Throughout I have used exact table values, which can be obtained via SAS or R. If you use approximations from the tables, your answers will be a little different.

1. Neopterin Assay example. This is inverse prediction with $Y_{\text {new }}=3000$. From the regression analysis, $b_{0}=6683.97035, b_{1}=-1072.92715, s^{2}\left\{b_{0}\right\}=19817.939942$, $s\left\{b_{0}, b_{1}\right\}=-4707.512482, s^{2}\left\{b_{1}\right\}=1276.1361656$, MSE $=68670$ and $n=28$. The regression is in terms of log concentration. Running the analysis on this we obtain an estimated \log (concentration), an estimated approximate standard error, and an approximate confidence interval given by
$\hat{X}_{\text {new }}=\left(3000-b_{0}\right) / b_{1}=3.4335$
$s_{\text {pred } X}=0.2487065$
$\hat{X}_{\text {new }} \pm 2.055 * s_{\text {pred } X}=[2.922,3.944]$,
where $t(.975,26)=2.055$ and $s_{\text {pred } X}=\sqrt{0.06185}$,

$$
s^{2}\{p r e d X\}=.06185=\frac{1}{b_{1}^{2}}\left(M S E+s^{2}\left\{b_{0}\right\}+\hat{X}_{\text {new }}^{2} s^{2}\left\{b_{1}\right\}+2 \hat{X}_{\text {new }} s\left\{b_{0}, b_{1}\right\}\right) .
$$

The Fieller interval uses

$$
\frac{c_{01}}{c_{1}} \pm \frac{\left[c_{01}^{2}-c_{0} c_{1}\right]^{1 / 2}}{c_{1}}
$$

where $c_{0}=\left(Y_{\text {new }}-b_{0}\right)^{2}-t^{2}\left(M S E+s^{2}\left\{b_{0}\right\}\right), c_{1}=\left(b_{1}\right)^{2}-t^{2} s^{2}\left\{b_{1}\right\}$ and $c_{01}=\left(Y_{\text {new }}-\right.$ $\left.b_{0}\right) b_{1}+t^{2} s\left\{b_{0}, b_{1}\right\}$, with quantities going into these as given above.
If you calculate out the Fieller interval is [2.920, 3.945], which is essentially the same as the approximate method.
Since the concentration $=e^{x}$ is a monotonic function of $\mathrm{x}=\log$ (concentration), we can convert confidence intervals for \log (concentration) to ones for concentration by taking the same function of the endpoints of the interval for \log (concentration). Why is this okay? Can you explain it? This yields an estimated concentration of $39.987=e^{3.433}$ and a confidence interval of $[18.585,51.666]=\left[e^{2.922}, e^{3.944}\right]$.
2. Cow pH example.
a) Showing SAS output.

		Parameter	Standard			
Variable	DF	Estimate	Error	t Value	Pr > \|t	
Intercept	1	6.99649	0.09691	72.20	<. 0001	
time	1	-0.20869	0.01970	-10.59	<. 0001	
Covariance of Estimates						
	Variable	Intercept		time		
	Intercept	0.009	$62-0$	1629799		
	time	-0.00		3880474		

Figure 1: Cow pH; confidence intervals for the mean
b) This is is a regulation problem as we are trying to estimate that X, denoted $X(5.5)$, at which $E(Y \mid X)=m=5.5$, which leads to $X(5.5)=\left(5.5-\beta_{0}\right) / \beta_{1}$. From the output $b_{0}=6.99649, b_{1}=-0.20869, s^{2}\left\{b_{0}\right\}=0.0093907462, s\left\{b_{0}, b_{1}\right\}=-0.001629799$, $s^{2}\left\{b_{1}\right\}=0.0003880474$ and $n=10$. The point estimate is

$$
\hat{X}(5.5)=\left(5.5-b_{0}\right) / b_{1}=7.1709,
$$

with an estimated standard error $s\{\hat{X}(m)\}=.3703=\sqrt{.1371}$ computed using

$$
s^{2}\{\hat{X}(m)\}=\frac{1}{b_{1}^{2}}\left[s^{2}\left\{b_{0}\right\}+\hat{X}(m)^{2} s^{2}\left\{b_{1}\right\}+2 \hat{X}(m) s\left\{b_{0}, b_{1}\right\}\right.
$$

Using the estimated approximate standard error with $t(.975,8)=2.306$ yields the approximate interval

$$
\hat{X}(5.5) \pm t(.975,8) S E=7.1709 \pm 2.306 * .3703=[6.3171,8.0247]
$$

Using Fieller's method the interval is computed with the formula in problem 1, but now $c_{0}=\left(m-b_{0}\right)^{2}-t^{2} s^{2}\left\{b_{0}\right\}, c_{01}=\left(m-b_{0}\right) b_{1}+t^{2} s\left\{b_{0}, b_{1}\right\}$ and $c_{1}=\left(b_{1}\right)^{2}-t^{2} s^{2}\left\{b_{1}\right\}$.
This yields and interval of $[6.431,8.206]$. Note that because the p-value for the slope is less than .05 we know that the Fieller method will yield a finite interval.
Graphically, the Fieller interval is obtained by finding the points on the x-axis that correspond to where the CI for $E(\mu(x))$ equal 5.5 (or, said another way, drawing a line at $\mathrm{y}=5.5$, looking at where it intersects the CIs for the mean, $\mathrm{E}(\mathrm{Y})$, and projecting back to the x -axix).

Extra problem for S697R students.

At time X the $\mathrm{pH} Y$ is distributed $N\left(\beta_{0}+\beta_{1} X, \sigma^{2}\right)$ and $P(Y<6)=P(Z<(6-$ $\left.\left.\left(\beta_{0}+\beta_{1} X\right)\right) / \sigma\right)$ where Z is a standard normal random variable. If we set this equal to a specified probability π then we need $\left.z_{\pi}=\left(6-\left(\beta_{0}+\beta_{1} X\right)\right) / \sigma\right)$, where z_{π} is the standard normal percentile with π to the left of it under the standard normal curve. Solving yields $\beta_{0}+\beta_{1} X=6-\sigma * z_{\pi}$ or $X=\left(6-\sigma * z_{\pi}-\beta_{0}\right) / \beta_{1}$. This looks just like a regulation problem except m is replaced by $6-\sigma * z_{\pi}$. If we know σ and have a specified π then we can proceed as in the regulation problem.

In the problem we want $P(Y>6)=.05)$ so $\pi=.95, z_{.95}=1.645$ and $6-.01 * 1.645=$ 5.98355 (playing the role of m). This leads to
$\hat{X}(m)=4.85380$
$S E=0.2495$
and an approximate confidence interval of [4.278, 5.429].
3. 2.39
a) The marginal distribution of Y_{1} is distributed normally with mean 50 and standard deviation 3 (or write as $Y_{1} \sim N(50,9)$).
b) In general $Y_{2} \mid Y_{1}=y_{1}$ is $N\left(\beta_{0}+\beta_{1} y_{1}, \sigma^{2}\right.$) (or in books notation $\beta_{0}=\alpha_{21}$ and $\beta_{1}=\beta_{21}$) where $\beta_{1}=.8(4 / 3)=1.0667, \beta_{0}=100-50(1.0667)=46.67$ and $\sigma^{2}=$ $5.76=\sigma_{2}^{2}\left(1-\rho_{12}^{2}\right)=16(1-.64)=\sigma_{2}^{2}-\beta_{1}^{2} \sigma_{1}^{2}=16-\left(1.0667^{2}\right) 9=5.76 . \quad$ So, $\sigma=2.4$. So, $Y_{2} \mid Y_{1}=y_{1}$ is $N\left(46.67+1.0667 y_{1}, 5.76\right)$, i.e.

Given $y_{1}=55, Y_{2}$ is $N(105.36,5.76)$, or normal with mean 105 and standard deviation $2.4($ variance $=5.76)$.
c) In general $Y_{1} \mid Y_{2}=y_{2}$ is $N\left(\alpha_{12}+\beta_{12} y_{2}, \sigma^{2}\right)$ where $\beta_{12}=.8(3 / 4)=.6, \alpha_{12}=50-$ $100(.6)=-10$ and
$\sigma^{2}=3.24=\sigma_{1}^{2}\left(1-\rho_{12}^{2}\right)=9(1-.64)=\sigma_{2}^{2}-\gamma_{1}^{2} \sigma_{1}^{2} 9-(.6 * * 2) 16=3.24 \quad \sigma=1.8$.
$Y_{1} \mid Y_{2}=y_{2}$ is $N\left(-10+.6 y_{2}, 3.24\right)$
Given $y_{2}=95, Y_{1}$ is $N(47,3.24)$ or normal with mean 47 and standard deviation 1.8.
4. - Problem 2.31. a) Here is the analysis of variance table along with the estimated coefficients, etc. (SAS output, R output very similar)

b) Not required The F-test is given in the anova table. The F value of 16.83 is $=(-4.10)^{2}$, which is the t-statistics squared. Both tests lead to rejecting $H_{0}: \beta_{1}=0$. The P-values are both given as $<.0001$. You could compute the exact p-values for each of these test as shown below. The differences are just due to rounding of statistics.
In SAS the probf and probt give cumulative probabilities for the F and t distributions respectively; i.e., $\operatorname{prob} f(c, d 1, d 2)=P(F \leq c)$ where F is distributed F with d1 and d2 degrees of freedom. In R the functions are pf and pt, respectively.

Using SAS

proc iml;
pvalue = 1 - probf(16.83,1,82);
pvaluet $=2 * \operatorname{probt}(-4.10,82)$;
print pvalue pvaluet;
run;
pvalue pvaluet
0.00009590 .0000967

Using R
pvalue $=1-\operatorname{pf}(16.83,1,82)$
pvaluet $=2 * p t(-4.1,82)$
pvalue; pvaluet
[1] 9.587146e-05
[1] 9.671269e-05
c) $R^{2}=.1703$ so 17.03% of the total variation is explained or SSTO is reduced bye 17.03 \%.
d) to compute r from the anova table we use $r=\operatorname{sign}\left(b_{1}\right) \sqrt{.1703}=-\sqrt{.1703}=-.4127$.

Problems 2.48 and 2.49.

For 2.48 , the sample Pearson correlation r is -0.41270 . The p -value for testing the null hypothesis that the population correlation is zero is $<.0001$. We would reject H_{0} and conclude that the population correlation is not 0 . The p-value from this test (which is based on the assumption of bivariate normality) will be exactly the same as the P-value from the t -test (or F-test) for 0 slope in the regression of Y on X. You can't tell that they are exactly the same here where they are both listed as less than .0001, but see the Brain example for illustration.

For 2.49, the Spearman correlation is -.42593 with a P-value less than .0001 . Very similar value and same conclusion as working with Pearson correlation.
NOTE: There is now a Fisher option in proc corr in SAS that does two things. Adjusts the estimate of correlation to account for potential bias and gives a 95% confidence interval for the population correlation ρ. This confidence interval depends on the bivariate normality assumption.

USING SAS

```
data a;
infile 'e:\crime.dat';
input rate hspercent;
proc reg;
model rate=hspercent; run;
proc corr pearson spearman fisher;
var rate hspercent; run;
proc univariate plot normal; var rate hspercent;
run;
```


rate hspercent -0.574459 -0.215188 <.0001
USING R
data<-read.table("f:/s505/data/crime.dat")
attach (data)
rate<-V1; hspercent<-V2
summary (rate)
summary (hspercent)
plot(hspercent,rate)
cor.test (rate,hspercent) \# will default to Pearson correlation
cor.test (rate,hspercent, method = c("spearman")) \# Does Spearman correlation
> summary (rate)
Min. 1st Qu. Median Mean 3rd Qu. Max.
$2105 \quad 50206930 \quad 7111884014020$
> summary (hspercent)
Min. 1st Qu. Median Mean 3rd Qu. Max.
$\begin{array}{llllll}61.00 & 76.00 & 79.00 & 78.60 & 82.25 & 91.00\end{array}$
> cor.test (rate,hspercent) \# will default to Pearson correlation
Pearson's product-moment correlation
data: rate and hspercent
$\mathrm{t}=-4.1029$, $\mathrm{df}=82$, p -value $=9.571 \mathrm{e}-05$
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.5761223-0.2175580
sample estimates: cor -0.4127033
> cor.test(rate,hspercent, method $=c($ "spearman")) \# Does Spearman correlation
Spearman's rank correlation rho
data: rate and hspercent
$S=140839.3$, p-value $=5.359 \mathrm{e}-05$
alternative hypothesis: true rho is not equal to 0
sample estimates: rho -0.4259324

