ST505: Fall 2012 Homework 8 solution.

Part i: Problem 8.15
a) If $X_{2}=$ type ($=1$ for small and 0 for large) then the model in (8.33) implies
$E\left(Y \mid X_{1}\right)=\left(\beta_{0}+\beta_{2}\right)+\beta_{1} X_{1}$ for small copiers and
$E\left(Y \mid X_{1}\right)=\beta_{0}+\beta_{1} X_{1}$ for large copiers.
So, there is a common slope β_{1} for each type, with intercept β_{0} for large copiers and intercept $\beta_{0}+\beta_{2}$ for small copiers. The model here corresponds to two parallel lines for $\mathrm{E}(\mathrm{Y})$, one for small and one for large.

The parameter β_{2} is the difference between the intercepts and so represents the copier effect (which with no interaction is the same at each X_{1}).
b) Here is the SAS output. You obviously get the same from R.

	Parameter Variable DF				Standard Estimate
Intercept	1	-0.92247	Error	t Value	Pr $>\|t\|$
number	1	15.04614	3.09969	-0.30	0.7675
type	1	0.75872	0.49000	30.71	$<.0001$
	Variable	DF	2.77986	0.27	0.7862
	Intercept	1	-7.17789	5.33294	
	number	1	14.05728	16.03500	
	type	1	-4.85125	6.36870	

c) Note that .7582 is the estimate of the difference in intercepts for the two groups with a 95% CI of $[-4.85125,6.3687]$.
d) If we had an overall random sample then you could compare copier types directly by just doing a two sample comparison of means. Assuming equal variances this is the standard two sample t-test but can also be viewed as the F-test in a one-way analysis of variance with two groups. If you have other variables that are related to the response (here X_{1}) then including it can help improve precision in estimating the difference. (In fact if you compare service without accounting for number you get an estimated diffference of 6.1954 with a confidence interval of [-20.5454, 32.9361].)

If it is not a random smaple and X_{1} influences service then it should be included in the model.
e) There is a sign of a trend up indicating a potential interaction. Here an interaction means that there is different slope for each group. This is explored in the rest of the problem.

Part ii: Using Z_{1} and Z_{2} form products with $X_{1} x z 1$ and $x z 2$. Then running a model with z1,z2 and these two products will give estimated intercepts and slopes directly.

The coefficient for Z_{1} is $\beta_{S 0}$ so $\hat{\beta}_{S 0}=-5.32808$ and the coefficient for $Z_{1} * X_{1}$ is $\beta_{S 1}$ so $\hat{\beta}_{S 1}=16.1168$.
Similarly $\hat{\beta}_{L 0}=2.81311$ and $\hat{\beta}_{L 1}=14.33941$.
These would agree with running separate regressions for each type.

		Parameter	Standard				
Variable	DF	Estimate	Error	t	Value	Pr > \|t	
z1	1	-5.32808	4.22346		-1.26	0.2142	
z2	1	2.81311	3.64685		0.77	0.4449	
$\mathrm{xz1}$	1	16.11680	0.75641		21.31	$<.0001$	
xz2	1	14.33941	0.61455		23.33	<. 0001	

Part iii: If type $=1$ (small copier): $E(Y)=\beta_{0}+\beta_{2}+\left(\beta_{1}+\beta_{3}\right) X_{1}$,.
If type $=0$ (large): $E(Y)=\beta_{0}+\beta_{1} X_{1}$.

So, $\beta_{0}=\beta_{L 0}, \quad \beta_{1}=\beta_{L 1}, \quad \beta_{2}=\beta_{S 0}-\beta_{S 1}, \quad \beta_{3}=\beta_{S 1}-\beta_{L 1}$, since $\beta_{0}+\beta_{2}=\beta_{S 0}$ and $\beta_{1}+\beta_{3}=\beta_{S 1}$.
This shows that the the coefficient for $Z_{1}=$ type is the difference in intercepts and the coefficient for type * number $=Z_{1} * X_{1}$ is the different in slopes

The fit is below. Notice that the estimated differences agree with what you would get from the previous part (as they should)

The confidence interval for $\beta_{S 0}-\beta_{L 0}$ is the CI for β_{2} which is [-19.41037, 3.12797]
The confidence interval for $\beta_{S 1}-\beta_{L 1}$ is the confidence interval for β_{3} which is $[-0.19084,3.74561]$.
The t -test for type (with $\mathrm{t}=-1.46$ and p -value $=.1522$) is testing $H_{0}: \beta_{A 0}=\beta_{B 0}$.
The t-test for type ${ }^{*}$ number $=\operatorname{prod}($ with $\mathrm{t}=1.822$ and p -value $\left.=.0755)\right)$ is testing $H_{0}: \beta_{A 1}=\beta_{B 1}$.
Some indication of unequal slopes. The test for equal slopes is more borderline; you would reject for $\alpha=.10$ but not for $\alpha=.05$. Probably best to keep different slopes for the two types in trying to predict service time.

The test for equal intercepts is non-significant. But, once again remember the issue of power and that we never prove the null. The test by itself is non-informative. Look at the CI also, which has 0 in it, but is also mostly on the negative side with a wide range. To proceed under the assumption that there is no type effect would be dangerous. Best to get more data.

Part iv: Testing simultaneously for equal intercepts and slopes Using the test in SAS or the anova approach in R, leads to the F-test below. The chi-square test, which we get automatically from SAS but will need to customize in R does the test allowing unequal variances.

You can also use the full-reduced model approach with $\operatorname{SSE}\left(H_{0}\right)=3416.37702$ under the null model. Under the full model $S S E=3154.43514$ and $M S E=76.93744$ with 41 d.o.f. So $F=(3416.378-3154.435) /(2 * 76.93744)$ with 2 and 41 degrees of freedom.

