1. (a) Consider the line L through points $A=(2,1,-1)$ and $B=(5,3,-2)$. Find the intersection of the line L and the plane given by $2 x-3 y+4 z=13$.
(b) Find the distance of the point $(2,1,-1)$ and the plane given by $2 x-3 y+4 z=13$.
(c) Consider the parallelogram with vertices A, B, C, D such that B and C are adjacent to A. If $A=(3,5,1), B=(5,1,4), D=(-5,2,-3)$, find the point C.
2. Consider the points $A=(2,1,0), B=(1,0,2)$ and $C=(0,2,1)$.
(a) Find the orthogonal projection $\operatorname{proj}_{\overrightarrow{A B}}(\overrightarrow{A C})$ of the vector $\overrightarrow{A C}$ onto the vector $\overrightarrow{A B}$.
(b) Find the point P such that $\overrightarrow{A P}=\operatorname{proj}_{\overrightarrow{A B}}(\overrightarrow{A C})$.
(c) Find the distance d from the point C to the line L that contains points A and B.
3. (a) Find paramteric equations for the line of intersection of the planes $3 x+2 y-z=4$ and $2 x+z=1$.
(b) Let L_{1} denote the line through the points $(1,0,1)$ and $(-1,4,1)$ and let L_{2} denote the line through the points $(2,3,-1)$ and $(4,4,-3)$. Do the lines L_{1} and L_{2} intersect? If not, are they skew or parallel?
4. (a) Find the volume of the parallelepiped such that the following four points $A=(1,4,2)$, $B=(3,1,-2), C=(4,3,-3), D=(1,0,-1)$ are vertices and the vertices B, C, D are all adjacent to the vertex A.
(b) Find an equation of the plane through A, B, D.
(c) Find the angle between the plane through A, B, C and the $x y$ plane.
5. The velocity vector of a particle moving in space equals $\mathbf{v}(t)=2 t \mathbf{i}+2 t^{1 / 2} \mathbf{j}+\mathbf{k}$ at any time $t \geq 0$. (a) At the time $t=0$ this particle is at the point $(-1,5,4)$. Find the position vector $\mathbf{r}(t)$ of the particle at the time $t=4$.
(b) Find an equation of the tangent line to the curve at the time $t=4$.
(c) Does the particle ever pass through the point $P=(80,41,13)$?
(d) Find the length of the arc traveled from time $t=1$ to time $t=2$.
6. Consider the vector valued function $f(x, y)=6 x^{3} y /\left(2 x^{4}+y^{4}\right)$.
(a) Does the limit $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ exist? Why or why not?
(b) Compute the second partial derivatives of $f(x, y)$ and verify that $f_{x y}=f_{y x}$.
