
ST505/697R: Fall 2012. Homework 5 Solution.

1. a and b. Here are means, standard deviations and sample sizes associated with each of the levels of
virus density. There is a clear decline in proportion surviving and the data suggests that the standard
deviation among observation is smaller when the mean is smaller. This is not unexpected. Each
observation was the proportion of gypsy moth in a bag that survived. If the bag had m individuals
and observations across individuals in a bag were independent (a bit assumption) and the probability
of surviving were π then the variance of the proportion surviving would be π(1−π)/m (from binomial
results) which has a maximum at π = .5 and declines as π goes to 0 or 1. While we don’t want to
necessarily accept that variance model is does suggest in part why the sd’s go down with the mean.
Later we will do a weighted analysis that allows the variances to change but without modeling it.

R:

data<-read.table("e:/s505/data/virus.dat") #no names

attach(data)

tree<-V1; vden<-V2; totno<-V3; inf<-V4

group<-factor(vden)

x<-1/vden

psurv = 1- (inf/totno)

gmean<-tapply(psurv,group,mean)

gsd<-tapply(psurv,group,sd)

n<-tapply(psurv,group,length)

groupsum<-cbind(mean=gmean,st.dev=gsd,samplesize=n)

groupsum

mean st.dev samplesize

5 0.6902083 0.2335024 8

10 0.4382847 0.2548244 8

25 0.1746658 0.1761442 8

50 0.1552835 0.1112793 8

70 0.1293478 0.1338735 8

SAS

data a;

infile ’e:/s505/data/virus.dat’;

input tree vden totno inf;

psurv=1-(inf/totno);

x = 1/vden; run;

proc means;

class vden; var psurv; run;

Analysis Variable : psurv

N

vden Obs N Mean Std Dev Minimum Maximum

5 8 8 0.6902083 0.2335024 0.3200000 0.9583333

10 8 8 0.4382847 0.2548244 0.1600000 0.7916667

25 8 8 0.1746658 0.1761442 0 0.4400000

50 8 8 0.1552835 0.1112793 0 0.3200000

70 8 8 0.1293478 0.1338735 0 0.3500000

c: The F-statistic i the anova table (F = 13.03 with a small p-value) is testing the null hypothesis
that θ1 = θ2 = . . . = θ5 where θj is the population mean associated with the jth level of vden; i.e.
θj = E(Y ) for a Y observed at the jth level of vden. This makes no assumption about how this
expected value relates to vden. We reject the null since the p-value is < .0001.

R
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Figure 1: Plot psurv versus vden and x = 1/vden.

oneway<-lm(psurv~group)

anova(oneway)

Analysis of Variance Table

Response: psurv

Df Sum Sq Mean Sq F value Pr(>F)

group 4 1.8849 0.47123 13.033 1.342e-06 ***

Residuals 35 1.2655 0.03616

proc anova;

class vden;

model psurv=vden;

means vden/hovtest=levene; /* gives result for part d*/

run;

The ANOVA Procedure

Dependent Variable: pinf

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 4 1.88493987 0.47123497 13.03 <.0001

Error 35 1.26553574 0.03615816

Corrected Total 39 3.15047561

Part d: In the model that just allows different means at each level of the virus density, test the
hypothesis that the variance is constant across the vden groups.

In SAS, the hovtest=levene in previous part gives the test based on the squared residuals (output
below). This has a P-value of .0425, leading to rejection at α = .05. In R you can use Bartlett’s
test which is automatic, or run a one-way analysis on the squared or absolute residuals, which gives
two versions of Levene’s test. You’ll see that the test using squared residuals is equivalent to what
SAS runs as Levene’s test. The Levene’s test based on absolute residuals has a p-value of .067, but
Bartlett’s test, with a P-value of .1875 leads to a different conclusion in this case than. It is best here
to try and accommodate unequal variances.
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The ANOVA Procedure

Levene’s Test for Homogeneity of psurv Variance

ANOVA of Squared Deviations from Group Means

Sum of Mean

Source DF Squares Square F Value Pr > F

vden 4 0.0128 0.00320 2.77 0.0425

Error 35 0.0405 0.00116

R.

# Can use bartlett.test which is automatic

# or can use residuals from fit with group means and run

# one-way analysis on the absolute residuals.

residg<-residuals(oneway)

abresidg<-abs(residg)

anova(lm(abresidg~group)) #Levene’s test for equal variance in group mean

# mean model based on absolute residuals.

resid2<-residg^2

anova(lm(resid2~group)) # Levene’s test for equal variance using squared residuals

bartlett.test(psurv,group) # Bartlett’s test for equal variance in model

Analysis of Variance Table

Response: abresidg

Df Sum Sq Mean Sq F value Pr(>F)

group 4 0.09068 0.0226692 2.4185 0.06691 .

Residuals 35 0.32806 0.0093731

Analysis of Variance Table

Response: resid2

Df Sum Sq Mean Sq F value Pr(>F)

group 4 0.012799 0.0031996 2.7669 0.04247 *

Residuals 35 0.040474 0.0011564

Bartlett test of homogeneity of variances

data: psurv and group

Bartlett’s K-squared = 6.1599, df = 4, p-value = 0.1875

Part e: Use a plot of psurv versus vden) AND a test for lack of fit to assess whether a simple linear
regression model of psurv on vden is adequate here.

The model does not look good from the plot. For testing lack of fit, from the anova of the regression
model

SSE = 1.896384 with 38 dof. Also, SSPE = 1.26553574 (with 35 degrees of freedom)

c = 5 and n = 40, SSLF = SSE − SSPE, MSLF = SSLF/(c− 2). This leads to
Flof = MSLF/MSPE = 5.81984 with 3 and 35 degrees of freedom.
The P-value (obtained via probf in SAS or pf in R) is .00246. [Using tables in the book, we have
F (.995, 3, 30) = 5.24 and F (.995, 3, 60) = 4.73). F (.995, 3, 35) will be somewhere in between, so we
know that 5.81984 is more than F (.99, 3, 5) so the p-value is less than .005]

H0 : θj = β0 + β1Xj is rejected, the linear regression model in terms of vden is not an adequate fit.
This is also seen from the plot.

SAS
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proc reg;

model psurv=vden;

plot psurv*vden;

run;

The REG Procedure

Dependent Variable: pinf

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 1.25363 1.25363 25.11 <.0001

Error 38 1.89684 0.04992

Corrected Total 39 3.15048

COMPUTING THE LACK OF FIT TEST IN SAS.

data lof;

sspe= 1.26553574; sse=1.89684;

n=40; c=5;

mse=sse/(n-2); mspe=sspe/(n-c);

sslf = sse-sspe; mslf=sslf/(c-2);

f=mslf/mspe;

fpvalue= 1 - probf(f,c-2,n-c);

proc print;

Obs sspe sse n c mse mspe sslf mslf f fpvalue

1 1.26554 1.89684 40 5 0.049917 0.036158 0.63130 0.21043 5.81984 .002456857

COMPUTING THE LACK OF FIT TEST IN R

sspe<-deviance(oneway)

dfpe<-df.residual(oneway)

mspe<-sspe/dfpe

regout<-lm(psurv~vden)

anova(regout)

sse<-deviance(regout)

dfe<-df.residual(regout) # dof for SSPE in linear regression = n - 2

sslf<-sse-sspe

dflf<-dfe-dfpe # dof for sslf = n-2(n-c) = c-2

mslf<-sslf/dflf

Flof<-mslf/mspe # the f statistic for testing lack of fit

pvalue<- 1 - pf(Flof,dflf,dfpe) # gets p-value for lack of fit test

# = area to the right of Flof for

# t with dflf = c-2 and dfpe = n -c

# degrees of freedom.

cat("lack of fit test using vden", "sspe =", sspe, "dfpe = ", dfpe, "sse =", sse, "dfe = ", dfe,

"Flof = ", Flof, "P-value = ", pvalue, "\n")

Response: psurv

Df Sum Sq Mean Sq F value Pr(>F)

vden 1 1.2536 1.25363 25.114 1.281e-05 ***

Residuals 38 1.8968 0.04992

lack of fit test using vden sspe = 1.265536 dfpe = 35 sse = 1.896841 dfe = 38 Flof = 5.81985 P-value = 0.002456836

Part f. Repeat the previous problem but now considering regressing psurv on x = 1/vden.

The plot of psurv on x = 1/vden, suggests a simple linear regression model is a reasonable fit. The
regression of psurv on x yields SSE = 1.29224. The lack of fit test has F = .2462 with 3 and 35 degrees
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of freedom, with a p-value of .8635. Do not reject the model that has E(Y ) linear in x = 1/vden.

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 1.85823 1.85823 54.64 <.0001

Error 38 1.29224 0.03401

Corrected Total 39 3.15048

lack of fit for model with x=1/vden

Obs sspe sse n c mse mspe sslf mslf f fpvalue

1 1.26554 1.29224 40 5 0.034006 0.036158 0.026704 .00890142 0.24618 0.86348

USING R

lack of fit test using 1/vden sspe = 1.265536 dfpe = 35 sse = 1.292244 dfe = 38 Flof = 0.2462177 P-value = 0.8634569

g Assuming the linear model for psurv on x = 1/vden is good, test for constant variance, by running
Levene’s test. There are different versions of Levene’s test that get used here as seen in the class
example. We first fit the regression model and save the residuals. There are then three ways to go
1.run a one-way analysis comparing means but with the response being the absolute residual; 2. like
1 but using squared residuals. 3.In SAS you can just run a one-way anova with the residual (not
squared or absolute value) and use the hovtest=levene result. These are all testing the hypothesis
of equal variances of the errors with the regression framework with grouped data. (Another option
is to get medians and do Brown-Forsythe). There is no best test here. In this problem, there are
conflicting answers from the strict testing perspective as the p-values are .1173,.0810 and .0425 for
1 to 3, respectively. Note that 1 is border-line significant if one use α = .10 which many people do
in screening assumptions like this. As earlier, we are best served by trying to accommodate unequal
variances.

SAS

proc reg data=a;

model psurv=x;

plot psurv*x;

output out=result r=resid;

run;

proc anova data=result;

class x;

model resid=x;

means x/hovtest=levene;

run;

data b;

set result;

absr = abs(resid);

r2 = resid**2;

run;

proc anova data=b;

class x;

model r2=x;

run;

The ANOVA Procedure
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Levene’s Test for Homogeneity of resid Variance

ANOVA of Squared Deviations from Group Means

Sum of Mean

Source DF Squares Square F Value Pr > F

x 4 0.0128 0.00320 2.77 0.0425

Error 35 0.0405 0.00116

Using R

resid<-residuals(lm(psurv~x)) # residuals from regression fit

r2<-resid^2

ar<-abs(resid)

anova(lm(r2~group)) # Levene’s test using squared residuals

Analysis of Variance Table

Response: r2

Df Sum Sq Mean Sq F value Pr(>F)

group 4 0.013510 0.0033775 2.273 0.08099 .

Residuals 35 0.052006 0.0014859

anova(lm(ar~group)) # Levene’s test using absolute residuals

Analysis of Variance Table

Response: ar

Df Sum Sq Mean Sq F value Pr(>F)

group 4 0.08275 0.020687 1.9917 0.1173

Residuals 35 0.36352 0.010386

2. Using the residuals from the fit of psurv on x = 1/den, plot them versus tree number. Does it look
like the model should account for tree effects in some manner?

There is some suggestion that we should allow for tree effects; see trees 1, 5 and 8 in particular. If the
trees are random this can be done in a way that allow random tree effects to be part of the error. (This
comes under the heading of repeated measures/mixed model regression, which we don’t have time to
do much with in this course). An alternative, or what we’d need to do if the trees were fixed by design,
is look at alternatives to simple linear regression that accommodate tree effects in some manner. We
will do this in the context of multiple regression.

3. The full model is our usual regression model with SSE(F) = our usual SSE with n-2 degrees of freedom.
Under H0 the SEE(R) (under the null model) is SSE(R) =

∑
i(Yi − Xi)

2 with n − 0 = n dof since
there are no unknown parameters in the reduced model for E(R). So, we would use F = (SSE −

SSE(R))/(n− 2 − n)/MSE, which under H0 will follow an F with 2 and n-2 degrees of freedom. We
reject H0 if Fobs > F (1 − α, 2, n − 2) or if P (F > Fobs) < α where Fobs is the observed value of the
F-statistic and F in the probability is distributed F (2, n − 2).

There are some general ways to test linear hypotheses (of which the above is a special case) in both SAS
and R, that we will explore a little later once we have a matrix representation of multiple regression
under our belts.
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Figure 2: Plot of residual versus tree id
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