/* The proc anova fits a model with a different mean allowed for each

value of true (need replications at some of the true values for

this to work). The SSE from the anova here is what is called

SSPE in the test for lack of fit.*/

proc anova;

class true;

model measured=true;

means true/ hovtest=levene; /* This is one of many tests available in the

hovtest to test for equal variances. */

run;

data b;

/* carry out test for lack of fit using values from the regression

fit and from the one-way anova. */

sspe= 16.6667; sse=202.29279; n=9; c=3;

mse=sse/(n-2); mspe=sspe/(n-c); sslf = sse-sspe;

mslf=sslf/(c-2); f=mslf/mspe; fpvalue= 1 - probf(f,c-2,n-c);

proc print; run;

The MEANS Procedure

N

true Obs N Mean Std Dev Minimum Maximum

50 3 3 54.0000000 1.0000000 53.0000000 55.0000000

200 3 3 204.6666667 2.0816660 203.0000000 207.0000000

400 3 3 383.0000000 1.7320508 382.0000000 385.0000000

FROM PROC REG

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 162559 162559 5625.07 <.0001

Error 7 202.29279 28.89897

Corrected Total 8 162761

The ANOVA Procedure

Class Levels Values

true 3 50 200 400

Number of observations 9

Dependent Variable: measured

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 2 162744.2222 81372.1111 29294.0 <.0001

Error 6 16.6667 2.7778
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Corrected Total 8 162760.8889

Source DF Anova SS Mean Square F Value Pr > F

true 2 162744.2222 81372.1111 29294.0 <.0001

Levene’s Test for Homogeneity of measured Variance

ANOVA of Squared Deviations from Group Means

Sum of Mean

Source DF Squares Square F Value Pr > F

true 2 7.5062 3.7531 1.17 0.3714

Error 6 19.1852 3.1975

Obs sspe sse n c mse mspe sslf mslf f fpvalue

1 16.6667 202.293 9 3 28.8990 2.77778 185.626 185.626 66.8253 .000180449

Example: Using the Kishi data on nutritional requirements. This groups the data by
similar ni values. Then constructs Levene’s modified test.

option ls=80 nodate;

data a;

infile ’kishi.dat’;

input kcal ni niq nbal;

if 30 < ni < 35 then group=1;

if 60 < ni <65 then group=2;

if 75 < ni < 85 then group=3;

proc print; run;

proc reg;

model nbal=ni;

output out=result r=resid; run;

proc means mean median;

class group; var resid; run;

data b;

set result;

if group=1 then median = -0.5484660;

if group =2 then median = 0.7004449;

if group=3 then median = -0.0370720;

d = abs(resid-median); run;

proc anova;

class group;

model d =group; run;

proc anova data=result;

class group;

model resid=group;

means group/hovtest=levene; run;

proc anova data=result;

class group;

model nbal=group;

means group/hovtest=levene; run;

Obs kcal ni niq nbal group

1 49.5 31.6 30.7 -22.7 1

31 48.0 81.0 79.4 0.2 3

Analysis Variable : resid Residual
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group NObs Mean Median

---------------------------------------------------

1 11 -0.0932954 -0.5484660

2 10 0.2747271 0.7004449

3 10 -0.1721022 -0.0370720

---------------------------------------------------

The ANOVA Procedure

Dependent Variable: d

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 2 14.5820939 7.2910469 1.78 0.1865

Error 28 114.4087282 4.0860260

Corrected Total 30 128.9908221

THE F-TEST ABOVE IS BROWN-FORSYTHE TEST FOR EQUAL VARIANCE WITHIN THE LINEAR

REGRESSION MODEL.

The ANOVA Procedure

Dependent Variable: resid Residual

....

Levene’s Test for Homogeneity of resid Variance

ANOVA of Squared Deviations from Group Means

Sum of Mean

Source DF Squares Square F Value Pr > F

group 2 641.1 320.5 1.31 0.2865

Error 28 6865.1 245.2

The above test is another test for equal variance within the regression model

using squared deviations around the mean residual in the group. This is

the unmodified Levene’s test.

The ANOVA Procedure Dependent Variable: nbal

Levene’s Test for Homogeneity of nbal Variance

ANOVA of Squared Deviations from Group Means

Sum of Mean

Source DF Squares Square F Value Pr > F

group 2 602.0 301.0 1.20 0.3175

Error 28 7049.5 251.8

THE ABOVE TEST FOR EQUAL VARIANCES AMONG GROUPS WITHIN THE ONE-WAY ANOVA MODEL.

5.2 Plotting residuals versus other variables not in the model.

Can serve two purposes. Assessing correlation of error terms and assessing whether the linear regression model is
correct (or can be improved on).

Does seeing a pattern indicate that the linear model we have is wrong? Not necessarily.

- If both the Xi and the other variable are fixed values associated with some unit then seeing a pattern indicates
the model is incorrect and needs that other variable. Examples: other variables set to some value in a production
process where the values of this other variable sometime change. Or units in the experiment are fixed with certain
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characteristics (other variables) and we do NOT randomly assign X to them.

- If the other variable is random (which can happen in various ways), then seeing a pattern does not indicate
that the model is wrong. The model is for Y |X and the influence of the other random quantity will be part of the
error term. It would mean that we might do better at predicting Y to include that other variables, but it doesn’t
mean the model is wrong.

- The other variable might be a blocking variable (such as a day, machine, person) where there are multiple
observations associated with that blocking variable. If the omitted variable is random, seeing the residuals related to
it would be a sign of correlated errors (e.g., the repeated observations on a particular block are correlated through
a common block effect). If the other variable(s), are fixed (as in the brain size-intelligence example) then seeing a
pattern indicates the model is wrong.

Ramus example: Repeated measures data. Sample of boys, length of ramus bone measured at 4 ages on
each boy. With the boys random we are fitting a model for Y |X where the distribution of Y given X (age) and its
expected value includes variation among boys. The plot of residuals versus id (which identifies the individual boys)
shows a clear pattern. This doesn’t mean the model which says E(Y |X) is linear in X is wrong (in fact it looks fine),
but that the errors are correlated and standard regression analysis should not be used. With the boys fixed, and
not sampled, the pattern in the residuals indicate the model is wrong and that different boys might have different
coefficients for how the expected response changes with time.

title ’ramus data’;

options ps=60 ls=80 nodate;

data ram;

infile ’a:ram2.dat’;

input id length age; /* age in years, length=lenght of ramus bone*/

run;

proc reg;

model length=age;

var id;

plot length*age/conf;

plot r.*(age id);

run;

Plot of resid*age. Legend: A = 1 obs, B = 2 obs, etc.
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Plot of resid*id. Legend: A = 1 obs, B = 2 obs, etc.
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l | B C C A

| D A

-5 +

---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

id

GPA example: Using data from Appendix C4 in the text. 705 students. GPA in freshman year, hsrank
= hsrank (percentile; lower is better); act = ACT entrance exam score, ayear = year of entry. Look at regression of
GRP on ACT, examine residuals, assess the possible effects of high school rank and/or year of entry.

• Have a significant liner relationship between ACT and GPA, but note that we can’t predict GPA very well
(we’ll plot prediction intervals in class), because of the amount of noise.

• Looks like high school rank might possible play some role. Appear to be more positive residuals at higher end
of rank. Does these mean linear model for GPA on ACT is wrong? No. Just that we might be able to do a
better job of predicting by adding high school rank.

• The academic year of entry is a blocking variable that is fixed. Whatever year effect is there appears to be
minor. In assessing this though we also need to be aware that the hsrank may change over years, so we can
pick up that effect.

• We will look soon at how to add the other variables to the model through multiple regression.

title ’GPA data from Appendix C4 ’;

options ls=80 nodate;

data a;

infile ’APPENC04.txt’;

input id gpa hsrank act ayear;

proc print;

run;

proc reg lineprinter;

var ayear hsrank;

model gpa=act;

plot gpa*act r.*(act hsrank ayear)/vplots=3;

run;

proc means;

class ayear;

var resid;

run;
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GPA data from Appendix C4

Obs id gpa hsrank act ayear

1 1 0.98 61 20 1996

2 2 1.13 84 20 1996

705 705 4.000 99 32 2000

The REG Procedure

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 37.88888 37.88888 108.47 <.0001

Error 703 245.55952 0.34930

Corrected Total 704 283.44840

Root MSE 0.59102 R-Square 0.1337

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 1.55870 0.13802 11.29 <.0001

act 1 0.05780 0.00555 10.41 <.0001

-+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+--

| |

4 + 1 1 3 3 3 3 2 5 6 6 * 3 6 3 1 1 +

| 1 2 1 1 2 7 * 8 * * * * * * * 4 1 1 |

| 3 2 1 3 3 7 * 5 * * * * * * * 7 6 8 2 2 |

g | 1 1 3 * 4 8 * * * * * 9 * * 6 4 1 1 1 |

p | 1 2 2 4 7 6 6 6 9 8 * 6 4 7 6 1 1 2 |

a 2 + 2 1 5 2 3 7 3 7 2 2 5 5 1 1 +

| 2 1 2 1 2 4 1 3 4 |

| 1 2 2 1 1 2 2 |

| 1 1 1 |

| 1 |

0 + +

-+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+--

12 14 16 18 20 22 24 26 28 30 32 34 36

act

The MEANS Procedure

Analysis Variable : resid Residual

ayear NObs N Mean Std Dev Minimum Maximum

------------------------------------------------------------------------------

1996 142 142 -0.0570721 0.6206586 -1.7347121 1.1908889

1997 131 131 0.0220141 0.6019719 -1.7325126 1.4942904

1998 154 154 0.0251350 0.6020389 -1.9157096 1.1874874

1999 141 141 0.0316997 0.5433192 -1.3991160 1.0566869

2000 137 137 -0.0227742 0.5848413 -1.8395126 1.0374874

------------------------------------------------------------------------------
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-+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-

| |

2 + +

R | 1 |

E | 1 1 1 1 1 1 3 2 3 |

S | 2 1 3 1 1 3 2 6 7 7 * * 9 6 8 2 |

I | 1 2 2 5 7 * 5 * * * * * * * * * * 3 2 1 |

D 0 + 1 2 3 9 5 7 * * * * * * * * 7 7 7 2 4 1 1 +

U | 2 1 7 5 7 6 8 * * * 6 6 * 7 4 4 1 |

A | 2 1 2 3 7 3 7 3 9 8 5 7 6 3 2 2 1 |

L | 1 2 1 1 1 3 4 2 6 3 1 1 |

| 2 2 1 2 2 1 2 |

-2 + 1 1 1 1 +

-+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-

12 14 16 18 20 22 24 26 28 30 32 34 36

act

--+------+------+------+------+------+------+------+------+------+------+--

2 + +

R | 1 |

E | 1 1 1 11 1 1 1 1 1 112 |

S | 1 1 1 3 112 1121 314 23 33 53369* |

I | 11 11 1 511 3 1 24 2 53 52616134652655*5*8*64*** |

D 0 + 1 1 11 11 2 1 2 3 211 11 1114541 95653*284576*49 *5685* +

U | 1 1 11 13 11 11222 2242 23 26 42732726476 323 712413 |

A | 1 1 11 1 1 1 111231 414162113221233431611 21 |

L | 1 1 1 11 1 1 1 1 11121111211 111 1 |

| 1 1 1 1 1 1 1 1 1 1 1 1 |

-2 + 1 1 1 1 +

--+------+------+------+------+------+------+------+------+------+------+--

0 10 20 30 40 50 60 70 80 90 100

hsrank

-----+-------+-------+-------+-------+-------+-------+-------+-------+-----

| |

2 + +

R | 1 |

E | 2 4 2 5 1 |

S | * * * * * |

I | * * * * * |

D 0 + * * * * * +

U | * * * * * |

A | * * * * * |

L | 6 3 6 7 4 |

| 6 2 1 3 |

-2 + 3 1 +

-----+-------+-------+-------+-------+-------+-------+-------+-------+-----

1996.0 1996.5 1997.0 1997.5 1998.0 1998.5 1999.0 1999.5 2000.0

ayear
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5.3 General Linear Tests

A unified way to think about the F-tests we’ve been using.

Full Model. A regression model with p coefficients in it. SSE(F) = Error sum
of squares under full model. dfF = n − p. (For simple linear regression p = 2.

Reduced/null model: A special case of the full model. A regression model
with p0 < p coefficients. SSE(R) or sometimes denoted SSE(H0) is error sum of

squares under the reduced/null model. dfR = n − p0.

H0: Null model is true

F =
(SSE(R)− SSE(F ))/(dfR − dfF )

SSE(F )/dfF
=

(SSE(R) − SSE(F ))/(p− p0)

SSE(F )/(n− p)
.

has an F distribution with d1 = dfR − dfF = p − p0 and d2 = dfF = n − p degrees
of freedom under the null hypothesis. Reject H0 if F > F (α, d1, d2) or get P-value

by area to right of observed F under the F with d1 and d2 degrees of freedom.

Model Error sum of squares df

SLR model SSE n-2
Group means model Yij = θj + ǫij

∑
i
∑

j(Yij − Ȳj)
2 (SSPE) n-c

Single mean Yij = θ + ǫij (replicates) or
∑

ij(Yij − Ȳ )2 = SSTO n-1
Single mean Yi = β0 + ǫi (regression)

∑
i(Yi − Ȳ )2 = SSTO n-1

Note that SSTO = error sum of squares under model with a single mean can be
expressed as

∑
i Y

2
i − nȲ 2.

• Test for zero slope in regression framework:

Full Model: Regression model. Null Model: Single mean.

• Test for equal means in group means model:
Full model: Group means model Null Model: Single mean.

• Test for lack of fit with replicates:
Full Model: Group means model. Null Model: SLR model.
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6 What to do about model violations?

Most of these we will handle in detail after we cover multiple regression.

• Nonlinearity.

- Tranform X to X ′ = g(X) such that model for Y is linear in X ′. (If doing

inverse prediction or regulation then convert back to X scale).

- Consider polynomial model in X (requires multiple linear regression) or use
a non-linear model (non-linear in parameters).

- Investigating shape of regression function using nonparametric regression.
Fits a smooth curve to the family without making assumptions about the para-
metric form of the regression function. In SAS can use the LOESS procedure.

• Nonconstant variance.

- Use robust estimate of variances of b0 , b1 and Cov(b0, b1).

- Model the variance and use weighted least squares.

• Non-normality.

* The non-normality of the errors is not much of an issue for estimating coeffi-

cients, functions of them and regulation unless the sample size is rather small.
This is because the distribution of the estimated coefficients becomes normal

as the sample size increases regardless of the distribution of the errors and the
various inferences based on the t and F are approximately correct.

* It is an important issue for prediction and inverse prediction since these

depend on the normality of an individual observation.

* Can transform Y to Y ′ to achieve normality and this is fine for prediction
and inverse prediction. If you have predicted Y ′ then can back transform to

predict Y .

NOTE: In terms of the regression function if you use Y ′ as the response and
fit a linear regression for E(Y ′|X) you CANNOT just backtransform to get an

estimate of E(Y |X). So for example if you fit the model E(Y ′|X) = log(X) =
β0+β1X, with estimated coefficients b0 and b1, then eb0+b1X is a biased estimator

of E(Y |X). The models E(Y ′|X) = log(X) = β0 +β1X and E(Y |X) = eβ0+β1X

cannot both hold at the same time.
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• Correlated errors. Often need to model and remove the correlation in some

manner. Sometimes there are techniques available that are robust to the cor-
relation.

Accounting for unequal variances.

• Use least squares estimator but get an estimate of variance-covariance that

does not depend on the constant variance assumption. This is fine for making
inferences about the coefficients and functions of them, but does not handle

prediction. For prediction we need to know the form of V (Ynew).

• Model the variance and use weighted least squares.

White’s robust estimator of the covariance:

In SAS, White’s estimator is obtained with the ACOV option. This gives quan-
tities of s2{b0}, s2{b1} and s{b0, b1} that are robust to the constant variance as-

sumption ) Use these in previous formulas for inferences on β0, β1 and β0 + β1X.
This will not work very well with small sample size.

The spec option in the model statement will also provide another approximate

test of the hypothesis that the errors have constant variance (assuming all of the
other assumptions hold). This test is related to White’s procedure.

Weighted Least squares

Suppose σ2
i = σ2a2

i where the ai are known. Consider Y∗i = (1/ai)Yi,

Y∗i = (1/ai)β0 + (1/ai)Xiβ1 + ǫ∗i

where ǫ∗i has mean 0 and variance σ2 (since var(ǫ∗i) = (1/ai)
2var(ǫi) = (1/ai)

2σ2a2
i =

σ2.)

Multiple linear regression on the transformed model is equivalent to using weighted
least squares in which we minimize

∑
i wi(Yi − (β0 + β1Xi)))

2, where wi = 1/a2
i .

Weighted least squares yields estimates that have smaller variance than the sim-
ple least squares estimates (assuming we have the variance model right).
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Most regression routines will allow you to specify a weighting variable and run

weighted least squares so you do not need to actually create transformed variables.
In SAS proc reg this is done using the weight option.

Estimated variances and weights.

Often need to get estimated variances σ̂2
i and then treat these as if they were

known variances and run weighted least squares with wi = 1/σ̂2
i . (This process

could be iterated between updated regression coefficients and updated estimates
of the variances, and hence the weights, leading to what is known as iteratively
reweighted least squares.)

A common approach (especially when there are multiple predictors ) is to try
and model the variance as a function of the mean, rather than directly as a function

of the predictors.

Example: Consider σi = θ1|µi|θ2, where µi = E(Yi|Xi) or log(σi) = η0 +
η1log(|µi|), η0 = log(θ1) or θ1 = eη0 and η1 = θ2. Regress log|ei| on log(|Ŷi|) to

get estimate η̂0 and η̂1 and take σ̂i = eη̂0|Ŷi|η̂1. Would then run weighted least
squares with weights wi = 1/σ̂2

i .

If we assume that
σ2

i = σ2g(µi)

where the function g(µi) is fully specified; that is has no unknown parameters then

iteratively reweighted least squares can be carried out in SAS proc nlin.

Weighted least squares with replicates

If there are replicates then an observation in group k can be given weight 1/s2
k,

where s2
k = sample variance of the Y values in group k.

The esterase assay example.

1. Rerun the regression of count on ester, but now include the acov option as well as the clb
and clm option. (Even though the acov option is there, note that all of the output is under
the assumption of constant variance except the estimated covariance matrix associated with
the acov option and results of using test option). Using the results from acov, get confidence
interval on the coefficients and on the expected count at ester = 6.4 (which corresponds to the
first case). Compare these to what are obtained under unequal variances.

2. Earlier there is a fit of log|ei| on log(Ŷi). Use this to create weights and run a weight least
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squares analysis under the assumption that σi = θ1µ
θ2

i . Again include the clb and clm option
and compare the intervals for the coefficients and the expected count at ester=6.4 to those in
the previous part.

title ’Esterase Hormone data ’;

options pagesize=60 linesize=80;

data a;

infile ’a:ester.dat’;

input ester count; run;

proc reg;

model count=ester/covb acov p clm cli spec;

output out=result p=yhat r=resid;

run;

data c;

set result;

wt2 = 1/((exp(-1.44942)*(abs(yhat)**.89486))**2);

run;

proc reg data=c;

model count=ester/clm cli;

weight wt2;

plot count*ester/pred;

plot count*ester/conf;

run;

From spec option

Test of First and Second

Moment Specification

DF Chi-Square Pr > ChiSq

2 6.74 0.0345

Using least squares under constant variance assumption leads to estimated coefficients and 95% confidence intervals

Variable DF Estimate St. Error t Value Pr > |t|

Intercept 1 -15.99447 20.73967 -0.77 0.4423

ester 1 17.04141 0.89739 18.99 <.0001

Variable DF 95% Confidence Limits

Intercept 1 -57.12202 25.13307

ester 1 15.26186 18.82096

and 95% CI’s and prediction intervals at ester=6.4 and ester=17.1 as below.

Output Statistics

Dep Var Predicted Std Error

Obs ester count Value Mean Predict 95% CL Mean

1 6.4 84.0000 93.0706 15.9330 61.4749 124.6662

48 17.1 340.0000 275.4137 10.3198 254.9492 295.8781

72 46.6 599.0000 778.1353 25.5974 727.3748 828.8959

Obs ester 95% CL Predict Residual
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1 6.4 -111.7490 297.8901 -9.0706

48 17.1 72.0137 478.8137 64.5863

72 46.6 569.4983 986.7723 -179.1353

Allowing unequal variances but still using least squares, White’s robust estimator of the variance-covariance of
the estimated coefficients is:

Consistent Covariance of Estimates

Variable Intercept ester

Intercept 427.31188264 -24.9806879

ester -24.9806879 1.6580846777

This yields approximate 95% confidence intervals:

For β0, −15.99447± 1.98304(427.31188264)1/2 = [-56.9869 24.9979]

For β1, 17.04141± 1.98304(1.6580847)1/2 = [14.4879, 19.5949].

For E(Y |6.4) : 93.0706pm1.98304(13.2467) = [66.8019, 119.339]

where 13.2467 = (s2b0 + (6.4 ∗ ∗2) ∗ s2b1 + 2 ∗ 6.4 ∗ sb0b1)1/2, with s2b0= 427.31188264, sb0b1= -24.9806879,
s2b1= 1.6580846777.

Despite what looks like a serious issue with unequal variances the confidence intervals have not changed too much
when done using either covb or acov.

b) Using weighted least squares with weight wi = 1/([exp(−1.44942) ∗ Ŷ .89846
i ]2 leads to

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -38.91551 13.22844 -2.94 0.0040

ester 1 18.27004 0.92985 19.65 <.0001

Variable DF 95% Confidence Limits

Intercept 1 -65.14800 -12.68302

ester 1 16.42610 20.11397

Weight Dep Var Predicted Std Error

Obs ester Variable count Value Mean Predict 95% CL Mean

1 6.4 0.005437 84.0000 78.0335 8.3989 61.3781 94.6888

48 17.1 0.000780 340.0000 273.4930 7.2935 259.0297 287.9563

72 46.6 0.000122 599.0000 812.3768 32.0906 748.7400 876.0136

Obs ester 95% CL Predict Residual

1 6.4 19.0995 136.9675 5.9665

48 17.1 123.5402 423.4458 66.5070

72 46.6 428.9912 1196 -213.3768

The inferences for the intercept have changed quite a bit from using unweighted least squares. The interval for the
slope has shifter a bit, but is a bit smaller than the one from least squares with acov. The interval for E(Y |6.4) is
shifted down a bit and quite a bit tighter than the [66.8019, 119.339] from least squares with acov.

The prediction intervals are dramatically effected in some cases, as they should be because of the changing
variance. The prediction intervals under constant variance are generally too large at low ester and too small at high
ester.
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Figure 10: Ester example, no weighting.

Figure 11: Ester example, with weighting.
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7 The simple linear regression in matrix form and a few asides about

matrices.

The SLR model in matrix form, used to introduce basic idea matrices and vectors,

addition, multiplication and the mean and covariance matrix of a random vector.

Y =





Y1

Y2

.

.

.

Yn





, X =





1 X1

1 X2

. .

1 Xn−1

1 Xn





, βββ =



 β0

β1



 , ǫǫǫ =





ǫ1

ǫ2

.

.

.

ǫn





.

Y is a n × 1 matrix (or vector; with no modifier vector means column vector)

ǫǫǫ is a n × 1.

X is a n × 2 matrix

βββ is a 2 × 1 vector.

Each of Y and ǫǫǫ are random vectors. Each has a mean vector and a variance-
covariance (or dispersion) matrix. Illustrate with Y

µµµY = E(Y) =





E(Y1)
E(Y2)

.

.

.

E(Yn)





Variance-covariance matrix of Y: σ2Y (also often denotes D(Y), Cov(Y)
or ΣΣΣy) is n × n matrix with (i, i)th element = variance of Yi and (i, j)th element

equal to σ{Yi, Yj} (covariance of Yi and Yj); see (5.42).

E(ǫǫǫ) = 0 (a vector of 0’s), σ2{ǫǫǫ} = σ2In

In = n × n identity matrix; 1’s on the diagonal and 0’s on the off diagonals.
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The transpose of a column vector is a row vector and is denoted with a ′; so
Y′ = (Y1, . . . , Yn) is a 1 × n vector.

Defining βββ′ = (β0, β1) and b′ = (b0, b1) then:

E(b) = βββ, σ2{b} =



 σ2{b0} σ{b0, b1}
σ{b1, b0} σ2{b1}



 .

8 Multiple Regression models.

Yi = β0 + β1Xi1 + . . . + Xi,p−1βp−1 + ǫi

where Xi1, . . . , Xi,p−1 are known values. These may come from p − 1 different

explanatory variables (in which case the model is linear in the parameters and the
original X’s both) or they may contain functions of an original set of explanatory

variables as seen below with squares, products, etc.

• Polynomial model of degree q in one variable:

Yi = β0 +β1Xi +β2X
2
i + . . .+βqX

q
i + ǫi = β0 +β1Xi1 +β2Xi2 + . . .+βqXiq + ǫi,

where Xij = Xj
i .

• A first order (linear) model with two variables:

Yi = β0 + β1Xi1 + β2Xi2 + ǫi.

- β1 measures the change in E{Yi} per unit increase in X1 with X2 held fixed.
Same for all levels of X2.

- β2 measures the change in E{Yi} per unit increase in X2 with X1 held fixed.

Same for all X1.

• A model with two variables and interaction:

Yi = β0 + β1Xi1 + β2Xi2 + β3Xi1Xi2 + ǫi = β0 + β1Xi1 + β2Xi2 + β3Xi3 + ǫi,

where Xi3 = Xi1Xi2.
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Change in E(Y ) for unit change in X1 depends on the value of X2.

E(Yi) = β0 + [β1 + β3Xi2]Xi1 + β2Xi2

At X2 = x2, the change in E{Yi} per unit increase in X1 is β1 + β3x2.

Interaction means that the effect of one variable is dependent on what level of
the other variable is present.

Similarly if X1 = x1, the change in E{Yi} per unit increase in X2 is β2 + β3x1.

• A model with two variables with quadratic and interaction effects:

Sometimes called second order response surface model:

Yi = β0 + β1Xi1 + β2Xi2 + β3Xi1Xi2 + β4X
2
i1 + β5X

2
i2 + ǫi,

Xi3 = Xi1Xi2, Xi4 = X2
i1, Xi5 = X2

i2.

Writing the regression model in matrix form.

Y =





Y1

Y2

.

.

.
Yn





, X =





1 X11 ... X1,p−1

. . ... .
1 Xi1 ... Xi,p−1

. . ... .
1 Xn1 ... Xn,p−1





, βββ =





β0

β1

.

.

.
βp−1





, ǫǫǫ =





ǫ1

ǫ2

.

.

.
ǫn





.

With no intercept the first column of 1’s in X would be eliminated. The linear

regression model in matrix form is

Y = Xβββ + ǫǫǫ.

E(ǫǫǫ) = 0 (an n × 1 vector of 0’s.).

Estimating the parameters

The least squares estimates b0, b1, ...bp−1 minimize
∑

i(Yi−(b0+b1Xi1+...bp−1Xi,p−1))
2.

The least squares estimates are uniquely determined if the matrix X′X is non-

singular (or equivalently X which is n × p is of rank p) in which case the least
squares estimates are obtained via b = (X′X)−1X′Y.
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When X′X is singular (equivalently the rank of X is less than p) there are
infinitely many sets of coefficients which minimize the sum of squared deviations.

The β’s are not identifiable or are said to be not estimable.

- For a polynomial model of degree q, we need at least q+1 distinct values of the
explanatory variable.

- In general it is necessary that n ≥ p.

- If there are linear restrictions among the X variables (e.g., one of the X’s can

be written as a linear combination of the others) then there will be a problem.

The ith residual: ei = Yi − (b0 + b1Xi1 + . . . + bp−1Xi,p−1) = Yi − Ŷi.

Vector of residual: e = Y − Ŷ = Y − Xb

σ̂2 = MSE =
∑

i e
2
i /(n − p) is unbiased for σ2

E(bj) = βj for each j, or in matrix form E(b) = βββ. (This comes from the fact
that if we fix X then

(X′X)−1X′ is a constant matrix and so

E((X′X)−1X′Y) = (X′X)−1X′E(Y) = (X′X)−1X′Xβββ = βββ.

The Variance-covariance matrix of the estimated coefficients (this is p×p matrix):

σ2{b} = σ2(X′X)−1

.

This is estimated by s2{b} = MSE(X′X)−1.

The square root of the jth diagonal element of this matrix is s{bj}, the estimated
standard error of bj.

Inferences for the individuals coefficients

Same form as for simple linear regression.

Confidence interval for βj: bj ± t(1 − α/2, n − p)s{bj}.
Hypothesis testing: H0 : βj = 0 versus HA : β1 6= 0.
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Reject H0 if |t∗| > t(1 − α/2; n − p), where t∗ = bj/s{bj}.
Can easily generalize to one-sided tests or to null values other than 0.

This tests the significance of a coefficient for a variable given that the other

variables are in the model.

Confidence intervals for the mean value.

E(Y |Xh) = µ{Xh} = β0 + β1Xh1 + . . . + Xhp−1βp−1 = X′
hβββ

where X′
h = (1, Xh1, . . . , Xhp−1).

µ̂{Xh} = b0 + b1Xh1 + . . . + bp−1Xhp−1 = X′
hb

= estimate of E(Y ) at Xh.

V (µ̂{Xh}) = σ2{µ̂{Xh}} = X′
hσ

2{b}Xh

s2{µ̂{Xh}} = X′
hs

2{b}Xh.

s{µ̂{Xh}} = estimated standard error of µ̂{Xh}.
Confidence interval: µ̂{Xh} ± t(1 − α/2; n − p)s{µ̂{Xh}}
NOTE: The book uses E{Yh} for what we denote here by µ{Xh} and uses Ŷh

for what we denote here by µ̂{Xh}. The µ notation is just a reminder that it is the
“mean” of Y at Xh.

Simultaneous confidence intervals for g different mean values, say µ{Xhk}
k = 1 to g.

Bonferroni’s method: µ̂{Xhk} ± t(1 − α/2g; n − p)s{µ̂{Xhk}}
Scheffe’s method: µ̂{Xhk} ± (pF (1 − α, p, n − p))1/2s{µ̂{Xhk}}.
Scheffe method work for as many intervals as you want, including infinitely many

which gives a confidence “band” for the regression surface.

Prediction intervals.

Predict outcome Ynew at a fixed set of X values contained in X′
new = (1, X1, . . . , Xp−1).
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Ŷnew = b0 + b1X1 + . . . + bp−1Xp−1 = X′
newb.

The variance of Ŷnew − Ynew is σ2 + X′
newσ2{b}Xnew, estimated by

s2{pred} = MSE + X′
news2{b}Xnew.

prediction interval: Ŷnew ± t(1 − α/2; n − p)s{pred}.
Multiple prediction of g values; for kth prediction use

Bonferroni’s method: Ŷnewk ± t(1 − α/2g; n − p)s{predk}.
Scheffe’s method: Ŷnewk ± (gF (1 − α, g, n − p)1/2s{predk},

The Analysis of Variance

Total uncorrected sum of squares is SSTOU =
∑

i Y
2
i .

Total corrected sum of squares is SSTO =
∑

i(Yi − Y )2.

Error sum of Squares SSE =
∑

i(Yi − Ŷi)
2 =

∑
i e

2
i

Sum of squares due to regression (on X1, . . . , Xp−1) is SSR = SSTO −
SSE:

There are a variety of computational formulas for these sums of squares.

Define MSR = SSR/(p − 1).

Under H0 : β1 = β2 = . . . = Bp−1 = 0. F ∗ = MSR/MSE follows an F-
distribution with p − 1 and n − p degrees of freedom respectively. A test of size α

rejects H0 if F ∗ > F (1 − α, p − 1, n − p). Or equivalent if the P-value (area to the
right of the observed F ∗ under the density for the F with p-1 and n-p degrees of

freedom) is less than α. Rejecting H0 indicates that at least one of the coefficients
other than the intercept is 0.

E(MSR) = σ2 + k where k ≥ 0 and equals 0 if and only if H0 is true.

Assessing assumptions

All the inferences above depend on the assumptions on the ǫi’s be being correct.
Same exact issues here as in SLR and we evaluate the assumptions in a similar
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manner. There are more advanced diagnostics we’ll return to later using modified

residuals.

• Assess whether model is correct (the errors have mean 0) via plot of residual
versus each of the predictor and versus the fitted values. In addition we might

want to plot the residuals versus products of variables for products not in the
model which would pick up interactions. This is not often done with more

than a few predictors but typically if an important interaction was missed it
will show up in the plot versus fitted values.

With a few X’s and a designed experiment where replication is used at combi-
nations of X’s, a test for lack of fit can be used.

• Can examine constant variance by plotting the residual versus X’s or the fitted

values, but better to plot absolute or squared residuals. The latter will also help
suggest a model for the variance, within which we could test for constant vari-
ance (and that model could be used for weighted least squares). See examples

with SLR including homework problems. Typically with multiple predictors
we are not in a situation where we can exploit grouping to use Levene’s test.

(There are other test including something called the spec test associated with
White’s covariance estimator. This is discussed later).

• Assess normality of errors using residuals as before (and as before, we should be
sure we’ve dealt with any violations of the model and of the constant variance

assumption).

• If the data is collected over time or space or over some clustering of the data
(e.g., on trees, a person, etc.) and these things are not in the model then

the residuals should be plotted versus them. Patterns can be indicative of
correlations among errors or the need for other terms in the model (e.g., tree

effects) depending on whether these other factors are viewed as fixed or random.

Allowing unequal variances. The two options here are to continue to use
least squares but fix up the estimate of the covariance matrix of b. This uses

White’s estimator. The other approach is to create weights and use the weights to
do weighted least squares. See pages 71-74 of the notes and page 427 of the text.
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White’s estimator. We can now give a general expression for White’s estimator

of the variance-covariance matrix of b, which is produced by the ACOV option in
SAS.

Using results on linear transformations

σ2{b} = (X′X)−1X ′σ2{Y}X(X′X)−1.

where σ2{Y} is a diagonal matrix (assuming the ǫi are uncorrelated) with σ2
i used

as the ith diagonal element. White’s estimator produced by ACOV uses

s2
white{b} = (X′X)−1X ′DX(X′X)−1

D is a diagonal matrix with r2
1, r

2
2, . . . , r

2
n on the diagonal. This is what is labeled

“consistent covariance of estimates”.

For confidence intervals on the coefficients and linear combinations of them (in-

cluding for µ{Xh}) we use the earlier results but with s2
white{b} rather than s2{b}.

This is true for either one-at-a-time or simultaneous intervals. The computing will

often have to be customized to do this. As with a single variable earlier, you cannot
get prediction intervals under unequal variance unless you model the variance.
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Example: using House pricing data.

Reference: Albuquerque Board of Realtors

Description: The data are a random sample of records of resales

of homes from Feb 15 to Apr 30, 1993 from the files maintained by

the Albuquerque Board of Realtors. This type of data is collected

by multiple listing agencies in many

cities and is used by realtors as an information base.

Number of cases: 117

1.PRICE = Selling price ($hundreds)

2.SQFT = Square feet of living space

3.AGE = Age of home (years)

4.FEATS = Number out of 11 features (dishwasher, refrigerator,

microwave, disposer, washer, intercom, skylight(s),

compactor, dryer, handicap fit, cable TV access

5.NE = Located in northeast sector of city (1) or not (0)

6.COR = Corner location (1) or not (0)

7.TAX = Annual taxes ($)

The population of interest is the collection of all samples from which these were
sampled. Note that here Y and all of the X’s are random together. We’ll first fit a

model regressing Y =price on X1 = sqft and X2 = tax. The model is Yi|Xi1, Xi2 =
β0 + β1Xi1 + β2Xi2 + ǫi. This is a model for the price conditional on X1 and X2. It
doesn’t assume that the other variables might not influence price, but is looking at

a model conditioning on just these two variables. The effects of any other variables
are part of the error term. There can be many different regression models, one

for each set of X variables that we could consider as predictors. These can all be
correct models. An important point though is that the true coefficients associated

with a variable will depend on what other variables are in the model. For example,
there is no unique coefficient attached to sqft. It will be on thing in a model

with sqft by itself, something different with sqft and tax both in the model, etc.,
changing depending on what other predictors are in the model.
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There is evidence of changing variance via the test from the regression of log(|ei|)
on log(|Ŷi|). (Note: Testing for equal variance in the original regression by assessing

the slope in this latter model can be rather approximate since there is often unequal
variance in the regression of log(|ei|) on log(|Ŷi|), but it will give us a rough test. )

title ’Illustrating multiple regression with house price data’;

options linesize=70 pagesize=60 nodate;

data values;

infile ’house.dat’;

input PRICE SQFT AGE FEATS NE CUST COR TAX;

prod=sqft*tax; /* used to assess interaction later*/

run;

run;

proc g3d; scatter sqft*tax=price; run;

proc gplot; plot price*sqft; plot price*tax; run;

proc reg;

model price =sqft tax/clb covb cli clm p acov;

/* The acov will be accomodate unequal variances */

output out=result p=yhat r=resid; run;

proc gplot data=result;

plot resid*yhat; plot resid*prod; run;

/* could also do plots within proc reg */

proc univariate plot normal data=result;

var resid;

hist resid/kernel(color = black); /* gives a histogram with smoothing*/

run;

data b; set result;

absr=abs(resid); logar=log(absr); logp=log(yhat); run;

proc reg; model absr=yhat; model logar=logp; run;

proc reg data=values;

model price=sqft tax prod/acov; /* include an interaction */

run

Dependent Variable: PRICE

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 2 12476918 6238459 205.79 <.0001

Error 104 3152660 30314

Corrected Total 106 15629578

Root MSE 174.10927 R-Square 0.7983

Dependent Mean 1077.34579 Adj R-Sq 0.7944

Coeff Var 16.16095

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 88.33552 55.80885 1.58 0.1165

SQFT 1 0.25019 0.06208 4.03 0.0001

TAX 1 0.72072 0.10703 6.73 <.0001

Parameter Estimates

Variable DF 95% Confidence Limits
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Intercept 1 -22.33552 199.00657

SQFT 1 0.12708 0.37329

TAX 1 0.50847 0.93298

Covariance of Estimates

Variable Intercept SQFT TAX

Intercept 3114.627641 -1.898751665 0.4214277592

SQFT -1.898751665 0.0038540083 -0.005705064

TAX 0.4214277592 -0.005705064 0.0114562926

Heteroscedasticity Consistent Covariance of Estimates (THIS IS WHITE’S ESTIMATOR)

Variable Intercept SQFT TAX

Intercept 7691.7364195 -10.12658657 10.587005822

SQFT -10.12658657 0.0172232383 -0.022020091

TAX 10.587005822 -0.022020091 0.0316636978

***SAS 9.3 WILL GIVE CONFIDENCE INTERVALS AND TEST FOR ZERO COEFFICIENTS

THAT MAKE USE OF THE STANDARD ERRORS THAT ACCOMODATE UNEQUAL VARIANCE IN

THE ERRORS. THESE SHOW UP IN THE RESULTS WINDOW (A FEATURE OF 9.3) RATHER

THAN IN THE USUAL OUTPUT WINDOW.

Test of First and Second

Moment Specification

DF Chi-Square Pr > ChiSq

5 10.88 0.0538

Output Statistics

Dependent Predicted Std Error

Obs Variable Value Mean Predict 95% CL Mean

1 2050 1933 52.1014 1829 2036

2 2080 1523 38.6728 1446 1600

3 2150 1615 37.3783 1541 1689

4 2150 1998 49.1515 1900 2095

5 1999 1982 61.7311 1860 2105

etc.

Obs 95% CL Predict Residual

1 1572 2293 117.4048

2 1169 1877 557.0325

3 1262 1968 535.3446

4 1639 2356 152.4871

etc.

Tests for Normality

Test --Statistic--- -----p Value------

Shapiro-Wilk W 0.905047 Pr < W <0.0001

Kolmogorov-Smirnov D 0.122071 Pr > D <0.0100

Cramer-von Mises W-Sq 0.480528 Pr > W-Sq <0.0050

Anderson-Darling A-Sq 2.914371 Pr > A-Sq <0.0050

The REG Procedure
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Dependent Variable: absr

Parameter Standard

Variable Label DF Estimate Error

Intercept Intercept 1 -52.16382 38.10094

yhat Predicted Value of PRICE 1 0.15345 0.03371

Parameter Estimates

Variable Label DF t Value Pr > |t|

Intercept Intercept 1 -1.37 0.1739

yhat Predicted Value of PRICE 1 4.55 <.0001

Model: MODEL2

Dependent Variable: logar

Parameter Standard

Variable Label DF Estimate Error

Intercept Intercept 1 -4.20288 2.75780

logp 1 1.19376 0.39724

Variable Label DF t Value Pr > |t|

Intercept Intercept 1 -1.52 0.1305

logp 1 3.01 0.0033

The REG Procedure

Dependent Variable: PRICE

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 194.93093 159.89757 1.22 0.2256

SQFT 1 0.18923 0.10588 1.79 0.0768

TAX 1 0.59103 0.21149 2.79 0.0062

prod 1 0.00006698 0.00009413 0.71 0.4783

Consistent Covariance of Estimates

Variable Intercept SQFT TAX prod

Intercept 19818.356545 -11.47268544 -24.43223646 0.0123630282

SQFT -11.47268544 0.0152922789 -0.01028262 -3.295305E-6

TAX -24.43223646 -0.01028262 0.1032641467 -0.00002851

prod 0.0123630282 -3.295305E-6 -0.00002851 1.086783E-8

Test 1 Results for Dependent Variable PRICE

Mean

Source DF Square F Value Pr > F

Numerator 1 15424 0.51 0.4783

Denominator 103 30459

Test 1 Results using

ACOV estimates

DF Chi-Square Pr > ChiSq

1 0.41 0.5205

Anaysis using R. Here we compute White’s estimate of σ2{}
¯

(which is the covariance of the estimated coeffi-
cients) directly using matrix calculations.

detach(data)

rm(list=ls()) # clear workspace

data<-read.table("f:/s505/data/house.dat",na.strings=".") #no names
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#na.strings = indicates that a . is a missing value

attach(data)

price <- V1; sqft<-V2; age<-V3; feats<-V4

ne<- V5; cust<-V6; cor<-V7; tax<- V8

prod=sqft*tax

par(mfrow=c(2,1))

plot(sqft, price)

plot(tax,price)

regout<-lm(price ~ sqft+ tax, na.action=na.exclude)

# if we don’t use na.action = na.exclude then

# the residual vector will have only cases with

# non-missing and be of a different length than

# sqft and tax. But the regression only fits

# using the 107 cases with price, sqft and tax all not missing

summary(regout)

anova(regout)

confint(regout)

fits <-fitted(regout)

resids<-residuals(regout) #saves residuals

par(mfrow=c(2,2))

plot(sqft,resids)

plot(tax,resids)

plot(fits,resids)

plot(prod,resids)

xvalues<-data.frame(sqft,tax)

cintervals<- predict(regout,xvalues,interval = "confidence")

cintervalsum<-cbind(sqft,tax,price,cintervals)

cintervalsum

pintervals<- predict(regout,xvalues,interval = "predict")

pintervals

absresid<-abs(resids)

logabresid<-log(absresid)

logfit<-log(abs(fits))

plot(fits,absresid)

par(mfrow=c(2,2))

plot(logfit,logabresid)

summary(lm(logabresid~logfit)) # regress the log of the absolute residual

summary(lm(price~sqft + tax + prod))

# Get the X matrix for fit with sqft and tax and construct White’s estimator.

xmat<-model.matrix(regout) #xmat is the x matrix

xmat

regout2<-lm(price ~ sqft+ tax) #need residuals for just cases with no missing

r2<-residuals(regout2)^2 # this has squared residuals

D<-diag(r2) # creates a diagonal matrix with squared residuals on diagonal

xpxi<-solve(t(xmat) %*% xmat) # %*% is the matrix multiplication operator

# solve finds the inverse, in this case of X’X

acov<-xpxi %*% t(xmat) %*% D %*% xmat %*% xpxi

cat("White’s robust estimate of Cov(b)", "\n")

acov
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Showing commands that produce output and output (some edited).

> summary(regout)

Call:

lm(formula = price ~ sqft + tax, na.action = na.exclude)

Residuals:

Min 1Q Median 3Q Max

-596.40 -82.46 -6.50 59.73 610.92

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 88.33552 55.80885 1.583 0.116498

sqft 0.25019 0.06208 4.030 0.000106 ***

tax 0.72072 0.10703 6.734 9.35e-10 ***

Residual standard error: 174.1 on 104 degrees of freedom

(10 observations deleted due to missingness)

Multiple R-squared: 0.7983, Adjusted R-squared: 0.7944

F-statistic: 205.8 on 2 and 104 DF, p-value: < 2.2e-16

> anova(regout)

Analysis of Variance Table

Response: price

Df Sum Sq Mean Sq F value Pr(>F)

sqft 1 11102445 11102445 366.248 < 2.2e-16 ***

tax 1 1374474 1374474 45.341 9.347e-10 ***

Residuals 104 3152660 30314

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

> confint(regout)

2.5 % 97.5 %

(Intercept) -22.3355189 199.0065654

sqft 0.1270784 0.3732950

tax 0.5084704 0.9329755

> cintervalsum

sqft tax price fit lwr upr

1 2650 1639 2050 1932.5952 1829.2762 2035.9142

2 2600 1088 2080 1522.9675 1446.2779 1599.6572

3 2664 1193 2150 1614.6554 1540.5329 1688.7779

etc.

> pintervals

fit lwr upr

1 1932.5952 1572.2025 2292.9879
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2 1522.9675 1169.2878 1876.6473

3 1614.6554 1261.5234 1967.7874

4 1997.5129 1638.7535 2356.2724

> summary(lm(logabresid~logfit)) # regress the log of the absolute residual

Call:

lm(formula = logabresid ~ logfit)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -4.2029 2.7578 -1.524 0.13052

logfit 1.1938 0.3972 3.005 0.00332 **

Residual standard error: 1.237 on 105 degrees of freedom

(10 observations deleted due to missingness)

Multiple R-squared: 0.0792, Adjusted R-squared: 0.07043

F-statistic: 9.031 on 1 and 105 DF, p-value: 0.00332

> summary(lm(price~sqft + tax + prod))

lm(formula = price ~ sqft + tax + prod)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.949e+02 1.599e+02 1.219 0.2256

sqft 1.892e-01 1.059e-01 1.787 0.0768 .

tax 5.910e-01 2.115e-01 2.795 0.0062 **

prod 6.698e-05 9.413e-05 0.712 0.4783

Residual standard error: 174.5 on 103 degrees of freedom

(10 observations deleted due to missingness)

Multiple R-squared: 0.7993, Adjusted R-squared: 0.7934

F-statistic: 136.7 on 3 and 103 DF, p-value: < 2.2e-16

> xmat

(Intercept) sqft tax

1 1 2650 1639

2 1 2600 1088

...

117 1 970 541

> cat("White’s robust estimate of Cov(b)", "\n")

White’s robust estimate of Cov(b)

> acov

(Intercept) sqft tax

(Intercept) 7691.73642 -10.12658657 10.58700582

sqft -10.12659 0.01722324 -0.02202009

tax 10.58701 -0.02202009 0.03166370
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Continuing the example: CI’s for E(Y ) and prediction intervals.

One-at-a-time confidence intervals for E(Y ) and prediction intervals for a new Y associated with the
X vectors in the original data can be obtained automatically in either SAS or R, as shown above. These are,
however computed under the assumption of constant variance. For example, the CI for E(Y ) associated with the
first observation (with X1 = sqft = 2650 and X2 = tax = 1639) is (1829,2036) and the prediction interval associated
with those X values is (1572,2293).

If you want a CI or PI for a new set of X values (say sqft= 2500 and tax = 1000) not in the data, in SAS you can
do it by entering a new line in the day containing the values for sqft and tax but having the other values missing. In
R, you can use the technique that was in the homework 2 solutions. Here’s code you would add with partial output.
Note that when you use interval=”predict” it gives you the correct prediction interval but what it calls se.fit is just
the standard error associated with estimating E(Y ) (i.e., the same as when you use interval = “confidence”.)

#how to get CI for E(Y) and PI for Y at sqft=2500 and tax = 1000

newx<-data.frame(sqft= c(2500),tax = c(1000))

> predict(regout,newx,interval="confidence",se.fit=TRUE)

fit lwr upr

1 1434.525 1358.178 1510.872

$se.fit

[1] 38.49996

> predict(regout,newx,interval="predict",se.fit=TRUE)

fit lwr upr

1 1434.525 1080.92 1788.131

For simultaneous comparisons once you have the estimated mean and predicted value and associated standard
error you can compute the Bonferroni or Scheffe intervals similar to how we did for simple linear regression. It is
easier in this case to automate the whole process computing using the matrix-vector expressions (see pages 80-81 of
the notes). Also, to carry out computations to get various confidence intervals and tests of hypotheses based on the
use of s2

white{b} then we need to do some additional programming using matrix calculations. We’re putting off
for now doing these matrix caclulations.

8.1 Weighted least squares

Weighted least squares proceeds in the same manner as done for simple linear regression. For example, in the house
price example, if we assume that log(σi) = γ0 + γ1log(µi) then using the fit of log(ei) on log(Ŷi) yields γ̂0 = −4.2029

and γ̂1 = 1.19376, leading to using an estimate of σi of σ̂i = e−4.2029+1.19376log(Ŷi) and a weight of wi = 1/σ̂2
i .

NOTE: If you want to assess whether the weights corrected the problem of unequal variance you have to be careful
not to use the regular residuals even when those residuals come from using the weighted least squares coefficients;
i.e., Yi − Ŷi,wls. This residual will still demonstrate the original heteroscedasticity (i.e, changing variance). Instead
the residuals have to be weighted eWi = ei

√
wi. These are what need to be used in residual plots.
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8.2 Testing general linear hypotheses

We can test general linear hypotheses using the general linear/full-reduced model approach described earlier (see
page 69 of the notes and Section 2.8 of the text). In general this involves fitting the full and reduced model (with
the reduced model being a subset of the full model). We saw in the house example (see class handout) how we can
do this in R via the anova command. In SAS, there is a test command that can used within proc reg. Often the test
of interest is that some subset of the β’s equals 0.

There are also ways to construct these test using general matrix expressions, which can be applied when we allow
for unequal variances. Will return to later.

Example. Consider the house price example with model Yi = β0 + β1Xi1 + β2Xi2 + β3Xi1Xi2 where X1 = sqft
and X2 = tax. Consider testing H0 : β2 = 0 and β3 = 0 (so null model is a simple linear regression model in sqft).

proc reg;

model price=sqft;

run;

proc reg;

model price=sqft tax prod/acov;

test tax = 0, prod=0; /* Test that coefficients for sqft and prod = 0

this will automatically carry out the test

under constant variance and under unequal variance */

** MODEL WITH SQFT ONLY. SO SSE(R) = 4527133 with 105 dof.

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 11102445 11102445 257.50 <.0001

Error 105 4527133 43116

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

SQFT 1 0.60910 0.03796 16.05 <.0001

** MODEL WITH SQFT ONLY. SO SSE(F) = 3137236 with 103 dof. MSE = 30459.

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 3 12492343 4164114 136.71 <.0001

Error 103 3137236 30459

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 194.93093 159.89757 1.22 0.2256

SQFT 1 0.18923 0.10588 1.79 0.0768

TAX 1 0.59103 0.21149 2.79 0.0062

prod 1 0.00006698 0.00009413 0.71 0.4783

Test 1 Results for Dependent Variable PRICE

Mean

Source DF Square F Value Pr > F

Numerator 2 694949 22.82 <.0001

Denominator 103 30459

92



Test 1 Results using

ACOV estimates

DF Chi-Square Pr > ChiSq

2 21.06 <.0001

* THIS CHI-SQUARE TEST IS DOING THE TEST ALLOWING UNEQUAL VARIANCES.

The test option gives the F-test (under constant variance) and the chi-square test (allowing unequal variances)
that the coefficients for both tax and prod are 0. The F statistic can also be calculated as
F = ((SSE(R) − SSE)/(105 − 103))/MSE = ((4527133− 3137236)/2)/30459. = 22.82

To compute in R we do the following:

full<-lm(price~sqft+ tax + prod)

reduced<-lm(price~sqft)

anova(reduced,full)

Analysis of Variance Table

Model 1: price ~ sqft

Model 2: price ~ sqft + tax + prod

Res.Df RSS Df Sum of Sq F Pr(>F)

1 105 4527133

2 103 3137236 2 1389898 22.816 6.27e-09 ***

8.3 Additional Sums of Squares and R2

SSR(Xk, . . . , Xp−1|X1, . . . , Xk−1) is the additional sums of squares due to the inclusion of Xk, . . . , Xp−1 given
X1, . . . , Xk−1 in the model.

SSR(Xk, . . . , Xp−1|X1, . . . , Xk−1) = SSR(X1, . . . , Xp−1) − SSR(X1, . . . , Xk−1)

= SSE(X1, . . . , Xk−1) − SSE(X1, . . . , Xp−1) ≥ 0.

If we consider sets of variables (either individually or in blocks) entering the model sequentially we can decompose
SSR into additive pieces. This is useful, later for model building. In particular

SSR(X1, . . . , Xp−1) = SSR(X1) + SSR(X2|X1) + SSR(X3|X1, X2) + ...SSR(Xp−1|X1, . . . , Xp−2).

In house example above with X1 = sqft, X2 = tax and X3 = sqft ∗ tax
SSR(X2, X3|X1) = SSR(X1, X2, X3)−SSR(X1) = 12492343−11102445 = 1389898 = SSE(X1)−SSE(X1, X2, X3) =
4527133− 3137236 (differ by 1 because of rounding).

Note that when we add another variable then R2 = SSR/SSTO is increasing. R2 is always biggest with all
variables in the model.

Note also that the additional sum of squares can be used to test about subsets of coefficients being 0, as seen
with the general linear test above. If we want to test H0 : βk = βk+1 = . . . = βp−1 = 0 then the F-statistic can also
be written as F ∗ = SSR(Xk, . . . , Xp−1|X1, . . . , Xk−1)/(p − k)MSE.
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8.4 Multicollinearity

Patient satisfaction example.

Modeling patient satisfaction as a function of severity of illness and patient’s anxiety. The two predictors have a
relatively high correlation. This is exercise 6.15 in text, but the analysis here uses just the 23 cases that were in the
fourth edition.

• The t-test for each coefficient individually are non-significant but the overall F-test is significant.

• The high correlation between the two predictors translates into high correlation in the two estimated coefficients.
(The correlation matrix of the estimated coefficients is obtained using the corrb option. An element of the
corrb matrix is obtained by taking an element of covb and dividing by the product of the estimated standard
errors of the two coefficients involved.)

The high correlation in the predictors leads to high standard errors on the fitted coefficients.

• Using either severity or anxiety, there is not much of a drop in R-squared, and the fitted values are not all that
different from what is obtained using both.

title ’patient example, prob 6.15 in NWNK ’;

options pagesize=20 linesize=80;

data a;

infile ’patient.dat’;

input satis age severity anxiety; run;

proc corr; run;

proc g3d;

scatter severity*anxiety=satis; run;

proc reg;

model satis = severity anxiety/covb corrb;

output out=result1 p=yhat1 r=resid; run;

proc plot data=result;

plot resid*(yhat severity anxiety); run;

proc reg data=a;

model satis = severity;

output out=result2 p=yhat2; run;

proc reg;

model satis = anxiety;

output out=result3 p=yhat3; run;

data all;

merge result1 result2 result3; run;

proc print data=all;

var satis yhat1 yhat2 yhat3;

run;

The CORR Procedure

Pearson Correlation Coefficients

Prob > |r| under H0: Rho=0

Number of Observations

satis age severity anxiety

satis 1.00000 -0.77368 -0.58744 -0.60231

severity -0.58744 0.46661 1.00000 0.79453

anxiety -0.60231 0.49769 0.79453 1.00000
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The REG Procedure

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 2 2426.96719 1213.48359 6.53 0.0066

Error 20 3718.25021 185.91251

Corrected Total 22 6145.21739

Root MSE 13.63497 R-Square 0.3949

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 164.23055 34.15344 4.81 0.0001

severity 1 -1.11137 1.07796 -1.03 0.3148

anxiety 1 -20.23141 15.76162 -1.28 0.2140

Correlation of Estimates

Variable Intercept severity anxiety

Intercept 1.0000 -0.7611 0.2140

severity -0.7611 1.0000 -0.7945

anxiety 0.2140 -0.7945 1.0000

** Using severity only

Root MSE 13.84361 R-Square 0.3451

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 173.61403 33.87240 5.13 <.0001

severity 1 -2.21072 0.66458 -3.33 0.0032

** Using anxiety only

Root MSE 13.65540 R-Square 0.3628

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 137.43188 22.18783 6.19 <.0001

anxiety 1 -33.14267 9.58524 -3.46 0.0024

Both severity anxiety

only only

Obs satis yhat1 yhat2 yhat3

1 48 61.0183 60.8672 61.2037

2 57 66.5751 71.9208 61.2037

3 66 66.3755 67.4994 64.5180

4 70 78.9136 76.3423 77.7751

5 89 80.0250 78.5530 77.7751

23 60 62.1296 63.0780 61.2037
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The patient example demonstrates what is known as multicollinearity. Multi-

collinearity refers to the case where there are “high” correlations (in some sense)
among the predictor variables, which means there are strong linear relationships

among some of the variables.

• In the case where there is at least one perfect linear relationship among the
variables, then X ′X is singular and there are infinitely many solutions to the

least squares problem (coefficients are not identifiable).

• If you do not have enough distinct combinations of the X’s relative to the type
of model you are fitting then you will get perfect linear relationships among

the columns of the X matrix and have identifiability issues. For example,
with two predictors X1 and X2 and a model with linear and quadratic terms
and a product (so six coefficients in all), you need at least 6 distinct (X1, X2)

combinations (but not just any six distinct combinations will do).

• With severe multicollinearity there may be numerical issues in getting the in-
verse of X ′X since the X ′X matrix is close to singular.

• With high multicollinearity there will often be large standard errors in some of

the individual estimated coefficients.

• Multicollinearity can translate into high correlations in the estimated coeffi-

cients. This means that although the individual coefficients may have large
standard errors (indicating large uncertainty regarding the individual coeffi-

cients), it may be still be possible to determine linear combinations with less
uncertainty. There are ways to determine joint two dimensional confidence

ellipses for the pairs of coefficients.

• When we go to do model building we may want to screen out some predictors

that are highly correlated with other predictors.

• Section 7.6 has some additional discussion.

8.5 Polynomial and interaction models.

Models with quadratic and higher order terms and with products (leading to “inter-
actions”) fall into our previous developments with the right definitions of additional
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variables. The only issues here are i) interpreting the parameters and ii) potential
numerical issues when the variables (including original and higher order or product

terms) may be highly correlated. This is a case of multicollinearity With high cor-
relation among the predictors computation of least squares estimators is potentially

unstable because (X′X) can be close to singular.

With polynomial models numerical issues can be avoided to some extent with
the use of centered variables or the use of orthogonal polynomials. This is not

always necessary, but it is often a good precaution to center the variables .If the
centered polynomial model is used we can convert back to get coefficients in the

original unscaled version. (The book uses centered values with coefficients β0, etc.
but below I use the β’s for the model with uncentered values.)

For example if E(Yi|Xi) = β0 + β1Xi + β2X
2
i and

E(Yi|Xi) = β∗
0 + β∗

1(Xi − X̄) + β∗
2(Xi − X̄)2,

then β0 = β∗
0 − β∗

1X̄ + β∗
2X̄

2, β1 = β∗
1 − 2β∗

2X̄ and β2 = β∗
2

Example: Using yield data from problem 36 in chapter 7 of fourth

edition of our text. Response is yield and predictors are moisture (in inches)
and temp (in degrees centigrade). We’ll being by looking at yield as a function

of moisture only first for illustration. Think about the possible ways in which
this data might have arose and what the models means. Is data from different

fields in a natural setting? If so, what about natural fertility of the soil? Is it
from a greenhouse experiment with moisture and temp controlled. If so, were they
randomized? etc.

title ’yield example ’;

data a;

infile ’f:/s505/data/yield.dat’;

input yield moist temp;

moistc=(moist-10); /* centered moisture value */

m2c = moistc**2;

m2=moist*moist; t2=temp*temp; mt=moist*temp;

run;

proc g3d;

scatter moist*temp=yield;

run;

proc sort;

by moist;

run;
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proc gplot;

plot yield*temp;

by moist;

run;

proc corr; /* shows correlation of the variables*/

var yield moist m2 moistc m2c; run;

proc reg;

model yield=moist m2/covb;

plot r.*(moist temp);

model yield=moistc m2c/covb;

run;

Plot of yield*moist. Legend: A = 1 obs, B = 2 obs, etc.

55 +

|

|

|

| B A

| A A

50 + A A A

| A A

| B A A B

yield |

| A B

| A

45 +

| A

| A

| B

|

| A

40 +

---+--------------+--------------+--------------+--------------+--

6 8 10 12 14

moist

The CORR Procedure

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

moist 25 10.00000 2.88675 250.00000 6.00000 14.00000

...
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Pearson Correlation Coefficients, N = 25

Prob > |r| under H0: Rho=0

yield moist m2 moistc m2c

yield 1.00000 -0.69359 -0.76291 -0.69359 -0.63081

moist -0.69359 1.00000 0.99307 1.00000 0.00000

m2 -0.76291 0.99307 1.00000 0.99307 0.11750

moistc -0.69359 1.00000 0.99307 1.00000 0.00000

m2c -0.63081 0.00000 0.11750 0.00000 1.00000

Dependent Variable: yield

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 2 212.18594 106.09297 79.90 <.0001

Error 22 29.21166 1.32780

Corrected Total 24 241.39760

Root MSE 1.15230 R-Square 0.8790

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 28.44114 3.27893 8.67 <.0001

moist 1 5.09514 0.69344 7.35 <.0001

m2 1 -0.29286 0.03443 -8.51 <.0001

Covariance of Estimates

Variable Intercept moist m2

Intercept 10.751407317 -2.247780111 0.1090694991

moist -2.247780111 0.4808542263 -0.023710761

m2 0.1090694991 -0.023710761 0.001185538

Model: MODEL2

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 2 212.18594 106.09297 79.90 <.0001

Error 22 29.21166 1.32780

Corrected Total 24 241.39760

Root MSE 1.15230 R-Square 0.8790

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 50.10686 0.35915 139.52 <.0001

moistc 1 -0.76200 0.08148 -9.35 <.0001

m2c 1 -0.29286 0.03443 -8.51 <.0001

Covariance of Estimates

Variable Intercept moistc m2c

Intercept 0.128986538 0 -0.009484304

moistc 0 0.006639013 0

m2c -0.009484304 0 0.001185538

Here the centering is not necessary to deal with any numerical instability.
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Fitting a model with moisture and temperature with quadratic terms and product.

proc reg;

model yield = moist temp;

plot (r.)*(moist temp);

run;

proc reg;

model yield = moist temp m2 t2 mt/acov;

output out=result2 r=resid p=yhat;

plot r.*(moist temp p.);

run;

tvars: test temp=0, t2=0, mt=0; run;

proc g3d data=result2;

plot moist*temp=yhat; /* plot fitted surface */

run;

FULL FIT

Sum of Mean

Source DF Squares Square F Value Prob>F

Model 5 227.58719 45.51744 62.622 0.0001

Error 19 13.81041 0.72686

C Total 24 241.39760

Root MSE 0.85256 R-square 0.9428

Parameter Standard T for H0:

Variable DF Estimate Error Parameter=0 Prob > |T|

INTERCEP 1 -27.900286 50.13253545 -0.557 0.5843

MOIST 1 5.216143 1.06898733 4.880 0.0001

TEMP 1 5.622143 4.50546693 1.248 0.2272

M2 1 -0.292857 0.02547520 -11.496 0.0001

T2 1 -0.138571 0.10190079 -1.360 0.1898

MT 1 -0.005500 0.04262816 -0.129 0.8987

Test tvars Results for Dependent Variable yield

Mean

Source DF Square F Value Pr > F

Numerator 3 5.13375 7.06 0.0022

Denominator 19 0.72686

Test tvars Results using Heteroscedasticity

Consistent Covariance Estimates

DF Chi-Square Pr > ChiSq

3 53.62 <.0001

ABOVE TESTING USING WHITE’S ESTIMATOR.

Using THE full/reduced model approach the F-test of the null hypothesis that the coefficient
for temp, temp-squared and temp*moist are all 0 can also be constructed via F ∗ = (29.2116 −
13.81041)/3 ∗ .72686 = 7.06 and compared to an F with 3 and 19 degrees of freedom. 29.2116 is
SSE(R) from model with just m and m2, while SSE(F) = 13.8104 is from the full fit.
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Summary of the key points in the yield, moisture, temperature exam-

ple.

• When fitting a quadratic model in moisture alone.

- The center X and X2 had zero correlation

- The fitted values (which can be used as estimated means or predictions at the
corresponding X) are the same whether the fit is done in terms of the centered

or uncentered values.

- If b are the fitted coefficients with original X’s and b∗ the fitted coefficients

using centered X’s, then using the fact that β0 = β∗
0 − β∗

1X̄ + β∗
2X̄

2, β1 =
β∗

1 − 2β∗
2X̄ and β2 = β∗

2 ,

b = Ab∗, where

A =





1 −10 100

0 1 −20
0 0 1



 .

With s2{b} and s2{b∗} denoting the estimated variance-covariance matrix for

b and b∗ respectively, s2{b} = As2{b∗}A′.

These results let you get the results for coefficients in the uncentered X’s from

those of the centered X’s which are generally more accurate (numerically).

• Test about various subsets of coefficients equaling 0 can be obtained either
directly using the full-reduced model approach or using the test option in SAS.

• One should not look through the collection of individual t-tests to decide as
a group whether some variables should be eliminated. In the full fit (with

linear, quadratic and product) the three t-test associated with coefficients for
variables involving temp are all non-significant, but the F-test that all three of

these coefficients are 0 simultaneously is significant (with a p-value of .0022).

• The residual plots indicate that there is still a little problem with the model
even using quadratic models plus interaction. If we drop the observations at
the highest temp the fit is improved.
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Illustration of issue with identifiability/estimability of regression coef-
ficients. Trying to fit second order model with interaction using different combi-

nations of moisture and temperature. There are 6 parameters in this model. There
is a unique solution/parameters are identifiable if X matrix has rank 6 or equiv-

alently X ′X nonsingular (i.e. has rank 6 which is true if and only if determinant
is non-zero). We know we need at least six distinct X1, X2 combinations, but not
just and combination will do.

THESE TWO LEAD TO BEING ABLE TO ESTIMATE THE PARAMETERS

3 x 3 6 distinct combos with center point

6.0 20.0

X1 X2 6.0 22.0

6.0 20.0 6.0 24.0

6.0 22.0 10.0 22.0

6.0 24.0 14.0 20.0

10.0 20.0 14.0 24.0

10.0 22.0

10.0 24.0

14.0 20.0

14.0 22.0

14.0 24.0

CANNOT ESTIMATE WITH THESE TWO DESIGNS

3 x 2 4 x 2

6.0 20.0 6.0 20.0

6.0 22.0 6.0 22.0

10.0 20.0 8.0 20.0

10.0 22.0 8.0 22.0

14.0 20.0 10.0 20.0

14.0 22.0 10.0 22.0

14.0 20.0

14.0 22.0
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Creating scatterplot matrices: Using the house data to illustrate

In R

pairs(~price+sqft+tax+age)

Using SAS

proc corr plots=matrix(histogram);

var price sqft tax age;

price

1000 2000 3000 0 10 20 30 40 50

50
0

10
00

15
00

20
00

10
00

20
00

30
00

sqft

tax

50
0

10
00

15
00

500 1000 1500 2000

0
10

20
30

40
50

500 1000 1500

age

Figure 12: Scatterplot matrix for patient data from R
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8.6 Qualitative Predictors and regression for different groups

Suppose we have g groups based on a categorical/qualitative predictor (race, gen-
der, state) and a single quantitative predictor X1 (for simplicity to begin with). If

observation i is from group j, consider the model

Yi = βj0 + βj1Xi1 + ǫi,

which allows different coefficients for each group.

Define: Zij = 1 if observation i is in group j and 0 otherwise. The model can be
expressed as:

Yi = β10Zi1 + β20Zi2 + . . . βg0Zig + β11Zi1Xi1 + β21Zi2Xi1 + . . . + βg1ZigXi1 + ǫi.

If we fit this model directly note that it will have no overall intercept term.

Alternatively,

Yi = β0 +β1Xi1 +β2Zi1 +βg+1Zig +βg+2Zi1Xi1 +βg+3Zi2Xi1 + . . .+β2g+1ZigXi1 + ǫi.

where β0 + βj+1 = βj0, β1 + βg+1+j = βj1.

Will have some trouble fitting the last model as is. This version has
a total of 1 + 1 + g + g = 2g +2 terms while the first has 2g terms. Since
∑g

j=1 ZijXi1 = Xi1 and
∑g

j=1 Zij = 1 (corresponding to the first two terms in the
model, 1 for the intercept and the Xi1) there are exact linear restrictions among the

columns of the X matrix. The X′X will be singular. The problem is in retaining
X and all XZ products in the model and the intercept and all of the Z terms.
This can be alleviated by dropping one of the XZ terms and dropping one of the Z

terms. If you drop ZigXi1 and Zig, then βg0 = β0 and βg1 = β1 (so β0 and β1 are the
intercept and slope for the last group). The other coefficients represent differences

(effects) compared to this group; e.g., β0 + β2 = β1 so the coefficient β2 for Zi1 is
β1 − β0 = β1 − βg and the coefficient for Xi1Zij is βj1 − βjg.

All of the above is easily extended to handle additional quantitative X variables
or more than one categorical predictor.
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The objective is to estimate the regression coefficients for each group and com-

pare them. In the general model,

• The slope is constant if and only if all of the coefficients for the ZX products
equal 0.

• The intercept is constant if and only if all of the coefficients of the Z terms

equal 0.

We can use proc reg or lm in R with suitable dummy variables and fit either
model. We can also use glm in SAS or lm in R and do fits without explicitly

creating the dummy variables.

Example: Using the brain data. Relate fsiq (full-scale IQ) to mricount

(indicator of brain size) for four groups (gender crossed with FSIQ grouping, since
students were stratified based on FSIQ). Below shows fits and inferences for a

variety of models, first for SAS and then with R.

option ls=80 nodate;

title ’Brain Data’;

data a;

infile ’Brain.dat’;

input Gender $ FSIQ VIQ PIQ Weight Height mriCount;

z1=0;

z2=0;

z3=0;

z4=0;

if fsiq > 129 and Gender=’Male’ then group=’M1’;

if fsiq > 129 and Gender=’Female’ then group=’F1’;

if fsiq < 104 and Gender=’Male’ then group=’M2’;

if fsiq < 104 and Gender=’Female’ then group=’F2’;

if group=’M1’ then z1=1;

if group=’F1’ then z2=1;

if group=’M2’ then z3=1;

if group=’F2’ then z4=1;

mz1=mricount*z1;

mz2=mricount*z2;

mz3=mricount*z3;

mz4=mricount*z4;

run;

proc print;

var gender fsiq group z1 z2 z3 z4;

run;

proc sort; by group; run;
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proc gplot; plot fsiq*mricount; by group; run;

proc reg; model fsiq=mricount; by group; run;

proc reg;

model fsiq=mricount z1 z2 z3 z4 mz1 mz2 mz3 mz4; /* will have trouble*/

model fsiq=mricount z1 z2 z3 mz1 mz2 mz3;

model fsiq=z1 z2 z3 z4 mz1 mz2 mz3 mz4/noint;

model fsiq = mz1 mz2 mz3 mz4; /* model with common intercept*/

model fsiq= z1 z2 z3 z4 mricount/noint; /* model with common slope */

model fsiq= mricount; /* model with common intercept and slope */

run;

/* The test statement in proc reg will test linear hypotheses.

If the acov option is expressed earlier, these tests are based

on the robust estimate of the variance-covariance of the coeffiicents*/

proc reg;

model fsiq=mricount z1 z2 z3 mz1 mz2 mz3;

commoni: test z1=0,z2=0,z3=0; /* test for equal intercepts*/

commons: test mz1=0,mz2=0,mz3=0; /* test for equal slopes*/

run;

Obs Gender FSIQ group z1 z2 z3 z4

1 Female 133 F1 0 1 0 0

2 Male 140 M1 1 0 0 0

5 Female 137 F1 0 1 0 0

6 Female 99 F2 0 0 0 1

----------------------------------- group=F1 -----------------------------------

Root MSE 3.09716 R-Square 0.1290

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 119.16618 13.94076 8.55 <.0001

mriCount 1 0.00001727 0.00001586 1.09 0.3082

----------------------------------- group=F2 -----------------------------------

Root MSE 7.39782 R-Square 0.1839

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 25.55433 47.67909 0.54 0.6066

mriCount 1 0.00007534 0.00005611 1.34 0.2162

----------------------------------- group=M1 -----------------------------------

Root MSE 3.77132 R-Square 0.0557

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 121.44475 24.84643 4.89 0.0012

mriCount 1 0.00001749 0.00002545 0.69 0.5114

----------------------------------- group=M2 -----------------------------------

Root MSE 6.52693 R-Square 0.5107

Parameter Standard
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Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -11.92568 35.85256 -0.33 0.7480

mriCount 1 0.00011069 0.00003831 2.89 0.0202

-----------------------------------------------------------------------------------

The REG Procedure

Model: MODEL1

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 7 21649 3092.67847 102.12 <.0001

Error 32 969.15071 30.28596

Corrected Total 39 22618

Root MSE 5.50327 R-Square 0.9572

NOTE: Model is not full rank. Least-squares solutions for the parameters are

not unique. Some statistics will be misleading. A reported DF of 0 or B

means that the estimate is biased.

NOTE: The following parameters have been set to 0, since the variables are a

linear combination of other variables as shown.

z4 = Intercept - z1 - z2 - z3

mz4 = mriCount - mz1 - mz2 - mz3

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept B 25.55433 35.46867 0.72 0.4765

mriCount B 0.00007534 0.00004174 1.81 0.0805

z1 B 95.89042 50.72072 1.89 0.0678

z2 B 93.61185 43.26231 2.16 0.0381

z3 B -37.48001 46.60315 -0.80 0.4272

z4 0 0 . . .

mz1 B -0.00005785 0.00005586 -1.04 0.3081

mz2 B -0.00005807 0.00005037 -1.15 0.2574

mz3 B 0.00003535 0.00005278 0.67 0.5078

mz4 0 0 . . .

-----------

Model: MODEL2

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 7 21649 3092.67847 102.12 <.0001

Error 32 969.15071 30.28596

Corrected Total 39 22618

Root MSE 5.50327 R-Square 0.9572

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 25.55433 35.46867 0.72 0.4765

mriCount 1 0.00007534 0.00004174 1.81 0.0805

z1 1 95.89042 50.72072 1.89 0.0678

z2 1 93.61185 43.26231 2.16 0.0381

z3 1 -37.48001 46.60315 -0.80 0.4272

mz1 1 -0.00005785 0.00005586 -1.04 0.3081
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mz2 1 -0.00005807 0.00005037 -1.15 0.2574

mz3 1 0.00003535 0.00005278 0.67 0.5078

-------

Model: MODEL3

NOTE: No intercept in model. R-Square is redefined.

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 8 536485 67061 2214.25 <.0001

Error 32 969.15071 30.28596

Root MSE 5.50327 R-Square 0.9982

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

z1 1 121.44475 36.25693 3.35 0.0021

z2 1 119.16618 24.77096 4.81 <.0001

z3 1 -11.92568 30.22956 -0.39 0.6958

z4 1 25.55433 35.46867 0.72 0.4765

mz1 1 0.00001749 0.00003713 0.47 0.6409

mz2 1 0.00001727 0.00002819 0.61 0.5446

mz3 1 0.00011069 0.00003230 3.43 0.0017

mz4 1 0.00007534 0.00004174 1.81 0.0805

----

Model: MODEL4

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 4 21199 5299.67376 130.70 <.0001

Error 35 1419.20496 40.54871

Root MSE 6.36779 R-Square 0.9373

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 68.66363 17.68744 3.88 0.0004

mz1 1 0.00007148 0.00001821 3.93 0.0004

mz2 1 0.00007460 0.00002021 3.69 0.0008

mz3 1 0.00002473 0.00001899 1.30 0.2014

mz4 1 0.00002467 0.00002092 1.18 0.2463

-------

Model: MODEL5

NOTE: No intercept in model. R-Square is redefined.

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 5 536303 107261 3262.29 <.0001

Error 35 1150.76201 32.87891

Root MSE 5.73401 R-Square 0.9979

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

z1 1 87.52915 17.23346 5.08 <.0001

z2 1 88.49221 15.50821 5.71 <.0001

z3 1 42.67086 16.51753 2.58 0.0141

z4 1 45.14449 15.02337 3.00 0.0049

mriCount 1 0.00005226 0.00001757 2.97 0.0053

----

Model: MODEL6
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Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 2892.98916 2892.98916 5.57 0.0235

Error 38 19725 519.07660

Root MSE 22.78325 R-Square 0.1279

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 5.16770 46.00819 0.11 0.9112

mriCount 1 0.00011915 0.00005047 2.36 0.0235

------

FROM LAST REG WITH TEST STATEMENTS

Test commoni Results for Dependent Variable FSIQ

Mean

Source DF Square F Value Pr > F

Numerator 3 150.01808 4.95 0.0062

Denominator 32 30.28596

Test commons Results for Dependent Variable FSIQ

Mean

Source DF Square F Value Pr > F

Numerator 3 60.53710 2.00 0.1339

Denominator 32 30.28596

You can use proc GLM to do some of the analysis without having to construct the indicator/dummy variables
yourself. proc glm does not have all of the same features of proc reg, but it easily handles qualitative variables through
use of the class statement. It also has an estimate command that lets us get inferences for any linear combination of
the coefficients.

proc glm;

class group;

model fsiq = group group*mricount/solution noint;

run;

PARTIAL OUTPUT

Source DF Type III SS Mean Square F Value Pr > F

group 4 1061.138247 265.284562 8.76 <.0001

mriCount*group 4 472.449289 118.112322 3.90 0.0109

Standard

Parameter Estimate Error t Value Pr > |t|

group F1 119.1661770 24.77096356 4.81 <.0001

group F2 25.5543305 35.46867007 0.72 0.4765

group M1 121.4447461 36.25692733 3.35 0.0021

group M2 -11.9256789 30.22956491 -0.39 0.6958

mriCount*group F1 0.0000173 0.00002819 0.61 0.5446

mriCount*group F2 0.0000753 0.00004174 1.81 0.0805

mriCount*group M1 0.0000175 0.00003713 0.47 0.6409

mriCount*group M2 0.0001107 0.00003230 3.43 0.0017
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proc glm;

model fsiq=z1 z2 z3 z4 mz1 mz2 mz3 mz4/noint;

estimate ’slope1 versus slope 2’ mz1 1 mz2 -1;

run;

The GLM Procedure

A LOT OF OTHER OUTPUT ELIMINATED

Standard

Parameter Estimate Error t Value Pr > |t|

slope1 versus slope 2 2.2112845E-7 0.00004662 0.00 0.9962

Working with qualitative variables in R. Doing the Brain example. Exploiting the use of model matrices
to computed dummy variables.

> brain<-read.table("f:/s505/Brain_name.dat",header=T)

> brain #list the data

Gender FSIQ VIQ PIQ Weight Height mriCount

1 F 133 132 124 118 64.5 816932

2 M 140 150 124 . 72.5 1001121

3 M 139 123 150 143 73.3 1038437

38 F 88 86 94 139 64.5 893983

39 M 81 90 74 148 74.0 930016

40 M 89 91 89 179 75.5 935863

> attach(brain)

> # defines iqgroups

> iqgroup <-rep(2,length(FSIQ)) # initializes vector to 2

> for (i in 1:length(FSIQ))

+ {if (FSIQ[i] > 129) {iqgroup[i]=1}} # changes iqgroup to 1

> groupi<-factor(iqgroup) # turn iqgroup into a factor variable

> # create dummy variables by using the model matrices that

> # come if fit a model with a qualitative grouping variable only

> # as a predictor. The -1 in the model indicates a grouping variable

> x1<-model.matrix(lm(FSIQ~-1 + groupi)) # no intercept is specified by -1

> x2<-model.matrix(lm(FSIQ~-1 + Gender))

> x1 # the first col of x1 is the indicator for group1, the second for group2

group1 group2

1 1 0

2 1 0

3 1 0

4 1 0

37 1 0

38 0 1

39 0 1

40 0 1
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> x2 # the first col of x2 is the indicator for female the second for male

GenderF GenderM

1 1 0

2 0 1

3 0 1

4 0 1

37 0 1

38 1 0

39 0 1

40 0 1

> z1<-x1[,1]*x2[,2]

> z2<-x1[,1]*x2[,1]

> z3<-x1[,2]*x2[,2]

> z4<-x1[,2]*x2[,1]

> mz1<-mriCount*z1

> mz2<-mriCount*z2

> mz3<-mriCount*z3

> mz4<-mriCount*z4

> # Fit a model with separate coefficients for each group. Assumes common

> # variance

> full<-lm(FSIQ~-1+z1+z2+z3+z4 + mz1+mz2+ mz3 + mz4)

> # could also have used

> # full<-lm(-1+z1+z2+z3+z4 + I( mriCount*z1)+ I(mriCount*z2) + I(mriCount *z3) +I(mriCount*z4))

> summary(full)

Call:

lm(formula = FSIQ ~ -1 + z1 + z2 + z3 + z4 + mz1 + mz2 + mz3 +

mz4)

Residuals:

Min 1Q Median 3Q Max

-10.0187 -2.9737 0.2036 2.8841 14.5693

Coefficients:

Estimate Std. Error t value Pr(>|t|)

z1 1.214e+02 3.626e+01 3.350 0.00209 **

z2 1.192e+02 2.477e+01 4.811 3.44e-05 ***

z3 -1.193e+01 3.023e+01 -0.395 0.69583

z4 2.555e+01 3.547e+01 0.720 0.47646

mz1 1.749e-05 3.713e-05 0.471 0.64088

mz2 1.727e-05 2.819e-05 0.612 0.54456

mz3 1.107e-04 3.230e-05 3.427 0.00170 **

mz4 7.534e-05 4.174e-05 1.805 0.08048 .

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Residual standard error: 5.503 on 32 degrees of freedom

Multiple R-squared: 0.9982, Adjusted R-squared: 0.9977

F-statistic: 2214 on 8 and 32 DF, p-value: < 2.2e-16

> # try to fit with intercept, mriCount and all z’s and mz’s

> lm(FSIQ~ z1+z2+z3+z4 + mriCount+ mz1+mz2+ mz3 + mz4)

Call:

lm(formula = FSIQ ~ z1 + z2 + z3 + z4 + mriCount + mz1 + mz2 +

mz3 + mz4)

Coefficients:

(Intercept) z1 z2 z3 z4 mriCount

2.555e+01 9.589e+01 9.361e+01 -3.748e+01 NA 7.534e-05

mz1 mz2 mz3 mz4

-5.785e-05 -5.807e-05 3.535e-05 NA

> # fit model with intercept, mriCount and eliminate last z and mz

> lm(FSIQ~ z1+z2+z3 + mriCount+ mz1+mz2+ mz3)

Call:

lm(formula = FSIQ ~ z1 + z2 + z3 + mriCount + mz1 + mz2 + mz3)

Coefficients:

(Intercept) z1 z2 z3 mriCount mz1

2.555e+01 9.589e+01 9.361e+01 -3.748e+01 7.534e-05 -5.785e-05

mz2 mz3

-5.807e-05 3.535e-05

> # model with constant intercept

> commoni<-lm(FSIQ~ mz1+mz2+ mz3 + mz4)

> # model with constant slope

> commons<-lm(FSIQ~ -1+ z1+ z2+ z3 +z4 + mriCount)

> # model with common intercept and slope

> commonboth<-lm(FSIQ ~ mriCount)

> # test for equal intercepts

> anova(commoni,full)

Analysis of Variance Table

Model 1: FSIQ ~ mz1 + mz2 + mz3 + mz4

Model 2: FSIQ ~ -1 + z1 + z2 + z3 + z4 + mz1 + mz2 + mz3 + mz4

Res.Df RSS Df Sum of Sq F Pr(>F)

1 35 1419.20

2 32 969.15 3 450.05 4.9534 0.006165 **

> # test for equal slopes

> anova(commons,full)

Analysis of Variance Table

Model 1: FSIQ ~ -1 + z1 + z2 + z3 + z4 + mriCount

112



Model 2: FSIQ ~ -1 + z1 + z2 + z3 + z4 + mz1 + mz2 + mz3 + mz4

Res.Df RSS Df Sum of Sq F Pr(>F)

1 35 1150.76

2 32 969.15 3 181.61 1.9989 0.1339

> # working with group which has four categories

> group<-paste(Gender, groupi)

> group

[1] "F 1" "M 1" "M 1" "M 1" "F 1" "F 2" "F 1" etc.

[23] "F 1" "M 1" "F 2" "M 1" "F 2" "M 2" "F 2" etc.

> lm(FSIQ ~ group*mriCount) # This will use an intercept and mriCoung plus interactions.

Coefficients:

(Intercept) groupF 2 groupM 1 groupM 2 mriCount

1.192e+02 -9.361e+01 2.279e+00 -1.311e+02 1.727e-05

groupF 2:mriCount groupM 1:mriCount groupM 2:mriCount

5.807e-05 2.211e-07 9.343e-05

> lm(FSIQ ~-1 + group + mriCount*group)

Coefficients:

groupF 1 groupF 2 groupM 1 groupM 2

1.192e+02 2.555e+01 1.214e+02 -1.193e+01

mriCount groupF 2:mriCount groupM 1:mriCount groupM 2:mriCount

1.727e-05 5.807e-05 2.211e-07 9.343e-05

Above assumes constant variance throughout.Under this assumption

- The various ways of fitting the full model (different intercepts and slopes) lead
to the same estimated coefficients.

- When SAS or R encounters a model “not of full rank” (there are linear restric-

tions among the predictors) it sets certain parameters to 0. Here that corresponds
to dropping the last Z and the last ZX terms.

- The test for equal slopes and coefficients are obtained directly using the test
option in proc reg in SAS or the anova command in R. They can also be obtained

using the full-reduced/general linear test approach. For example, for equal slopes,
F = [(1150.75201− 969.15071)/3]/30.28596 = 2.00.

- Note that estimated coefficients from different groups are uncorrelated so for

comparisons between groups you can also construct tests and confidence intervals
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directly from the estimates and standard errors. For example to compare the slope

in group 1 to the slope in group 2 the standard error for the estimated difference in
slopes, b11 − b21 is SE =

√
(s{b11}2 + s{b21}2. From this you can form a confidence

interval or a test. The degrees of freedom involved is degrees of freedom associated
with MSE (recall assuming equal variance throughout at this point). Earlier, this
was done using the estimate option in GLM in SAS. In R there are various ways

to extract the information you need to compute this.

114



The Brain example. Allowing unequal variances.

There is some evidence of different variances among the groups. To accout for
this

1. Fit one of big modesl above allowing different variances everywhere and use

ACOV. If you run each group with acov or one overall regression with acov, you
get the same variance-covariance matrix associated with each pair of coefficients

for a group. Estimates from different groups are uncorrelated. The test statements
will be carried out under acov (using a chi-square test) if that option is chosen.

2. Assume equal variance within a group but different variance among groups.
This won’t change the estimated coefficients but will change variances-covariances
of estimated coefficients. Can run proc reg by group and get variance-covariance

for each. An easier, but equivalent approach, is to give weight 1/MSEj to an
observation from group j and run one big model with weighting. Can now use one

big model in reg or glm and carry out various test, estimates, etc.

9 Variable Selection/model building

Have a response Y and a collection of P − 1 predictors X1, . . . , XP−1 (which may
be made up of some original variables and functions of them). Note the use of P

here. The number of coefficients in a particular subset of interest will be denoted
by p. The goal is to determine which of the predictors to retain in a final model.

There are two perspectives here:

• Trying to determine the “correct” model.

E(Y |X1, . . . , XP−1) = β0 + β1X1 + . . . + βjXj + . . . βP−1XP−1. The true model
has some βj’s equal to 0 and we are trying to decide which those are. Note

that this is the “correct” model in the sense of the regression function given
all of the P − 1 predictors. There can still be other correct models based on
conditioning on a different set of predictors. Just because the coefficient of Xj

is 0 in the conditional model with all of the predictors does not mean it has to
be 0 in a conditional model on a different subset of predictors.
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• Trying to come up with a good model for prediction.

We are not concerned with estimating coefficients associated with particular
variables, but simply in coming up with a parsimonious model that does a

good job of prediction. Here we want to penalize models that have too many
parameters.

p − 1 will indicate the number of variables in a particular subset under consid-
eration (so p parameters in total).

1. ALL POSSIBLE SUBSETS. Examine fits over all subsets over various sizes
(p = 1 to P ). There are many proposed measures to base decision on: .

(a) R2 = 1 − (SSE/SSTO). (Always largest with all variables.)

(b) Adjusted R-square: R2
a = 1 − MSE

(SSTO/(n−1))
= 1 − a + aR2,

where a = (n − 1)/(n− p). Larger R2
a corresponds to smaller MSE.

(c) AIC (Akaike Information criterion) = nlog(SSEp) − nlog(n) + 2p. Has

become very popular. Smaller is better

(d) Mallows C. For a subset with p variables

C =
SSEsubset

MSEP
− (n − 2p),

where MSEP is MSE from fit with all variables.

The motivation for Mallow’s C is to minimize to total expected squared
error

∑

i

E[(Ŷi − µi)
2] =

∑

i

(E(Ŷi − µi)
2 + σ2{Ŷi)},

where Ŷi is an estimator of µi = E(Yi) based on the subset under consider-
ation.

This measure trades off between bias and variance. Good subsets are ones

with small C and with C less than or close to p. A C less than or close to
p indicates little bias. When you use all variables then Cp = p.

Note that SAS gives you NUMBER IN MODEL which is p− 1 so you need
to compare SAS’s C(p) to NUMBER IN MODEL + 1.

(e) Others: Press, SBC (Bayesian criteriaon; smaller is better)
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2. Forward selection

3. Backward selection

4. Stepwise selection

Using example from the book. Will work with logsurv = log(survival) as they
did there since linearity is more reasonable on this scale. For prediction can convert
back to survival by exponentiating. There are issues though in interpreting the back
transformation as an estimator of expected survival because the transformation is
non-linear. After doing model building here with log-survival there is more to be
done if objective is to estimate expected survival and variability in survival. Only
four variables here so good for illustration. Can list all subsets easily.

title ’surgical unit example in ch 8.’;

data a;

infile ’surg.dat’;

input blood prog enz liver surv logsurv;

run;

proc gplot;

plot (logsurv surv)*(blood prog enz liver);

run;

proc corr; run;

The CORR Procedure

6 Variables: blood prog enz liver surv logsurv

Variable N Mean Std Dev Sum Minimum Maximum

blood 54 5.78333 1.60303 312.30000 2.60000 11.20000

prog 54 63.24074 16.90253 3415 8.00000 96.00000

enz 54 77.11111 21.25378 4164 23.00000 119.00000

liver 54 2.74426 1.07036 148.19000 0.74000 6.40000

surv 54 197.16667 145.29940 10647 34.00000 830.00000

logsurv 54 2.20614 0.27378 119.13180 1.53150 2.91910

Pearson Correlation Coefficients, N = 54

Prob > |r| under H0: Rho=0

blood prog enz liver surv logsurv

blood 1.00000 0.09012 -0.14963 0.50242 0.37252 0.34640

0.5169 0.2802 0.0001 0.0055 0.0103

prog 0.09012 1.00000 -0.02361 0.36903 0.55398 0.59289

0.5169 0.8655 0.0060 <.0001 <.0001

enz -0.14963 -0.02361 1.00000 0.41642 0.58024 0.66512

0.2802 0.8655 0.0017 <.0001 <.0001

liver 0.50242 0.36903 0.41642 1.00000 0.72233 0.72621

0.0001 0.0060 0.0017 <.0001 <.0001
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surv 0.37252 0.55398 0.58024 0.72233 1.00000 0.91310

0.0055 <.0001 <.0001 <.0001 <.0001

logsurv 0.34640 0.59289 0.66512 0.72621 0.91310 1.00000

0.0103 <.0001 <.0001 <.0001 <.0001

proc reg;

model logsurv=blood prog enz liver/selection =rsquare; run;

The REG Procedure

Dependent Variable: logsurv

R-Square Selection Method

Number in

Model R-Square Variables in Model

1 0.5274 liver

1 0.4424 enz

1 0.3515 prog

1 0.1200 blood

----------------------------------------------

2 0.8130 prog enz

2 0.6865 enz liver

2 0.6496 prog liver

2 0.6458 blood enz

2 0.5278 blood liver

2 0.4381 blood prog

----------------------------------------------

3 0.9723 blood prog enz

3 0.8829 prog enz liver

3 0.7192 blood enz liver

3 0.6500 blood prog liver

----------------------------------------------

4 0.9724 blood prog enz liver

proc reg data=a outest=selectarsq;

model logsurv=blood prog enz liver/aic sbc selection =adjrsq;

run;

Adjusted R-Square Selection Method

Number in Adjusted

Model R-Square R-Square AIC SBC Variables in Model

3 0.9707 0.9723 -326.6674 -318.71149 blood prog enz

4 0.9701 0.9724 -324.7107 -314.76583 blood prog enz liver

3 0.8759 0.8829 -248.7297 -240.77375 prog enz liver

2 0.8056 0.8130 -225.4455 -219.47859 prog enz

3 0.7023 0.7192 -201.4980 -193.54211 blood enz liver

2 0.6742 0.6865 -197.5576 -191.59067 enz liver

2 0.6358 0.6496 -191.5392 -185.57221 prog liver

2 0.6319 0.6458 -190.9594 -184.99243 blood enz

3 0.6290 0.6500 -189.6024 -181.64646 blood prog liver

1 0.5183 0.5274 -177.3845 -173.40655 liver

118



2 0.5093 0.5278 -175.4366 -169.46964 blood liver

1 0.4317 0.4424 -168.4549 -164.47695 enz

2 0.4160 0.4381 -166.0369 -160.06993 blood prog

1 0.3390 0.3515 -160.3025 -156.32457 prog

1 0.1031 0.1200 -143.8168 -139.83885 blood

The SAS file selectarsq contains the different measures and other things.

Can be sorted by differnt measures

proc print data=selectarsq;

Obs _MODEL_ _TYPE_ _DEPVAR_ _RMSE_ Intercept blood prog enz

1 MODEL1 PARMS logsurv 0.04687 0.48362 0.069225 .009294538 .009523639

2 MODEL1 PARMS logsurv 0.04733 0.48876 0.068520 .009254111 .009474546

3 MODEL1 PARMS logsurv 0.09646 0.94226 . .007898656 .006999735

4 MODEL1 PARMS logsurv 0.12070 0.90742 . .009863328 .008753048

5 MODEL1 PARMS logsurv 0.14937 1.16811 0.040120 . .006966215

6 MODEL1 PARMS logsurv 0.15626 1.38878 . . .005652541

7 MODEL1 PARMS logsurv 0.16522 1.40853 . .006092336 .

8 MODEL1 PARMS logsurv 0.16611 1.02711 0.077905 . .009447119

9 MODEL1 PARMS logsurv 0.16676 1.39156 0.004029 .006134480 .

10 MODEL1 PARMS logsurv 0.19002 1.69638 . . .

11 MODEL1 PARMS logsurv 0.19178 1.71206 -0.004216 . .

12 MODEL1 PARMS logsurv 0.20640 1.54547 . . .008567887

13 MODEL1 PARMS logsurv 0.20922 1.33433 0.050447 .009172350 .

14 MODEL1 PARMS logsurv 0.22258 1.59881 . .009603518 .

15 MODEL1 PARMS logsurv 0.25929 1.86399 0.059163 . .

Obs liver logsurv _IN_ _P_ _EDF_ _RSQ_ _AIC_ _SBC_

1 . -1 3 4 50 0.97235 -326.667 -318.711

2 0.00193 -1 4 5 49 0.97237 -324.711 -314.766

3 0.08185 -1 3 4 50 0.88290 -248.730 -240.774

4 . -1 2 3 51 0.81297 -225.446 -219.479

5 0.09796 -1 3 4 50 0.71919 -201.498 -193.542

6 0.13901 -1 2 3 51 0.68653 -197.558 -191.591

7 0.15025 -1 2 3 51 0.64958 -191.539 -185.572

8 . -1 2 3 51 0.64579 -190.959 -184.992

9 0.14698 -1 3 4 50 0.64999 -189.602 -181.646

10 0.18575 -1 1 2 52 0.52737 -177.385 -173.407

11 0.18893 -1 2 3 51 0.52783 -175.437 -169.470

12 . -1 1 2 52 0.44239 -168.455 -164.477

13 . -1 2 3 51 0.43805 -166.037 -160.070

14 . -1 1 2 52 0.35152 -160.303 -156.325

15 . -1 1 2 52 0.12000 -143.817 -139.839
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proc reg;

model logsurv=blood prog enz liver/selection =cp; run;

C(p) Selection Method

Number in

Model C(p) R-Square Variables in Model

3 3.0393 0.9723 blood prog enz

4 5.0000 0.9724 blood prog enz liver

3 161.6625 0.8829 prog enz liver

2 283.6695 0.8130 prog enz

3 451.9870 0.7192 blood enz liver

2 507.8964 0.6865 enz liver

2 573.4372 0.6496 prog liver

3 574.7100 0.6500 blood prog liver

2 580.1453 0.6458 blood enz

1 788.1481 0.5274 liver

2 789.3404 0.5278 blood liver

1 938.8651 0.4424 enz

2 948.5500 0.4381 blood prog

1 1100.012 0.3515 prog

1 1510.590 0.1200 blood

proc reg;

model logsurv=blood prog enz liver/selection= forward; run;

Forward Selection: Step 1

Variable liver Entered: R-Square = 0.5274 and C(p) = 788.1481

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 2.09514 2.09514 58.02 <.0001

Error 52 1.87763 0.03611

Corrected Total 53 3.97277

Parameter Standard

Variable Estimate Error Type II SS F Value Pr > F

Intercept 1.69638 0.07174 20.18803 559.10 <.0001

liver 0.18575 0.02439 2.09514 58.02 <.0001

Bounds on condition number: 1, 1

--------------------------------------------------------------------------------

Forward Selection: Step 2

Variable enz Entered: R-Square = 0.6865 and C(p) = 507.8964

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 2 2.72744 1.36372 55.85 <.0001

Error 51 1.24533 0.02442

Corrected Total 53 3.97277

Parameter Standard

Variable Estimate Error Type II SS F Value Pr > F

Intercept 1.38878 0.08447 6.60079 270.32 <.0001
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enz 0.00565 0.00111 0.63230 25.89 <.0001

liver 0.13901 0.02206 0.96994 39.72 <.0001

Bounds on condition number: 1.2098, 4.8392

--------------------------------------------------------------------------------

Forward Selection: Step 3

Variable prog Entered: R-Square = 0.8829 and C(p) = 161.6625

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 3 3.50756 1.16919 125.66 <.0001

Error 50 0.46521 0.00930

Corrected Total 53 3.97277

Parameter Standard

Variable Estimate Error Type II SS F Value Pr > F

Intercept 0.94226 0.07139 1.62089 174.21 <.0001

prog 0.00790 0.00086260 0.78012 83.85 <.0001

enz 0.00700 0.00070128 0.92694 99.63 <.0001

liver 0.08185 0.01498 0.27780 29.86 <.0001

Bounds on condition number: 1.4642, 11.822

--------------------------------------------------------------------------------

Forward Selection: Step 4

Variable blood Entered: R-Square = 0.9724 and C(p) = 5.0000

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 4 3.86300 0.96575 431.10 <.0001

Error 49 0.10977 0.00224

Corrected Total 53 3.97277

Parameter Standard

Variable Estimate Error Type II SS F Value Pr > F

Intercept 0.48876 0.05023 0.21208 94.67 <.0001

blood 0.06852 0.00544 0.35544 158.66 <.0001

prog 0.00925 0.00043673 1.00583 448.99 <.0001

enz 0.00947 0.00039625 1.28075 571.71 <.0001

liver 0.00193 0.00971 0.00008809 0.04 0.8436

Bounds on condition number: 2.5553, 29.286

All variables have been entered into the model.

Summary of Forward Selection

Variable Number Partial Model

Step Entered Vars In R-Square R-Square C(p) F Value Pr > F

1 liver 1 0.5274 0.5274 788.148 58.02 <.0001

2 enz 2 0.1592 0.6865 507.896 25.89 <.0001

3 prog 3 0.1964 0.8829 161.662 83.85 <.0001

4 blood 4 0.0895 0.9724 5.0000 158.66 <.0001

___________________________________________________________________________________
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proc reg;

model logsurv=blood prog enz liver/selection = backward; run;

Backward Elimination: Step 0

All Variables Entered: R-Square = 0.9724 and C(p) = 5.0000

Parameter Standard

Variable Estimate Error Type II SS F Value Pr > F

Intercept 0.48876 0.05023 0.21208 94.67 <.0001

blood 0.06852 0.00544 0.35544 158.66 <.0001

prog 0.00925 0.00043673 1.00583 448.99 <.0001

enz 0.00947 0.00039625 1.28075 571.71 <.0001

liver 0.00193 0.00971 0.00008809 0.04 0.8436

Bounds on condition number: 2.5553, 29.286

--------------------------------------------------------------------------------

Backward Elimination: Step 1

Variable liver Removed: R-Square = 0.9723 and C(p) = 3.0393

Analysis of Variance

Parameter Standard

Variable Estimate Error Type II SS F Value Pr > F

Intercept 0.48362 0.04263 0.28279 128.71 <.0001

blood 0.06923 0.00408 0.63315 288.17 <.0001

prog 0.00929 0.00038250 1.29732 590.45 <.0001

enz 0.00952 0.00030641 2.12263 966.07 <.0001

Bounds on condition number: 1.0308, 9.1864

--------------------------------------------------------------------------------

All variables left in the model are significant at the 0.1000 level.

Summary of Backward Elimination

Variable Number Partial Model

Step Removed Vars In R-Square R-Square C(p) F Value Pr > F

1 liver 3 0.0000 0.9723 3.0393 0.04 0.8436

___________________________________________________________________________________

proc reg;

model logsurv=blood prog enz liver/selection = stepwise; run;

Stepwise Selection: Step 1

Variable liver Entered: R-Square = 0.5274 and C(p) = 788.1481

Parameter Standard

Variable Estimate Error Type II SS F Value Pr > F

Intercept 1.69638 0.07174 20.18803 559.10 <.0001

liver 0.18575 0.02439 2.09514 58.02 <.0001

Bounds on condition number: 1, 1

--------------------------------------------------------------------------------

Stepwise Selection: Step 2

Variable enz Entered: R-Square = 0.6865 and C(p) = 507.8964

Parameter Standard

Variable Estimate Error Type II SS F Value Pr > F

Intercept 1.38878 0.08447 6.60079 270.32 <.0001

enz 0.00565 0.00111 0.63230 25.89 <.0001

liver 0.13901 0.02206 0.96994 39.72 <.0001
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Bounds on condition number: 1.2098, 4.8392

--------------------------------------------------------------------------------

Stepwise Selection: Step 3

Variable prog Entered: R-Square = 0.8829 and C(p) = 161.6625

Parameter Standard

Variable Estimate Error Type II SS F Value Pr > F

Intercept 0.94226 0.07139 1.62089 174.21 <.0001

prog 0.00790 0.00086260 0.78012 83.85 <.0001

enz 0.00700 0.00070128 0.92694 99.63 <.0001

liver 0.08185 0.01498 0.27780 29.86 <.0001

Bounds on condition number: 1.4642, 11.822

--------------------------------------------------------------------------------

Stepwise Selection: Step 4

Variable blood Entered: R-Square = 0.9724 and C(p) = 5.0000

Parameter Standard

Variable Estimate Error Type II SS F Value Pr > F

Intercept 0.48876 0.05023 0.21208 94.67 <.0001

blood 0.06852 0.00544 0.35544 158.66 <.0001

prog 0.00925 0.00043673 1.00583 448.99 <.0001

enz 0.00947 0.00039625 1.28075 571.71 <.0001

liver 0.00193 0.00971 0.00008809 0.04 0.8436

--------------------------------------------------------------------------------

Stepwise Selection: Step 5

Variable liver Removed: R-Square = 0.9723 and C(p) = 3.0393

Parameter Standard

Variable Estimate Error Type II SS F Value Pr > F

Intercept 0.48362 0.04263 0.28279 128.71 <.0001

blood 0.06923 0.00408 0.63315 288.17 <.0001

prog 0.00929 0.00038250 1.29732 590.45 <.0001

enz 0.00952 0.00030641 2.12263 966.07 <.0001

Bounds on condition number: 1.0308, 9.1864

All variables left in the model are significant at the 0.1500 level.

No other variable met the 0.1500 significance level for entry into the model.

Summary of Stepwise Selection

Variable Variable Number Partial Model

Step Entered Removed Vars In R-Square R-Square C(p) F Value Pr > F

1 liver 1 0.5274 0.5274 788.148 58.02 <.0001

2 enz 2 0.1592 0.6865 507.896 25.89 <.0001

3 prog 3 0.1964 0.8829 161.662 83.85 <.0001

4 blood 4 0.0895 0.9724 5.0000 158.66 <.0001

5 liver 3 0.0000 0.9723 3.0393 0.04 0.8436

**Regression run with no selection

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 4 3.86300 0.96575 431.10 <.0001

Error 49 0.10977 0.00224

Corrected Total 53 3.97277

Root MSE 0.04733 R-Square 0.9724

Dependent Mean 2.20614 Adj R-Sq 0.9701
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Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 0.48876 0.05023 9.73 <.0001

blood 1 0.06852 0.00544 12.60 <.0001

prog 1 0.00925 0.00043673 21.19 <.0001

enz 1 0.00947 0.00039625 23.91 <.0001

liver 1 0.00193 0.00971 0.20 0.8436

SAS’s defaults for entering and leaving the models.

SLE=value specifies the significance level for entry into the model

used in the FORWARD and STEPWISE methods. The defaults are 0.50 for

FORWARD and 0.15 for STEPWISE.

SLS=value specifies the significance level for staying in the model for

the BACKWARD and STEPWISE methods. The defaults are 0.10 for BACKWARD and

0.15 for STEPWISE.

Following is from the SAS documentation:

Criteria Used in Model-Selection Methods: When many significance tests are performed, each at a level of, for
example, 5 percent, the overall probability of rejecting at least one true null hypothesis is much larger than 5 percent.
If you want to guard against including any variables that do not contribute to the predictive power of the model in
the population, you should specify a very small SLE= significance level for the FORWARD and STEPWISE methods
and a very small SLS= significance level for the BACKWARD and STEPWISE methods.

In most applications, many of the variables considered have some predictive power, however small. If you want
to choose the model that provides the best prediction using the sample estimates, you need only to guard against
estimating more parameters than can be reliably estimated with the given sample size, so you should use a moderate
significance level, perhaps in the range of 10 percent to 25 percent.

In addition to R2, the Cp statistic is displayed for each model generated in the model-selection methods. The Cp
statistic is proposed by Mallows (1973) as a criterion for selecting a model. It is a measure of total squared error
defined as Cp = [(SSEp)/(s2)]− (N − 2p), where s2 is the MSE for the full model, and SSEp is the sum-of-squares
error for a model with p parameters including the intercept, if any. If Cp is plotted against p, Mallows recommends
the model where Cp first approaches p. When the right model is chosen, the parameter estimates are unbiased, and
this is reflected in Cp near p. For further discussion, refer to Daniel and Wood (1980).

The Adjusted R2 statistic is an alternative to R2 that is adjusted for the number of parameters in the model.

The adjusted R2 statistic is calculated as ADJRSQ = 1 − [((n − i)(1 − R2))/(n − p)], where n is the number of

observations used in fitting the model, and i is an indicator variable that is 1 if the model includes an intercept, and

0 otherwise.
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Variable Selection in R. It takes a little digging to figure out how to do this.

We’ll use the leaps package first to do all possible subsets. With the output from
that we can save and order the models by whichever criterion we want.

# EXAMPLE OF VARIABLE SELECTION USING R.

# FIRST PART DOES ALL POSSIBLE SUBSETS

# THIS REQUIRES THE LEAPS PACKAGE WHICH MUST

# BE INSTALLED FIRST.

library(leaps)

surgical<-read.table("f:/s505/data/surg.dat",na.strings=".")

names(surgical) <- c("blood", "prog", "enz", "liver", "surv", "logsurv")

attach(surgical)

subsets<-regsubsets(logsurv~blood+prog+enz+liver,nbest=10,data=surgical)

#the nbest = 10 says to get up to 10 best models for each

# possible number of variables. Since 10 > 4 this will do

# all possible subsets

summary(subsets)

info<-summary(subsets)

str(info) #shows you what is in info

info$which # shows what is in each model

whichvm<-1*info$which # converts info on which variables to a 0/1

# matrix form (in general multiplying a logical

# true false/matrix times a number will convert it

p<-rowSums(whichvm) #p = number of variables in model

n<-subsets$nn #total samples size. This was part of what is stored in subsets

#these next set extract measures from info

rsquared<-info$rsq

sse<-info$rss

adjR2<-info$adjr2

Cp<-info$cp

AIC<-n*log(sse/n) +2*p

subsetinfo<-cbind(info$which,rsquared,sse,adjR2,Cp,AIC)

subsetinfo

# you can sort this dataframe by the various measures and list

# Here we sort by adjusted R2

sortadjr2<-subsetinfo[order(adjR2),]

sortadjr2

> # EXAMPLE OF VARIABLE SELECTION USING R.

> # FIRST PART DOES ALL POSSIBLE SUBSETS

> # THIS REQUIRES THE LEAPS PACKAGE WHICH MUST

> # BE INSTALLED FIRST.

> library(leaps)

> surgical<-read.table("f:/s505/data/surg.dat",na.strings=".")

> names(surgical) <- c("blood", "prog", "enz", "liver", "surv", "logsurv")

> attach(surgical)

> subsets<-regsubsets(logsurv~blood+prog+enz+liver,nbest=10,data=surgical)

> #the nbest = 10 says to get up to 10 best models for each

> # possible number of variables. Since 10 > 4 this will do

> # all possible subsets

> summary(subsets)
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Subset selection object

Call: regsubsets.formula(logsurv ~ blood + prog + enz + liver, nbest = 10,

data = surgical)

4 Variables (and intercept)

Forced in Forced out

blood FALSE FALSE

prog FALSE FALSE

enz FALSE FALSE

liver FALSE FALSE

10 subsets of each size up to 4

Selection Algorithm: exhaustive

blood prog enz liver

1 ( 1 ) " " " " " " "*"

1 ( 2 ) " " " " "*" " "

1 ( 3 ) " " "*" " " " "

1 ( 4 ) "*" " " " " " "

2 ( 1 ) " " "*" "*" " "

2 ( 2 ) " " " " "*" "*"

2 ( 3 ) " " "*" " " "*"

2 ( 4 ) "*" " " "*" " "

2 ( 5 ) "*" " " " " "*"

2 ( 6 ) "*" "*" " " " "

3 ( 1 ) "*" "*" "*" " "

3 ( 2 ) " " "*" "*" "*"

3 ( 3 ) "*" " " "*" "*"

3 ( 4 ) "*" "*" " " "*"

4 ( 1 ) "*" "*" "*" "*"

> info<-summary(subsets)

> str(info) #shows you what is in info

List of 8

$ which : logi [1:15, 1:5] TRUE TRUE TRUE TRUE TRUE TRUE ...

..- attr(*, "dimnames")=List of 2

.. ..$ : chr [1:15] "1" "1" "1" "1" ...

.. ..$ : chr [1:5] "(Intercept)" "blood" "prog" "enz" ...

$ rsq : num [1:15] 0.527 0.442 0.352 0.12 0.813 ...

$ rss : num [1:15] 1.878 2.215 2.576 3.496 0.743 ...

$ adjr2 : num [1:15] 0.518 0.432 0.339 0.103 0.806 ...

$ cp : num [1:15] 788 939 1100 1511 284 ...

$ bic : num [1:15] -32.49 -23.56 -15.41 1.08 -78.56 ...

$ outmat: chr [1:15, 1:4] " " " " " " "*" ...

..- attr(*, "dimnames")=List of 2

.. ..$ : chr [1:15] "1 ( 1 )" "1 ( 2 )" "1 ( 3 )" "1 ( 4 )" ...

.. ..$ : chr [1:4] "blood" "prog" "enz" "liver"

$ obj :List of 28

..$ np : int 5

..$ nrbar : int 10

..$ d : num [1:5] 54 60.7 13079.9 18918.7 75.7

..$ rbar : num [1:10] 2.74 63.24 77.11 5.78 5.83 ...

..$ thetab : num [1:5] 2.20614 0.18575 0.00609 0.007 0.06852

..$ first : int 2

..$ last : int 5

..$ vorder : int [1:5] 1 5 3 4 2

..$ tol : num [1:5] 3.67e-09 1.77e-08 2.99e-07 3.72e-07 2.71e-08

..$ rss : num [1:5] 3.973 1.878 1.392 0.465 0.11

..$ bound : num [1:5] 1e+35 1e+35 1e+35 1e+35 1e+35
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..$ nvmax : int 5

..$ ress : num [1:5, 1:10] 3.973 1.878 0.743 0.11 0.11 ...

..$ ir : int 5

..$ nbest : int 10

..$ lopt : int [1:15, 1:10] 1 1 5 1 4 3 1 2 3 4 ...

..$ il : int 15

..$ ier : int 0

..$ xnames : chr [1:5] "(Intercept)" "blood" "prog" "enz" ...

..$ method : chr "exhaustive"

..$ force.in : Named logi [1:5] TRUE FALSE FALSE FALSE FALSE

.. ..- attr(*, "names")= chr [1:5] "" "blood" "prog" "enz" ...

..$ force.out: Named logi [1:5] FALSE FALSE FALSE FALSE FALSE

.. ..- attr(*, "names")= chr [1:5] "" "blood" "prog" "enz" ...

..$ sserr : num 0.11

..$ intercept: logi TRUE

..$ lindep : logi [1:5] FALSE FALSE FALSE FALSE FALSE

..$ nullrss : num 3.97

..$ nn : int 54

..$ call : language regsubsets.formula(logsurv ~ blood + prog + enz + liver, nbest = 10, data = surgical)

..- attr(*, "class")= chr "regsubsets"

- attr(*, "class")= chr "summary.regsubsets"

> info$which # shows what is in each model

(Intercept) blood prog enz liver

1 TRUE FALSE FALSE FALSE TRUE

1 TRUE FALSE FALSE TRUE FALSE

1 TRUE FALSE TRUE FALSE FALSE

1 TRUE TRUE FALSE FALSE FALSE

2 TRUE FALSE TRUE TRUE FALSE

2 TRUE FALSE FALSE TRUE TRUE

2 TRUE FALSE TRUE FALSE TRUE

2 TRUE TRUE FALSE TRUE FALSE

2 TRUE TRUE FALSE FALSE TRUE

2 TRUE TRUE TRUE FALSE FALSE

3 TRUE TRUE TRUE TRUE FALSE

3 TRUE FALSE TRUE TRUE TRUE

3 TRUE TRUE FALSE TRUE TRUE

3 TRUE TRUE TRUE FALSE TRUE

4 TRUE TRUE TRUE TRUE TRUE

> whichvm<-1*info$which # converts info on which variables to a 0/1

> # matrix form (in general multiplying a logical

> # true false/matrix times a number will convert it

>

> p<-rowSums(whichvm) #p = number of variables in model

> n<-subsets$nn #total samples size. This was part of what is stored in subsets

> #these next set extract measures from info

> rsquared<-info$rsq

> sse<-info$rss

> adjR2<-info$adjr2

> Cp<-info$cp

> AIC<-n*log(sse/n) +2*p

> subsetinfo<-cbind(info$which,rsquared,sse,adjR2,Cp,AIC)

> subsetinfo

(Intercept) blood prog enz liver rsquared sse adjR2 Cp AIC

1 1 0 0 0 1 0.5273749 1.8776320 0.5182859 788.148136 -177.3845

1 1 0 0 1 0 0.4423867 2.2152705 0.4316634 938.865126 -168.4549
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1 1 0 1 0 0 0.3515172 2.5762746 0.3390464 1100.012198 -160.3025

1 1 1 0 0 0 0.1199959 3.4960560 0.1030727 1510.589506 -143.8168

2 1 0 1 1 0 0.8129742 0.7430109 0.8056399 283.669453 -225.4455

2 1 0 0 1 1 0.6865344 1.2453274 0.6742416 507.896397 -197.5576

2 1 0 1 0 1 0.6495765 1.3921529 0.6358344 573.437188 -191.5392

2 1 1 0 1 0 0.6457938 1.4071804 0.6319034 580.145259 -190.9594

2 1 1 0 0 1 0.5278304 1.8758225 0.5093139 789.340380 -175.4366

2 1 1 1 0 0 0.4380533 2.2324863 0.4160162 948.550025 -166.0369

3 1 1 1 1 0 0.9723471 0.1098586 0.9706879 3.039323 -326.6674

3 1 0 1 1 1 0.8829008 0.4652086 0.8758748 161.662489 -248.7297

3 1 1 0 1 1 0.7191890 1.1155980 0.7023404 451.987024 -201.4980

3 1 1 1 0 1 0.6499865 1.3905238 0.6289857 574.709962 -189.6024

4 1 1 1 1 1 0.9723693 0.1097705 0.9701137 5.000000 -324.7107

> # you can sort this dataframe by the various measures and list

> # Here we sort by adjusted R2

> sortadjr2<-subsetinfo[order(adjR2),]

> sortadjr2

(Intercept) blood prog enz liver rsquared sse adjR2 Cp AIC

1 1 1 0 0 0 0.1199959 3.4960560 0.1030727 1510.589506 -143.8168

1 1 0 1 0 0 0.3515172 2.5762746 0.3390464 1100.012198 -160.3025

2 1 1 1 0 0 0.4380533 2.2324863 0.4160162 948.550025 -166.0369

1 1 0 0 1 0 0.4423867 2.2152705 0.4316634 938.865126 -168.4549

2 1 1 0 0 1 0.5278304 1.8758225 0.5093139 789.340380 -175.4366

1 1 0 0 0 1 0.5273749 1.8776320 0.5182859 788.148136 -177.3845

3 1 1 1 0 1 0.6499865 1.3905238 0.6289857 574.709962 -189.6024

2 1 1 0 1 0 0.6457938 1.4071804 0.6319034 580.145259 -190.9594

2 1 0 1 0 1 0.6495765 1.3921529 0.6358344 573.437188 -191.5392

2 1 0 0 1 1 0.6865344 1.2453274 0.6742416 507.896397 -197.5576

3 1 1 0 1 1 0.7191890 1.1155980 0.7023404 451.987024 -201.4980

2 1 0 1 1 0 0.8129742 0.7430109 0.8056399 283.669453 -225.4455

3 1 0 1 1 1 0.8829008 0.4652086 0.8758748 161.662489 -248.7297

4 1 1 1 1 1 0.9723693 0.1097705 0.9701137 5.000000 -324.7107

3 1 1 1 1 0 0.9723471 0.1098586 0.9706879 3.039323 -326.6674

Doing Forward, backward and stepwise selection in R. There is a step function but
the values of AIC are odd and it doesn’t seem to do what it should. We’ll use
stepAIC which is part of the MASS package.

library(MASS)

null<-lm(logsurv~1,data=surgical)

full<-lm(logsurv~blood+prog+enz+liver,data=surgical)

stepAIC(null,scope=list(lower=null,upper=full) ,direction="forward") #forward selection

stepAIC(full,direction="backward") #backward selection

stepAIC(full) # stepwise selection

> null<-lm(logsurv~1,data=surgical)

> full<-lm(logsurv~blood+prog+enz+liver,data=surgical)

> stepAIC(null,scope=list(lower=null,upper=full) ,direction="forward") #forward selection

Start: AIC=-138.91

logsurv ~ 1

Df Sum of Sq RSS AIC

+ liver 1 2.09514 1.8776 -177.38

+ enz 1 1.75750 2.2153 -168.46
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+ prog 1 1.39650 2.5763 -160.30

+ blood 1 0.47672 3.4961 -143.82

<none> 3.9728 -138.91

Step: AIC=-177.38

logsurv ~ liver

Df Sum of Sq RSS AIC

+ enz 1 0.63230 1.2453 -197.56

+ prog 1 0.48548 1.3921 -191.54

<none> 1.8776 -177.38

+ blood 1 0.00181 1.8758 -175.44

Step: AIC=-197.56

logsurv ~ liver + enz

Df Sum of Sq RSS AIC

+ prog 1 0.78012 0.46521 -248.73

+ blood 1 0.12973 1.11560 -201.50

<none> 1.24533 -197.56

Step: AIC=-248.73

logsurv ~ liver + enz + prog

Df Sum of Sq RSS AIC

+ blood 1 0.35544 0.10977 -324.71

<none> 0.46521 -248.73

Step: AIC=-324.71

logsurv ~ liver + enz + prog + blood

Call:

lm(formula = logsurv ~ liver + enz + prog + blood, data = surgical)

Coefficients:

(Intercept) liver enz prog blood

0.488756 0.001925 0.009475 0.009254 0.068520

> stepAIC(full,direction="backward") #backward selection

Start: AIC=-324.71

logsurv ~ blood + prog + enz + liver

Df Sum of Sq RSS AIC

- liver 1 0.00009 0.10986 -326.67

<none> 0.10977 -324.71

- blood 1 0.35544 0.46521 -248.73

- prog 1 1.00583 1.11560 -201.50

- enz 1 1.28075 1.39052 -189.60

Step: AIC=-326.67

logsurv ~ blood + prog + enz

Df Sum of Sq RSS AIC

<none> 0.10986 -326.67
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- blood 1 0.63315 0.74301 -225.45

- prog 1 1.29732 1.40718 -190.96

- enz 1 2.12263 2.23249 -166.04

Call:

lm(formula = logsurv ~ blood + prog + enz, data = surgical)

Coefficients:

(Intercept) blood prog enz

0.483621 0.069225 0.009295 0.009524

> stepAIC(full) # stepwise selection

Start: AIC=-324.71

logsurv ~ blood + prog + enz + liver

Df Sum of Sq RSS AIC

- liver 1 0.00009 0.10986 -326.67

<none> 0.10977 -324.71

- blood 1 0.35544 0.46521 -248.73

- prog 1 1.00583 1.11560 -201.50

- enz 1 1.28075 1.39052 -189.60

Step: AIC=-326.67

logsurv ~ blood + prog + enz

Df Sum of Sq RSS AIC

<none> 0.10986 -326.67

- blood 1 0.63315 0.74301 -225.45

- prog 1 1.29732 1.40718 -190.96

- enz 1 2.12263 2.23249 -166.04

Call:

lm(formula = logsurv ~ blood + prog + enz, data = surgical)

Coefficients:

(Intercept) blood prog enz

0.483621 0.069225 0.009295 0.009524
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Forcing variables into the model. In either SAS or R you can force certain

variables into the model and then do variable selection (forward, backward, step-
wise) with the remaining variables. In SAS as an option in the model statement

you use include = j where j is an integer. This will include the first j variables in
the list (so you need to order things in the right way). In R using step AIC you
can set the inital object and/or lower model (used in scope) to be one containing

variables you want to force in.

10 Additional topics on residual analysis and diagnostics.

Even if model assumptions are met exactly, the residuals have unequal variance
and are correlated (this is because the residual ei is not that same as ǫi. In fact

The variance-covariance matrix of the residuals

σ2(e) = σ2(In − H), where H = X(X′X)−1X′, is called the hat matrix.

Recall that σ2(ǫǫǫ) = σ2In.

If the elements of H are small then Cov(ǫǫǫ) ≈ σ2In, so residuals behave similar to
the ǫ’s. This usually works fine for moderate to large sample sizes (although this

depends on how many predictors there are).

Leverage value: hii = ith diagonal element of H. Large values of hii indicate

an observation is an outlier in the X space.

Can be shown that h̄ = average of the hii equals p/n. One criteria takes values
with high leverage have hii > 2p/n as potential outliers.

Studentized residual:

ri =
ei

[MSE(1 − hii)]
1/2

.

This tries to account for the unequal variance of the residuals and is generally

preferred over use of unstudentized residuals for residual plots.

Studentized deleted residuals: (Delete ith case, get residual and then “stu-
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dentize”). This simplifies to:

ti =
Yi − Ŷi(i)

s{di}

where s2{di} = MSE(i)(1 + X′
i(X

′
(i)X(i))

−1Xi) estimates the variance of Ŷi(i) =

fitted value for case i based on regression model without using case i.

(i) indicates the ith case has been deleted. X′
i is the row of X corresponding to

the ith observation.

One rule: absolute(studentized deleted residual) > t(1−α/2n, n−p−1) indicates
outlier. Sometimes same rule used for studentized residuals.

COOK’S DISTANCE: Di =

∑
j(Ŷj − Ŷj(i))

2

p ∗ MSE

Measure of influence of the ith case on the overall fit.

One rule: If Cook’s distance > F (.5, p, n− p), consider an outlier. With Cook’s
distance between F (.2, p, n− p) and F (.5, p, n− p) look a little closer.

• There are various computational shortcuts for these measures, as described in
text.

• There are many other diagnostic measures/tools including DFFITS, DFBE-

TAS, Variance inflation factors, added-variable plots,

• SAS 9.3 will automatically do some plots involving these diagnostic measures

when you run proc reg.

Example

title ’Illustrating multiple with house price data’;

options linesize=70 pagesize=60 nodate;

data values;

infile ’house.dat’;

input PRICE SQFT AGE FEATS NE CUST COR TAX;

original=_n_; /* gives orginal case number */

run;

proc reg;

id sqft tax;
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model price =sqft tax/ p r influence;

output out=result p=yhat r=resid h=hvalue student=stres

rstudent=stdelres cookd=cookd; run;

/* first name is sas convention, after = is name of your

choosing */

proc print data=result; run;

proc gplot data=result;

plot resid*yhat;

plot stres*yhat;

run;

/* Below is a way to sort and get ordered values of the statistic*/

%macro sortp(vars);

proc sort data=result;

by &vars; proc print;

var original &vars;

run;

%mend;

%sortp(stres); /* sort on studentized residual*/

%sortp(stdelres);

%sortp(hvalue);

%sortp(cookd);

Output Statistics

Dep Var Predicted Std Error

Obs SQFT TAX PRICE Value Mean Predict Residual

1 2650 1639 2050 1933 52.1014 117.4048

2 2600 1088 2080 1523 38.6728 557.0325

Std Error Student Cook’s

Obs SQFT TAX Residual Residual -2-1 0 1 2 D

1 2650 1639 166.1 0.707 | |* | 0.016

2 2600 1088 169.8 3.281 | |******| 0.186

Hat Diag Cov

Obs SQFT TAX RStudent H Ratio DFFITS

1 2650 1639 0.7050 0.0895 1.1144 0.2211

2 2600 1088 3.4489 0.0493 0.7801 0.7857

Obs PRICE SQFT AGE FEATS NE CUST COR TAX yhat resid

1 2050 2650 13 7 1 1 0 1639 1932.60 117.405

2 2080 2600 . 4 1 1 0 1088 1522.97 557.032

Sorted on studentized residual

Obs original stres

10 97 .

11 79 -4.10774

12 50 -2.14396

116 2 3.28129

117 89 3.56268
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sorted on

Obs original stdelres

10 97 .

11 79 -4.46629

12 50 -2.18240

116 2 3.44889

117 89 3.78392

sorted on leverage value

Obs original hvalue

115 7 0.11706

116 5 0.12571

117 79 0.30461

sorted on cooks distance

Obs original cookd

115 3 0.15962

116 2 0.18626

117 79 2.46375

** Values to compare things to ***

options ls=80 nodate;

data a; n= 107; p=3;

t=tinv(1-(.05/214),n-p-1);

cleverage = 2*p/n; f20 = finv(.20,p,n-p); f50 = finv(.50,p,n-p);

proc print; run;

Obs n p t cleverage f20 f50

1 107 3 3.61462 0.056075 0.33507 0.79386

Working the example in R. Note that here I used data without missing values in
price, sqft or tax; so the case numbers differ. In particular case 79 in the SAS
analysis is case 72 here.

data<-read.table("f:/s505/data/housenm.dat",sep=",",na.strings=".")

#housenm.dat got rid of cases with price, sqft or tax missing. data is comma separated.

attach(data)

price <- V1; sqft<-V2; age<-V3; feats<-V4

ne<- V5; cust<-V6; cor<-V7; tax<- V8

regout<-lm(price ~ sqft+ tax, na.action=na.exclude)

summary(regout)

xmat<-model.matrix(regout) $ gets the X matrix for the model

resid<-residuals(regout)

stresid<-rstudent(regout) #gets studentized residual

cooks<-cooks.distance(regout) #gets cook’s distances

leverage<-hat(xmat) #gets leverage values

n<-length(price)
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obs<-seq(1,n)

sumall<-cbind(obs,price,sqft,tax,resid,stresid,cooks,leverage)

sumall

plot(obs,cooks)

cooksort<-sumall[order(cooks),] # sort on Cook’s distance

cooksort

> sumall<-cbind(obs,price,sqft,tax,resid,stresid,cooks,leverage)

> sumall

obs price sqft tax resid stresid cooks leverage

1 1 2050 2650 1639 117.404785 0.704989331 1.637370e-02 0.089547729

2 2 2080 2600 1088 557.032462 3.448885055 1.862559e-01 0.049336442

3 3 2150 2664 1193 535.344603 3.293871072 1.596174e-01 0.046088693

4 4 2150 2921 1635 152.487078 0.912209130 2.405843e-02 0.079694812

5 5 1999 2580 1732 16.890621 0.103257123 5.159151e-04 0.125708475

6 6 1900 2580 1534 60.593764 0.358999024 3.165551e-03 0.068093156

7 7 1800 2774 1765 -254.429458 -1.565998645 1.068848e-01 0.117060056

8 8 1560 1920 1161 154.546652 0.902108539 9.433703e-03 0.033549589

71 71 619 837 342 74.770952 0.434992617 2.164387e-03 0.032927037

72 72 1295 3750 1200 -596.403228 -4.466288194 2.463747e+00 0.304607706

73 73 975 1500 700 6.878348 0.039520283 5.481375e-06 0.010319911

74 74 939 1428 701 -11.828932 -0.068006905 1.815214e-05 0.011527391

75 75 820 1375 585 -33.965175 -0.195519189 1.786157e-04 0.013697375

76 76 780 1080 600 -10.970939 -0.063494274 3.417898e-05 0.024571271

105 105 869 1165 694 -10.984766 -0.063632369 3.688098e-05 0.026350631

106 106 766 1200 634 -79.497924 -0.459168008 1.347048e-03 0.018666779

107 107 739 970 541 18.072253 0.104834032 1.103983e-04 0.028983815

> cooksort

obs price sqft tax resid stresid cooks leverage

41 41 725 1140 490 -1.702618 -0.009827031 6.385757e-07 0.019268303

89 89 1109 1740 816 -2.770325 -0.015911260 8.253758e-07 0.009593614

104 104 870 1273 638 3.355554 0.019327006 1.936631e-06 0.015170696

20 20 995 1500 743 -4.112739 -0.023634455 2.030970e-06 0.010687430

73 73 975 1500 700 6.878348 0.039520283 5.481375e-06 0.010319911

92 92 1045 1630 750 8.317928 0.047774992 7.467273e-06 0.009627074

81 81 2100 2116 1209 610.915355 3.783920790 1.309123e-01 0.030013384

3 3 2150 2664 1193 535.344603 3.293871072 1.596174e-01 0.046088693

2 2 2080 2600 1088 557.032462 3.448885055 1.862559e-01 0.049336442

72 72 1295 3750 1200 -596.403228 -4.466288194 2.463747e+00 0.304607706
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11 Non-parameteric regression

The goal of nonparametric regression is to fit a model E(Y |x) without forcing a particular parametric functional
form for the regression. For a single variable this is also useful as a diagnostic way to assess linearity and to suggest a
parametric model if so desired. There are many approaches to doing this. The Lowess (or Loess) method is discussed
in sections 3.10 and 11.4 of the book. Here’s a quick look at what it does.

Local Linear smoothing/Loess.

There are three ingredients that go into this:

• A distance function:

Consider a point x (can be multivariate) and define a distance function where d(x, xi) ≥ 0 ( and = 0 when
x = xi) is the distance between x and xi.

• Smoothing parameter. This a number s, 0 < s ≤ 1 which determines the neighborhood around the point x in
that the 100s percent of the x’s that are closest to x are included in the local neighborhood around x. If s = 1
all point are included in the neighborhood.

• Weighting function. Suppose there are q points in the neighborhood around x with a maximum distance D(x).
A weight is assigned to point i, with predictors xi in a manner that the weight decreases as the distance
di = d(x, xi) increases. For s < 1 the weight is wi = [1 − (di/D(x))3]3 if di < D(x) and = 0 otherwise while
for s = 1 (or > 1 D(x) is replaced by D(x)s1/p, where p is the number of predictors in the model. (SAS uses
a rescaled version of these weights which does not effect the fitted values).

For a range of x’s, fit a weighted least squares of Yi on xi with weights as above. Typically a linear model
or second order model (includes quadratic and, with multiple predictors, products) is fit. Note that the weights
and points involved change with x. At each x obtain m̂(x) = fitted value at x from the weighted least squares fit
associated with point x. This is the nonparametric estimate of E(Y |x).

Other nonparametric methods

• Splines. An approach which is not fully nonparametric is to model the regression function using piecewise
polynomials (splines). See proc tpspline and transreg.

• Neural Networks. See Section 13.6 of Kutner et al.

Here
E(Yi) = gY (β0 + β1Hi1 + βm−1Hi,m−1)

where Hij = gj(x
′

ialpha
j
). Often the various g functions are all taken as the logistic model g(Z) = 1/(1+e−Z).

This just leads to a non-linear models with parameters α’s and β’s, but special fitting techniques are used due
to overparameterization.

• Computer Assisted Regression Trees (CART). See page 453 of Kutner et al. for a basic introduction.

Example 1: Star Data. Y = measure of color and X = log(P) where P is a pulsation period. Each observation
is a star (Kanbur and Ngeow Period-color and amplitude-color relations in classical Cepheid variables, Mon. Not.
R. Astonomical Society, 2003). A plot of the data indicates two things of interest. One is possible heteroscedasticity,
the other is a possible bend in the regression line. In fact, theory suggest a bend at x = 1

Nonparametric regression via Loess using SAS uusing the default smoothing parameter (s = .5).
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Figure 13: Star data. Nonparametric fit.

Example: Moth capture data

Here we use nonparametric regression to model the expected number of captures of moths (collected by Ring
Carde and colleagues in Russia) as a function of time, where we run time sequentially over 1, 2, .... for data collected
over a number of days. The first observation is at 11 a.m. on the first day of collection. One of their main interests
was whether there were two humps in the model within a day. There are also various non-linear models (including
trigonometric models with unknown periods) that could be tried here. The SAS code is similar to the star example
and is posted. It shows how to get confidence limits for the estimated mean at each x via the clm option.
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Figure 14: Nonparametric fit to Moth captures

12 Autocorrelation in the error terms

t indexes time order and we have a model Yt|xt = x′
tβββ + ǫt.

(We will not consider dynamic models where x can contain previous values of y

which comes under the heading of time series.)

Illustrate the problem of autocorrelation of errors over time and remedies in the

context of a first order autoregressive, AR(1) model for the errors. Assume
observations are equally spaced over time.

ǫt = ρǫt−1 + ut,

where the ut are assumed to be independent and identically distributed with mean
0 and variance σ2

u. This is an autoregressive 1 model for serial/auto correlation.

If you consider stretching back infinitely in time, then it can be shown that
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ǫt =
∑∞

s=0 ρsut−s so E(ǫt) = 0,

V (ǫt) = σ2
ǫ =

∞∑

s=0

ρ2sV (ut−s) = σ2
u/(1−ρ2), cov(ǫt, ǫt+k) = ρ|k|σ2

ǫ and corr(ǫt, ǫt+k) = ρ|k|.

Variance-covariance of Y is

Σ = σ2{Y} = σ2
ǫ





1 ρ ρ2 ρ3 . ρn−1

ρ 1 ρ ρ2 . ρn−2

. . . . . .

ρn−1 ρn−2 . . . 1




.

Least squares estimators of βββ’s are still unbiased. A plot of the residuals versus
time is helpful in detecting serial correlation over time .

Durbin-Watson test for serial correlation: H0 : ρ = 0.

Test statistic is

D =
n∑

t=1

(rt − rt−1)
2/

n∑

t=1

r2
t ,

critical values and p-values based on the distribution of D under the null hy-

pothesis. The test is based on normality.

A commonly used estimate of ρ is

ρ̂ =
n∑

t=2
rtrt−1/

n∑

t=2
r2
t−1,

which is based on a linear regression with no intercept treating the rt as if they are

the ǫt. There are alternate estimators.

A simple estimator that corrects for autocorrelation.

For t = 2, . . . , n,

Y ∗
t = Yt−ρ̂Yt−1 = (x′

tβββ+ǫt)−ρ̂(x′
t−1βββ+ǫt−1) = (x′

t−ρ̂x′
t−1)βββ+ǫt−ρ̂ǫt−1 = x∗′

t βββ+ût

where x∗
t = xt − ρ̂xt−1 and ût = ǫt − ρ̂ǫt−1, which if ρ̂ were ρ would be exactly ut.

Cochran-Orcutt estimator. Run a multiple linear regression with Y ∗
t as the

response and x∗
t as vector of predictors but note there is no overall intercept in

there. This is for t = 2 to T .
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A modification of that estimator is to argue for a way to get values to use for

t = 1. This is based on the idea of doing generalized weighted least squares based on
the variance-covariance of Y. Skipping the details this leads to Y ∗

1 = (1− ρ̂2)1/2Y1

and x∗
1 = (1 − ρ̂2)1/2x1. This leads to what are called Yule-Walker estimates.

- If autocorrelation is still present, the process can be repeated.

- As with our earlier weighted least squares, the standard errors that are given

are generally underestimates since they do not account for uncertainty arising from
estimation of ρ. This can be important and the standard errors/covariance matrix
for the coefficients can be evaulated via the bootstrap.

There are other estimation techniques that can be used including maximum
likelihood estimators under normality.

Serial Correlation Example: industry versus company sales.

Example from book (page 488). 20 quarters of data (5 years).

x = obseved industry sales and y = observed company sales.

X and Y are random over time.

There may be some random quantities which contribute to the error which may
have influence over more than one year. This would lead to correlation in the errors.

The objective is to look at the conditional behavior of Y given X, not accounting
for past values of either series, rather than to model dynamic behavior. The latter
concern would take us into multivariate time series. We assume that given Xi,

Yi = β0 + βXi + ǫi.

Note: I used low-level plots via proc plot in SAS for easy inclusion here.

- First straight least squares is run in proc reg. The residual plot shows serial
correlation. At estimate of the autocorrelation is given as is the DW test statistic.

- Then GLS/Yule-Walker estimates are obtained directly via proc reg under the

AR(1) model using transformed values.

- Proc autoreg in SAS and similar procedures in other statistics packages will
automatically fit these models and allow tests for higher order serial correlations
and make corrections for higher order serial correlations (e.g., lag 2, lag 3, ...)
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In this particular example with quarterly data a lag 4 correlation may be more
suitable. Here I’ve shown the output using autoreg allowing a lag 4 model.

1 20.96 127.3 A=1, B=2, etc. Plot of COMP*IND.

2 21.40 130.0

3 21.96 132.7 COMP |

4 21.52 129.4 30.0 +

5 22.39 135.0 |

6 22.76 137.1 | A

7 23.48 141.2 | A

8 23.66 142.8 27.5 + AA

9 24.10 145.5 | A

10 24.01 145.3 | A

11 24.54 148.3 | A

12 24.30 146.4 25.0 + A

13 25.00 150.2 | BA

14 25.64 153.1 | B A

15 26.36 157.3 |

16 26.98 160.7 22.5 + AA

17 27.52 164.2 | A

18 27.78 165.6 | AB

19 28.24 168.7 |

20 28.78 171.7 20.0 +

|

-+---------+---------+---------+-

120 140 160 180

IND

title ’autocorrelation example’;

options pagesize=60 linesize=80;

data a;

infile ’blais.dat’;

input time comp ind;

proc plot hpercent=50 vpercent=50;

plot comp*ind;

run;

title ’LEAST SQUARES WITH RESIDUALS AND DW VIA PROC REG’;

proc reg;

model comp = ind/ dw;

var time;

plot residual.*time/vplots=3; /* the vplots=3 means to use size of 3 per page*/

run;

data b;

set a;

ind1 = lag(ind); /* uses lag 1 of ind */

comp1= lag(comp);

newx1=1-.626005;

newx2=ind-(.626005*ind1);

newy=comp - (.626005*comp1);

if ind1=. then newy = sqrt(1-(.626005**2))*comp; /* deals with observation 1*/

if ind1=. then newx1= sqrt(1-(.626005**2));
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if ind1=. then newx2= sqrt(1-(.626005**2))*ind;

proc print;

run;

title ’YULE WALKER/GLS VIA REG DIRECTLY’;

proc reg;

model newy=newx1 newx2/ noint;

var time;

plot residual.*time/vplots=3;

run;

title ’YULE-WALKER WITH AR4 ERRORS’;

proc autoreg;

model comp = ind/nlag=4 method=yw;

run;

LEAST SQUARES WITH RESIDUALS AND DW VIA PROC REG

Dependent Variable: COMP

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Prob>F

Model 1 110.25688 110.25688 14888.144 0.0001

Error 18 0.13330 0.00741

C Total 19 110.39018

Root MSE 0.08606 R-square 0.9988

Dep Mean 24.56900 Adj R-sq 0.9987

C.V. 0.35026

Parameter Estimates

Parameter Standard T for H0:

Variable DF Estimate Error Parameter=0 Prob > |T|

INTERCEP 1 -1.454750 0.21414605 -6.793 0.0001

IND 1 0.176283 0.00144474 122.017 0.0001

Durbin-Watson D 0.735

(For Number of Obs.) 20

1st Order Autocorrelation 0.626

-+------+------+------+------+------+------+------+------+------+------+-

0.2 + +

| 1 |

R | |

E | 1 1 1 |

S | |

I | 1 1 1 1 1 1 |

D 0.0 + +

U | 1 1 1 1|

A | 1 1 1 |

L | 1 |

| 1 1 |

| |

-0.2 + +

-+------+------+------+------+------+------+------+------+------+------+-

0 2 4 6 8 10 12 14 16 18 20
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TIME

OBS TIME COMP IND IND1 COMP1 NEWX1 NEWX2 NEWY

1 1 20.96 127.3 . . 0.77982 99.2710 16.3450

2 2 21.40 130.0 127.3 20.96 0.37399 50.3096 8.2789

etc.

YULE WALKER/GLS VIA REG DIRECTLY

NOTE: No intercept in model. R-square is redefined.

Dependent Variable: NEWY

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Prob>F

Model 2 2004.12498 1002.06249 227702.453 0.0001

Error 18 0.07921 0.00440

U Total 20 2004.20419

Root MSE 0.06634 R-square 1.0000

Dep Mean 9.85875 Adj R-sq 1.0000

C.V. 0.67289

Parameter Estimates

Parameter Standard T for H0:

Variable DF Estimate Error Parameter=0 Prob > |T|

NEWX1 1 -1.290313 0.33959411 -3.800 0.0013

NEWX2 1 0.175142 0.00228275 76.724 0.0001

-+------+------+------+------+------+------+------+------+------+------+-

0.2 + +

| |

R | 1 |

E | 1 |

S 0.1 + +

I | |

D | 1 1 1 |

U | 1 1 1 1 1 |

A 0.0 + 1+

L | 1 1 |

| 1 1 1 1 1 |

| 1 |

-0.1 + 1 +

-+------+------+------+------+------+------+------+------+------+------+-

0 2 4 6 8 10 12 14 16 18 20

TIME

YULE-WALKER WITH AR4 ERRORS

Estimates of the Autoregressive Parameters
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Lag Coefficient Std Error t Ratio

1 -0.56816055 0.249753 -2.275

2 -0.05758150 0.291282 -0.198

3 0.09080571 0.291282 0.312

4 0.35599058 0.249753 1.425

Variable DF B Value Std Error t Ratio Approx Prob

Intercept 1 -1.473603 0.2227 -6.618 0.0001

IND 1 0.176379 0.00150 117.219 0.0001

MORE IN SAS

title ’LEAST SQUARES WITH DW TESTS VIA AUTOREG’;

proc autoreg;

model comp = ind/dw=4 dwprob;

run;

LEAST SQUARES WITH DW TESTS VIA AUTOREG 9

The AUTOREG Procedure

Dependent Variable comp

Durbin-Watson Statistics

Order DW Pr < DW Pr > DW

1 0.7347 0.0002 0.9998

NOTE: Pr<DW is the p-value for testing positive autocorrelation, and Pr>DW is

the p-value for testing negative autocorrelation.

Standard Approx

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -1.4548 0.2141 -6.79 <.0001

ind 1 0.1763 0.001445 122.02 <.0001

title ’YULE-WALKER VIA PROC AUTOREG’;

proc autoreg;

model comp = ind/nlag=1 method=yw;

run;

The AUTOREG Procedure

Standard Approx

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -1.2903 0.3494 -3.69 0.0018

ind 1 0.1751 0.002349 74.56 <.0001

STANDARD ERRORS COMPUTED SLIGHTLY DIFFERENTLY THAN WHEN RUN THROUGH PROC REG

DIRECTY
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Return to the house price example. Run without case 79 which was

influential.

Notice the significant change in the coefficients without case 79. MSE has also
dropped from 30314 to 25642. You should repeat the diagnostics that we did earlier,

but now without case 79.

Notice also that with case 79 dropped, the changes from the analysis assuming

constant variance and not assuming constant variance are not as dramatic as before.

House price data with no case 79 1

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 2 12940603 6470302 252.33 <.0001

Error 103 2641155 25642

Root MSE 160.13207 R-Square 0.8305

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -10.68646 55.91224 -0.19 0.8488

SQFT 1 0.41167 0.06758 6.09 <.0001

TAX 1 0.51631 0.10856 4.76 <.0001

Covariance of Estimates

Variable Intercept SQFT TAX

Intercept 3126.1782108 -2.407745932 1.3711932883

SQFT -2.407745932 0.0045673184 -0.006480621

TAX 1.3711932883 -0.006480621 0.0117854133

Consistent Covariance of Estimates

Variable Intercept SQFT TAX

Intercept 4503.7683118 -4.876928617 3.8393201953

SQFT -4.876928617 0.0082492374 -0.010200804

TAX 3.8393201953 -0.010200804 0.015857791
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ANALYSIS USING IML

J COEFF SE LOWER UPPER

0 -10.68646 55.912237 -121.5752 100.20228

J COEFF SEROBUST LOWERR UPPERR

0 -10.68646 67.110121 -143.7836 122.41064

J COEFF SE LOWER UPPER

1 0.41167 0.0675819 0.2776372 0.5457028

J COEFF SEROBUST LOWERR UPPERR

1 0.41167 0.0908253 0.2315394 0.5918006

J COEFF SE LOWER UPPER

2 0.5163116 0.1085606 0.3010072 0.7316161

J COEFF SEROBUST LOWERR UPPERR

2 0.5163116 0.1259277 0.2665637 0.7660596

get confidence interval on expected price at sqft=2650,tax=1639

YHAT SEYHAT CML CMU

under constant variance 1926.4738 47.938359 1831.3994 2021.5483

YHAT SEYHATR CMLR CMUR

allowing unequal variances 1926.4738 56.208582 1814.9974 2037.9503
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Summary: Emphasis has been on linear regression models with focus on:

1. Components of the model and interpretation of parameters.

2. Matrix formulation of the regression model and expression of methods in matrix
form. (Assists in reading documentation and is the language in which many

statistical problems are expressed.)

3. Methods for estimation, confidence intervals (one-at-a-time and simultaneous)

and test of hypotheses about parameters and linear combinations of them (and
ratios in the case of inverse prediction and regulation).

4. Prediction.

5. Model assessment and model building.

6. Some additional Diagonostics (outliers, influential observations, ...)

7. Introduction to dealing with serially correlated errors.

Important additional Topics.

• More additional diagonostics (diagnostics for multicollinearity, added variable

plots, etc. )

• Small sample techniques without normality (e.g. bootstrap).

• Assesssments for correlated errors.

• Regression methods allowing correlated errors (data over time, time series/cross
sectional regression, repeated measures, longitudinal data).

• Regression with other distributions or models specific to counts, survival data,
etc. (Generalized linear models)

• Measurement error in the predictor variables and/or the response.

• Design of experiments. Sample size, choice of X’s in designed experiments.

• Transformations.

• Non-linear regression (including binary regression).

• Neural Networks and non-parametric regression.
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