1. Find the critical points of $f(x, y)=x^{3}+y^{2}+2 x y-4 x-3 y+5$ and classify each as a relative maximum, relative minimum or saddle point.
2. An open (no top) rectangular box must have a volume of 6 cubic feet. Find the dimensions of the box that will minimize the amount of material used to construct the box.
3. a) Find the directional derivative of $F(x, y, z)=x^{2}+2 y^{2}+3 z^{2}-12$ at the point $(2,2,0)$ in the direction toward the point $(3,2,1)$.
b) Find the equation of the tangent plane to the surface $F(x, y, z)=x^{2}+2 y^{2}+3 z^{2}-12=0$ at the point $(2,2,0)$.
c) Find a point (a, b, c) on the above surface (there are actually two such points) at which the normal line to the surface is parallel to the line $x=1+t, y=-1+4 t, z=2-3 t$. (NOTE: Since (a, b, c) is on the above surface, its coordinates must satisfy the equation of the surface.)
4. a) If $G(x, y, z)=x^{2} z+y z^{3}-x^{3} y^{2}-5 z=0$ defines z as an implicit function of x and y, find $\frac{\partial z}{\partial y}$.
b) Suppose $z=f(x, y)$, where $x=s^{2} t$ and $y=t^{2}$. If $f_{x}(2,-1)=3$, $f_{x}(-4,1)=1, f_{y}(2,-1)=3$ and $f_{y}(-4,1)=2$, find the value of $\frac{\partial z}{\partial t}$ when $s=2$ and $t=-1$. (Note that there is more information given than is needed.)
c) Let $h(x, y)$ have continuous partials and suppose that the maximum value of the directional derivative of h at $P(1,2)$ has magnitude $=50$ and is attained in the direction from $P(1,2)$ to $Q(3,-4)$, Find $\nabla h(1,2)$
5. a) Let $I=\int_{0}^{2} \int_{0}^{x^{2}} 6 \pi \cos \left(\frac{\pi x^{3}}{16}\right) d y d x$
i) Sketch the region of integration.
ii) Write I with the order of integration reversed.
iii) Evaluate either the integral I as given or with the order reversed.
b) Set up, but DO NOT evaluate, the iterated integral to find the volume of the solid in the first octant that is bounded by $z=4-y^{2}, z=0, x=0$ and $y=2 x$.
