1. Consider the patient satisfaction data in problem 6.15 in the text.
(a) Both \mathbf{Y} and $\boldsymbol{\epsilon}$ are 43×1 vectors.

$$
\mathbf{Y}=\left[\begin{array}{l}
Y_{1} \\
Y_{2} \\
\cdot \\
\cdot \\
\cdot \\
Y_{n}
\end{array}\right]=\left[\begin{array}{l}
43 \\
57 \\
66 \\
\cdot \\
\cdot \\
68 \\
59 \\
92
\end{array}\right] \text { and } \quad \boldsymbol{\epsilon}=\left[\begin{array}{l}
\epsilon_{1} \\
\epsilon_{2} \\
\cdot \\
\cdot \\
\cdot \\
\epsilon_{46}
\end{array}\right]
$$

(b) MODEL 1: \mathbf{X} is $46 \times 2, \boldsymbol{\beta}$ and \mathbf{b} are both 2×1 vectors and $\sigma^{2}\{\mathbf{b}\}$ is a 2×2 matrix.

$$
\mathbf{X}=\left[\begin{array}{ll}
1 & 50 \\
1 & 36 \\
\cdot & \cdot \\
\cdot & \cdot \\
1 & 37 \\
1 & 28
\end{array}\right] \quad \boldsymbol{\beta}=\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{l}
b_{0} \\
b_{1}
\end{array}\right], \quad \sigma^{2}\{\mathbf{b}\}=\left[\begin{array}{ll}
\sigma^{2}\left\{b_{0}\right\} & \sigma\left\{b_{0}, b_{1}\right\} \\
\sigma\left\{b_{1}, b_{0}\right\} & \sigma^{2}\left\{b_{1}\right\}
\end{array}\right]
$$

MODEL 2: \mathbf{X} is $46 \times 4, \boldsymbol{\beta}$ and \mathbf{b} are both 4×1 vectors and $\sigma^{2}\{\mathbf{b}\}$ is a 4×4 matrix.

$$
\mathbf{X}=\left[\begin{array}{llll}
1 & 50 & 51 & 2.3 \\
1 & 36 & 46 & 2.3 \\
\cdot & \cdot & & \\
. & \cdot & & \\
1 & 37 & 53 & 2.1 \\
1 & 28 & 46 & 1.8
\end{array}\right] \quad \boldsymbol{\beta}=\left[\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\beta_{2} \\
\beta_{3}
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
b_{0} \\
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right], \quad \sigma^{2}\{\mathbf{b}\}=\left[\begin{array}{llll}
\sigma^{2}\left\{b_{0}\right\} & \sigma\left\{b_{0}, b_{1}\right\} & \sigma\left\{b_{0}, b_{2}\right\} & \sigma\left\{b_{0}, b_{3}\right\} \\
\sigma\left\{b_{1}, b_{0}\right\} & \sigma^{2}\left\{b_{1}\right\} & \sigma\left\{b_{1}, b_{2}\right\} & \sigma\left\{b_{1}, b_{3}\right\} \\
\sigma\left\{b_{2}, b_{0}\right\} & \sigma\left\{b_{2}, b_{1}\right\} & \sigma^{2}\left\{b_{2}\right\} & \sigma\left\{b_{2}, b_{3}\right\} \\
\sigma\left\{b_{3}, b_{0}\right\} & \sigma\left\{b_{3}, b_{2}\right\} & \sigma\left\{b_{3}, b_{2}\right\} & \sigma^{2}\left\{b_{3}\right\}
\end{array}\right] .
$$

MODEL 3: As with model \mathbf{X} is $46 \times 4, \boldsymbol{\beta}$ and \mathbf{b} are both 4×1 vectors and $\sigma^{2}\{\mathbf{b}\}$ is a 4×4 matrix. The form of $\sigma^{2}\{\mathbf{b}\}$ is exactly the same a model 2. All that changes here is what places the role of X_{3} and so what is in the fourth column of \mathbf{X}.

$$
\mathbf{X}=\left[\begin{array}{cccc}
1 & 50 & 51 & 50 * 51 \\
1 & 36 & 46 & 36 * 46 \\
\cdot & \cdot & & \\
\cdot & \cdot & & \\
1 & 37 & 53 & 37 * 53 \\
1 & 28 & 46 & 28 * 46
\end{array}\right]
$$

2. Fitting the Patient satisfaction data. Have shown R commands and output in most places below. Corresponding SAS code and output at end of solution.
(a) > fit3 <- lm(Satisfaction \sim Age +Severity + Anxiety)

The estimates, standard errors, confidence intervals and t-tests for the four coefficients are:

```
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 158.4913 18.1259 8.744 5.26e-11 ***
Age -1.1416 0.2148 -5.315 3.81e-06 ***
Severity -0.4420 0.4920 -0.898 0.3741
Anxiety -13.4702 7.0997 -1.897 0.0647 .
> confint(fit3)
                    2.5% 97.5%
(Intercept) 121.911727 195.0707761
Age -1.575093 -0.7081303
Severity -1.434831 0.5508228
Anxiety -27.797859 0.8575324
```

The estimate of $\sigma^{2}\{\mathbf{b}\}$ assuming equal variances of error terms is $s^{2}\{\mathbf{b}\}$, given by:

```
> vcov(fit3)
\begin{tabular}{lrrrr} 
& (Intercept) & Age & Severity & Anxiety \\
(Intercept) & 328.5478428 & 0.93283693 & -6.87207388 & -6.8081417 \\
Age & 0.9328369 & 0.04613853 & -0.03223004 & -0.4716488 \\
Severity & -6.8720739 & -0.03223004 & 0.24203030 & -1.7916031 \\
Anxiety & -6.8081417 & -0.47164876 & -1.79160306 & 50.4051837
\end{tabular}
```

allowing the variance of the errors to change over observations the estimate is $s_{W h i t e}^{2}\{\mathbf{b}\}=$

> acov \#\# variance covariance matrix	without assumption			
	(Intercept)	Age	Severity	Anxiety
(Intercept)	277.7160961	0.99014977	-6.67977869	9.7237773
Age	0.9901498	0.04156309	-0.02728626	-0.5548634
Severity	-6.6797787	-0.02728626	0.23094574	-1.6780348
Anxiety	9.7237773	-0.55486345	-1.67803483	41.8845874

The analysis of variance table given by SAS is

	Mum of				Mean
Source	DF	Squares	Square	F Value	Pr $>$ F
Model	3	9120.46367	3040.15456	30.05	$<.0001$
Error	42	4248.84068	101.16287		
Corrected Total	45	13369			

As noted, in class, the anova command in R (here anova(fit3)) does not give the anova table above. The F-statistic that corresponds to the anova comes from the summary command in R, leading to

```
> summary(fit3)
F-statistic: 30.05 on 3 and 42 DF, p-value: 1.542e-10
```

The anova command in R gives

```
> anova(fit3)
Analysis of Variance Table
Response: Satisfaction
    Df Sum Sq Mean Sq F value Pr(>F)
Age 1 8275.4 8275.4 81.8026 2.059e-11 ***
Severity 1 480.9 480.9 4.7539 0.03489 *
```

Anxiety $1364.2 \quad 364.2 \quad 3.5997 \quad 0.06468$.
Residuals 424248.8101 .2

You could construct the traditional anova table (as given in SAS and most other software) using this via $\mathrm{SSR}=$ sum of the three one degree of freedom Sum SQ's; that is, $\mathrm{SSR}=8275.5+480.9$ +364.2 (subject to a little rounding difference). In fact, what the anova in R is giving you are additional sums of squares $S S R\left(X_{1}\right)=8275.4, S S R\left(X_{2} \mid X_{1}\right)=480.9$ and $S S R\left(X_{3} \mid X_{1}, X_{2}\right)=$ 364.2.
(b) b_{j} is the estimate of the change in the expected value of Y when the $j t h$ predictor changes by 1 with the other two predictors held fixed. So, for example, $b_{1}=.9328$ estimates the change in the expected satisfaction to be .9328 when age changes by 1 year while severity and age are held fixed.
(c) The tests associated with b_{j} is testing whether $\beta_{j}=0$ in the model with $E\left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i 1}+$ $\beta_{2} X_{i 2}+\beta_{3} X_{i 2}+\beta_{3} X_{i 3}$.
At $\alpha=.05$ only the test for $H_{0}: \beta_{1}=0$ leads to rejection, while at $\alpha=.10$ we reject for both β_{1} and β_{3}. Since the p-value is only approximate (since the normality assumption is never exactly true), this points out the problem of working with a fixed α and having to make a yes(reject) or no (do not reject) decision.
(d) If the 95% confidence interval for β_{j} contains 0 , then the p-value for the associated test will be greater than .05 (i.e., we would not reject $\beta_{j}=0$). Conversely if 0 is NOT in the interval the the p -value will be less than .05 (i.e., we would reject $\beta_{j}=0$).
(e) Interpret the F-test in the analysis of variance table. As noted in class in R, we modified this question to be interpret the F-test from the summary command. This is testing $H_{0}: \beta_{1}=\beta_{2}=$ $\beta_{3}=0$. The F-statistic is 30.05 , based on 3 and 42 degrees of freedom, with a a P-value of $1.542 e-10$. This leads to rejecting H_{0}.
(f) All of the plots (residuals versus each of the three X 's and fitted value and versus the three products, show systematic patterns indicating the linear regression model with the three X 's appears to be a good fit and products are not needed.

Problems for ST697R students.

3. The fit with the three original terms and the three products yields
```
> fit5 <- lm(Satisfaction~Age +Severity + Anxiety + Age*Severity + Age*Anxiety + Severity*Anxiety)
> summary(fit5)
\begin{tabular}{lrrrr} 
& Estimate & Std. Error t value \(\operatorname{Pr}(>|\mathrm{t}|)\) \\
(Intercept) & 190.51810 & 117.37011 & 1.623 & 0.113 \\
Age & 0.79293 & 3.15488 & 0.251 & 0.803 \\
Severity & -3.14572 & 3.26554 & -0.963 & 0.341 \\
Anxiety & -14.40686 & 70.96754 & -0.203 & 0.840 \\
Age:Severity & 0.01565 & 0.06396 & 0.245 & 0.808 \\
Age:Anxiety & -1.19694 & 0.93509 & -1.280 & 0.208 \\
Severity:Anxiety & 0.93330 & 1.54466 & 0.604 & 0.549
\end{tabular}
```

The t-tests associated with the products test for the coefficients one-a-time, not simultaneous. None of these are rejected.
Not asked for You can test that $\beta_{5}=\beta_{6}=\beta_{7}=0$ (no interaction terms) using the general test using the test command in SAS or anova(fit3,fit5) in R after fitting the full and reduced model. Assuming
equal variance this leads to $\mathrm{F}=0.58$ with 3 and 42 degrees of freedom and a p-value of .6339 , so do not reject. The chi-square test from SAS allowing unequal variances reaches the same conclusion.

| | Res.Df | RSS | Df | Sum of Sq | F $\operatorname{Pr}(>F)$ | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 42 | 4248.8 | | | | |
| 2 | 39 | 4068.4 | 3 | 180.43 | 0.5765 | 0.6339 |

4. Problem 6.22
a) This is a multiple linear regression model as given (linear in β^{\prime} 's although not in the X 's)
b) Taking natural \log, leading to $Y_{i}^{*}=\log \left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\log \left(\epsilon_{i}\right)$

This is not quite a linear model since with $E\left(\epsilon_{i}\right)=0, E\left(\log \left(\epsilon_{i}\right)\right)=\gamma \neq 0$. But, if we add in $-\gamma$ we get $Y_{i}^{*}=\log \left(Y_{i}\right)=\beta_{0}^{*}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\epsilon_{i}^{*}$, where $\beta_{0}^{*}=\beta_{0}-\gamma$ and ϵ_{i}^{*} had mean 0 .
c) Since $\log _{10}\left(\beta_{0} X_{i 1}\right)=\log _{10}\left(\beta_{0}\right)+\log _{10}\left(X_{i 1}\right)$ you can write this as $Y_{i}-\log _{10}\left(X_{i 1}\right)=\log _{10}\left(\beta_{0}\right)+$ $\beta_{2} X_{i 2}+\epsilon_{i}$ or with the right definitions $Y_{i}^{*}=\beta_{0}^{*}+\beta_{1}^{*} X_{i 2}+\epsilon_{i}$.
d) is not "linearizable".
e) $Y_{i}^{*}=\log \left(\left(1 / Y_{i}\right)-1\right)=\beta_{0}+\beta_{1} X_{i 1}+\epsilon_{i}$, which is a linear model.

NOTE: If we fit the transformed models in b) or e) and estimate the mean we are estimating $E\left(Y^{*}\right)$. If we want to estimate $E(Y)$ it is not as simple as just transforming back since the transformation is non-linear. For example, in b) suppose $\widehat{\mu}^{*}$ estimates $E\left(Y^{*}\right)$ at some set of $X^{\prime} s$. Then $e^{\widehat{\mu}^{*}}$ is NOT unbiased for $E(Y)$ and we can't just transform the intervals for μ^{*}. The problem is that exponentiation is a non-linear function. There are ways to use approximates to estimate $E(Y)$. However if the problem is just prediction, then we can do a prediction interval for Y^{*} and transform back to get a prediction interval for Y.
5. Problem 6.16 b). Hint: Use Bonferroni's method.

Use $b_{j} \pm t(1-(.10 / 6), 42) s\left\{b_{j}\right\}$. This leads to the following simultaneous intervals:

```
beta1 -1.614248 -0.6689755
beta2 -1.524510 0.6405013
beta3 -29.092028 2.1517012
```

SAS code and output.

```
title 'patient example, prob 6.15 in NWNK ';
options linesize=80;
data a;
infile 'g:/s505/data/patient5.txt';
```

input satis age severity anxiety;
x1x2=age*severity;
x1x3 = age*anxiety;
x2x3 = severity*anxiety;
run;
proc reg;
model satis = age severity anxiety/covb acov clb;
run;
title 'simultaneous CIs for beta1, beta2 and beta3';
proc reg; /* this will automatically give simulteneous 90% CI's for the three non-intercept coefficients */
model satis $=$ age severity anxiety/clb alpha = . 0333333 ;
run;
proc reg;
model satis $=$ age severity anxiety $\mathrm{x} 1 \mathrm{x} 2 \mathrm{x} 1 \mathrm{x} 3 \mathrm{x} 2 \mathrm{x} 3 /$ covb acov;
noprod: test $\mathrm{x} 1 \mathrm{x} 2=0$, $\mathrm{x} 1 \mathrm{x} 3=0$, $\mathrm{x} 2 \mathrm{x} 3=0$;
run;
Analysis of Variance

Standard								
Variable	DF	Error	t	Value	Pr > \|t		95\% Confi	Limits
Intercept	1	16.66482		9.51	<. 0001	121.91173	195.07078	
age	1	0.20387		-5.60	<. 0001	-1.57509	-0.70813	
severity	1	0.48057		-0.92	0.3630	-1.43483	0.55082	
anxiety	1	6.47183		-2.08	0.0435	-27.79786	0.85753	
		Heteroscedasticity Consistent						
		Variable	DF	95\% Confidence Limits				
		Intercept	1	124.86029		192.12221		
		age	1	-1.55304		-0.73018		
		severity	1	-1.41183		0.52782		
		anxiety	1	-26.53085		-0.40948		

	Covariance of Estimates			
Variable	Intercept	age	severity	anxiety
Intercept	328.54784276	0.9328369266	-6.872073881	-6.808141658
age	0.9328369266	0.0461385284	-0.032230039	-0.471648757
severity	-6.872073881	-0.032230039	0.2420302972	-1.791603061
anxiety	-6.808141658	-0.471648757	-1.791603061	50.405183679

Heteroscedasticity Consistent Covariance of Estimates

Variable	Intercept	age	severity	anxiety
Intercept	277.71609611	0.99014977	-6.679778695	9.7237772911
age	0.99014977	0.0415630924	-0.027286261	-0.554863448
severity	-6.679778695	-0.027286261	0.2309457396	-1.678034827
anxiety	9.7237772911	-0.554863448	-1.678034827	41.884587402
	simultaneous CIs for beta1, beta2 and beta3			
			96.66667% Confidence	
	Variable	DF	Limits	
	Intercept	1	118.60762	198.37488
	age	1	-1.61425	-0.66898
	severity	1	-1.52451	0.64050
	anxiety	1	-29.09203	2.15170

Fitting with products

	Parameter Estimate				
Variable	DF	Error	t Value	Pr $>\|t\|$	
Intercept	1	190.51810	117.37011	1.62	0.1126
age	1	0.79293	3.15488	0.25	0.8029
severity	1	-3.14572	3.26554	-0.96	0.3413
anxiety	1	-14.40686	70.96754	-0.20	0.8402
x1x2	1	0.01565	0.06396	0.24	0.8080
x1x3	1	-1.19694	0.93509	-1.28	0.2081
x2x3	1	0.93330	1.54466	0.60	0.5492

Figure 1: Residual plots for patient data.

Figure 2: Residual plots for patient data; versus products.

