Math 233

Practice Exam 3

Spring 2006

- 1. (a) (6 points) Find the line of intersection of the planes given by equations 2x-3y+4z+5=0 and y-z=7.
- (b) Where does the line from part (a) intersect the plane x + y + z = 0?
- **2.** (a) Given the points A = (1,0,0), B = (0,1,0) and C = (0,0,1), find the point P on the line segment \overrightarrow{AB} that is closest to C.
- (b) Find the area of the triangle with vertices A, B, and C.
- (c) Find the plane that contains the points A, B, and C.
- **3.** For the surface $z^2 = x^2 + y^2 1$, do the following
- (a) Write down the equation of the slice (intersection) of this surface with the plane z=3, and use it to completely describe the curve.
- (b) Sketch the slices of this surface in all three coordinate planes.
- (c) Find a vector valued function $\vec{r}(t)$ that gives the curve in part (a).
- **4.** Consider the line L_1 given by x = 4 + t, y = 3 + t, z = 1 + 2t and the line L_2 given by x = 1 t, y = 2t, z = 1 + t, and also the point P = (3, 2, -1).
- (a) Find a parametric equation of a line L that passes through P and is perpendicular to both L_1 and L_2 .
- (b) Show that P lies on L_1 and find the point Q at which L and L_2 meet.
- (c) What is the distance between lines L_1 and L_2 ? Why?
- 5. The acceleration vector of a particle moving in space at a time t is $\mathbf{a}(t) = -2t\mathbf{i} + 4\mathbf{j}$.
- (a) Find the position $\mathbf{r}(t)$ of the particle as a function of t, if at the time t = 0 the velocity vetor is $\mathbf{v}(0) = \langle 3, 0, 4 \rangle$ and at time t = 3 the particle is at the point (0, 1, 0).
- (b) Find an equation of the tangent line to the curve at the point (0,1,0).
- (c) Find the length of the trajectory traveled from time t=0 to time t=2.