1. Given two vectors $\mathbf{a}=\mathbf{i}+\mathbf{j}+\mathbf{k}, \mathbf{b}=\mathbf{i}-\mathbf{j}+\mathbf{k}$
(a) Find $\operatorname{proj}_{\mathbf{a}} \mathbf{b}$, the vector projection of \mathbf{b} onto \mathbf{a}.

First calculate $\mathbf{c o m p}_{\mathrm{a}} \mathbf{b}$:

$$
\operatorname{comp}_{\mathbf{a}} \mathbf{b}=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}=\frac{1}{\sqrt{3}} .
$$

So $\operatorname{proj}_{\mathbf{a}} \mathbf{b}=\operatorname{comp}_{\mathbf{a}} \mathbf{b} \frac{\mathbf{a}}{|\mathbf{a}|}=\frac{1}{\sqrt{3}} \frac{\langle 1,1,1\rangle}{\sqrt{3}}=\left\langle\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right\rangle$
(b) Find the angle θ formed by \mathbf{a} and \mathbf{b}.

Use formula $\cos \theta=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| \mid \mathbf{b} \mathbf{b}}$. We get $\cos \theta=\frac{1}{3}$ and $\theta=\arccos (1 / 3)$.
2. Consider the points $P(2,2,6), Q(0,5,5), R(3,1,7)$.
(a) Find a nonzero vector orthogonal to the plane through the points P, Q, and R.

$$
\begin{gathered}
\overrightarrow{P Q}=\langle-2,3,-1\rangle \\
\overrightarrow{P R}=\langle 1,-1,1\rangle \\
\overrightarrow{P Q} \times \overrightarrow{P R}=\left[\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-2 & 3 & -1 \\
1 & -1 & 1
\end{array}\right]=2 \mathbf{i}+\mathbf{j}-\mathbf{k}
\end{gathered}
$$

The vector $\overrightarrow{P Q} \times \overrightarrow{P R}$ is
orthogonal to the plane through the points P, Q, and R.
(b) Find the area of the triangle $P Q R$.

We know $|\overrightarrow{P Q} \times \overrightarrow{P R}|$ is the
area of the parallelogram spanned by the vectors $\overrightarrow{P Q}$ and $\overrightarrow{P R}$, therefore,

$$
A_{\triangle P Q R}=\frac{|\overrightarrow{P Q} \times \overrightarrow{P R}|}{2}=\frac{\sqrt{2^{2}+1^{2}+(-1)^{2}}}{2}=\frac{\sqrt{6}}{2}
$$

3. Find an equation of the plane that passes through the point $(9,0,-3)$ and contains the given line $x=7-2 t, y=1+3 t, z=6+4 t$.

To find a normal vector \mathbf{n} to the plane, we will first find two non-parallel vectors \mathbf{v}_{1} and \mathbf{v}_{2} on the plane. We can take $\mathbf{n}=\mathbf{v}_{1} \times \mathbf{v}_{2}$ which will be orthogonal to both \mathbf{v}_{1} and \mathbf{v}_{2} and thus normal to the plane.
Since the given line lies on the plane, its direction vector $\langle-2,3,4\rangle$ is on the plane. Let $\mathbf{v}_{1}:=\langle-2,3,4\rangle$.
To find the second vector we look at two points on the plane, one of which must not be on the line. We can take our two points to be $P_{1}(9,0,-3)$ and $P_{2}(7,1,6)$, the former being the given point on the plane and the latter being the point on the line at $t=0$. Then $\mathbf{v}_{2}:=\langle-2,1,9\rangle$ is the vector going from P_{1} to P_{2}.

$$
\begin{aligned}
\mathbf{n} & =\mathbf{v}_{1} \times \mathbf{v}_{2} \\
& =\langle-2,3,4\rangle \times\langle-2,1,9\rangle \\
& =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-2 & 3 & 4 \\
-2 & 1 & 9
\end{array}\right| \\
& =\langle 23,10,4\rangle
\end{aligned}
$$

Using the normal vector \mathbf{n} and the point $P_{1}(9,0,-3)$ on the plane, the equation of the plane is given by:

$$
23(x-9)+10(y-0)+4(z+3)=0
$$

Which can be simplified to:

$$
23 x+10 y+4 z-195=0
$$

4. We all know that $x^{2}+y^{2}+z^{2}=26$ is a sphere, denoted as S, in the space.
(a) Is any of the surfaces $x-y^{2}=z^{2}, x^{2}+\frac{y}{5}^{2}=1-z^{2}$ or $x^{2}+y^{2}-z^{2}=24$ inside of that sphere S ?

The surface $x-y^{2}=z^{2}$ is not in the sphere; rewriting it as $x=y^{2}+z^{2}$, one sees that it is a parabaloid and thus unbounded.
The surface $x^{2}+\frac{y^{2}}{5}+z^{2}=1$ is an ellipsoid. It's extreme points on the three axes are $(\pm 1,0,0),(0, \pm \sqrt{5}, 0)$ and $(0,0,1)$, all of which are inside the sphere. Thus the entire ellipsoid is inside the sphere.
The surface $x^{2}+y^{2}-z^{2}=24$ is a hyperbaloid of one sheet, and thus is unbounded, so it cannot be inside the sphere.
(b) What type of curve is the intersection of $z=x^{2}+y^{2}$ with that sphere S ?

It is a circle, as one sees easily from graphing the two surfaces.
(c) Find the points of intersection between the helix $\langle\cos t, \sin t, t\rangle$ and that sphere S.

Replace the curve in the equation

$$
(\cos t)^{2}+(\sin t)^{2}+t^{2}=26
$$

then $t=-5,5$. So it
intersects at the points $(\cos (-5), \sin (-5),-5)$ and $(\cos (5), \sin (5), 5)$.
5. Find a parametric equation that represents the curve of intersection of the two surfaces. The cylinder $x^{2}+y^{2}=25$ and the surface $z=x y$

The projection of the cylinder onto the $x y$-plane is the circle $x^{2}+y^{2}=25, z=0$. So we can parametrize it by:

$$
x=5 \cos t, \quad y=5 \sin t ; \quad 0 \leq t \leq 2 \pi
$$

Now from the equation of the surface $z=x y$ we have

$$
z=(5 \cos t)(5 \sin t)=25 \cos t \sin t
$$

So we can write the parametric equation for the curve of intersection C as:

$$
x=5 \cos t, \quad y=5 \sin t, \quad z=25 \cos t \sin t ; \quad 0 \leq t \leq 2 \pi .
$$

6. Find $\mathbf{r}(t)$ if $\mathbf{r}^{\prime}(t)=8 t^{7} \mathbf{i}+4 t^{3} \mathbf{j}+\sqrt{t} \mathbf{k}$ and $\mathbf{r}(1)=\mathbf{i}+\mathbf{j}$.

Since $\mathbf{r}^{\prime}(t)=8 t^{7} \mathbf{i}+4 t^{3} \mathbf{j}+\sqrt{t} \mathbf{k}$, we know that $\mathbf{r}(t)$ will be some antiderivative of this function, so

$$
\mathbf{r}(t)=\left\langle t^{8}, t^{4}, \frac{2}{3} t^{3 / 2}\right\rangle+\left\langle C_{1}, C_{2}, C_{3}\right\rangle .
$$

Using this formula, we see that $\mathbf{r}(1)=\left\langle 1+C_{1}, 1+C_{2}, \frac{2}{3}+C_{3}\right\rangle$, so since $\mathbf{r}(1)=$ $\langle 1,1,0\rangle$, we can solve for C_{1}, C_{2}, C_{3} to get $C_{1}=0, C_{2}=0$, and $C_{3}=-\frac{2}{3}$. Thus:

$$
\mathbf{r}(t)=\left\langle t^{8}, t^{4}, \frac{2}{3} t^{3 / 2}-\frac{2}{3}\right\rangle .
$$

7. The position function of a particle is $\mathbf{r}(t)=\left\langle t^{2}, 5 t, t^{2}-16 t\right\rangle$. When is the speed of the particle a minimum?

First, find the velocity:

$$
\mathbf{v}(t)=\mathbf{r}^{\prime}(t)=\langle 2 t, 5,2 t-16\rangle
$$

Then the speed is

$$
|\mathbf{v}(t)|=\sqrt{4 t^{2}+25+(2 t-16)^{2}}=\sqrt{8 t^{2}-64 t+281}
$$

The minimum of the speed occurs when the function $g(t)=8 t^{2}-64 t+281$ has a minimum. Since $g^{\prime}(t)=16 t-64$ has its only zero at $t=4$, and since $g^{\prime \prime}(4)=16>0$,
we know that when $t=4$, the speed of the particle is indeed a minimum.

