DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS

MATH 233
EXAM 1
Fall 2006

NAME: \qquad

Section Number: \qquad Instructor's Name: \qquad
In problems that require reasoning or algebraic calculation, it is not sufficient just to write the answers. You must explain how you arrived at your answers, and show your algebraic calculations.

You can leave answers in terms of fractions and square roots, but if approximate numerical answers are used, they should be rounded off to 4 significant figures.
$<x, y, z>,[x, y, z],\left(\begin{array}{l}x \\ y \\ z\end{array}\right),\left[\begin{array}{l}x \\ y \\ z\end{array}\right] ;$ are all permissible notations for the vector $x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$.

1. $\quad(20) \longrightarrow$
2. (20) \qquad
3. \qquad
4. \qquad
5. \qquad
Total
Perfect Paper $\longrightarrow 100$ Points.
There are seven pages, including this one, in this exam and five problems. Make sure you have them all before you begin!

FORMULAS

$\mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}=|\mathbf{a}||\mathbf{b}| \cos \theta$

$$
\begin{aligned}
|\mathbf{a}|=\sqrt{\mathbf{a} \cdot \mathbf{a}} & =\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}} . \\
& \mathbf{a} \times \mathbf{b}
\end{aligned}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=\left|\begin{array}{cc}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| \mathbf{j}+\left|\begin{array}{cc}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \mathbf{k} .
$$

where

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

$|\mathbf{a} \times \mathbf{b}|=|\mathbf{a}||\mathbf{b}| \sin \theta=$ area of parallelogram with sides \mathbf{a}, \mathbf{b}.
The vector projection of \mathbf{b} onto (in the direction of) \mathbf{a} is $\operatorname{proj}_{\mathbf{a}} \mathbf{b}=\left(\frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a}$
The scalar projection (component) of \mathbf{b} onto \mathbf{a} is $\operatorname{comp}_{\mathbf{a}} \mathbf{b}=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}$

The volume of the "box" determined by \mathbf{a}, \mathbf{b} and \mathbf{c} is $|\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})|$

Arc length of parametrized curve:

$$
L=\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t
$$

1. a) (8 points) Find parametric equations for the line which contains $A(2,0,1)$ and $B(-1,1,-1)$.
b) (12 points) Determine whether the lines $l_{1}: x=1+2 t, y=3 t, z=2-t$ and $l_{2}: x=-1+s, y=4+s, z=1+3 s$ are parallel, skew or intersecting.
2. a) (10 points) Find an equation of the plane which contains the points $P(-1,2,1)$, $Q(1,-2,1)$ and $R(1,1,-1)$.
b) (10 points) Find the distance from the point $(1,2,-1)$ to the plane $2 x+y-2 z=1$.
3. a) (10 points) Let two space curves

$$
\mathbf{r}_{1}(t)=\left\langle\cos (t-1), t^{2}-1, t^{4}\right\rangle, \quad \mathbf{r}_{2}(s)=\left\langle 1+\ln s, s^{2}-2 s+1, s^{2}\right\rangle
$$

be given where t and s are two independent real parameters. Find the cosine of the angle between the tangent vectors of the two curves at the intersection point ($1,0,1$).
b) (10 points) Suppose a particle moving in space has velocity

$$
\mathbf{v}(t)=\left\langle\sin t, \cos 2 t, e^{t}\right\rangle
$$

and initial position $\mathbf{r}(0)=\langle 1,2,0\rangle$. Find the position vector function $\mathbf{r}(t)$.
4. a) (12 points) Let $f(x, y)=e^{x^{2}-y}+x \sqrt{4-y^{2}}$. Find partial derivatives f_{x}, f_{y} and $f_{x y}$.
b) (8 points) Find an equation for the tangent plane of the graph of

$$
f(x, y)=\sin (2 x+y)+1
$$

at the point $(0,0,1)$.
5. a) (7 points) Let $g(x, y)=y e^{x}$. Estimate $g(0.1,1.9)$ using the linear approximation of $g(x, y)$ at $(x, y)=(0,2)$.
b) (6 points) Find the center and radius of the sphere $x^{2}+y^{2}+z^{2}+6 z=16$.
c) (7 points) Let $f(x, y)=\sqrt{16-x^{2}-y^{2}}$. Draw a contour map of level curves $f(x, y)=$ k with $k=1,2,3$. Label the level curves by the corresponding values of k.

