1. (15 points) Let $f(x, y)$ be a differentiable function with the following values of the partial derivatives $f_{x}(x, y)$ and $f_{y}(x, y)$ at certain points (x, y) :

x	y	$f_{x}(x, y)$	$f_{y}(x, y)$
0	0	3	2
2	-1	-2	5
1	2	-1	4

(You are given more values than you will need for this problem.) Suppose that x and y are functions of variables r and s :

$$
x=r^{2} s ; \quad y=r-s,
$$

so that we may regard f as a function of r and s. Compute the partial derivative f_{r} of f with respect to r when $r=1$ and $s=2$.
2. (10 points) Consider the function $f(x, y)=x^{2} y-x y$. Find a unit vector \mathbf{u} such that the directional derivative of $f(x, y)$ at the point $(1,4)$ in the direction of \mathbf{u} equals 2 .
3. (20 points) Let

$$
f(x, y)=\frac{1}{3} x^{3}+x^{2}-x y+\frac{1}{4} y^{2}-4 x .
$$

Find and classify (as maxima, minima or saddle points) all critical points of $f(x, y)$.
4. (20 points) Find the minimum of the function $f(x, y)=x^{2} y$ subject to the constraint $x^{2}+2 y^{2}=6$.
5. (15 points) Find the volume above the rectangle $-3 \leq x \leq 3,2 \leq y \leq 4$ and below the surface $z=1+x^{2}+y$. (You must show your work.)
6. (15 points) Evaluate the integral

$$
\int_{0}^{1} \int_{\sqrt{x}}^{1} \cos \left(y^{3}\right) d y d x
$$

(Hint: Change the order of integration.) You must show your work.

