
Solutions to old Exam 2 problems

Hi students!
I am putting this version of my review for the Final exam
review (place and time TBA) here on the website. DO NOT
PRINT!!; it is very long!! Enjoy!!
Your course chair, Bill

PS. There are probably errors in some of the solutions
presented here and for a few problems you need to complete
them or simplify the answers; some questions are left to you
the student. Also you might need to add more detailed
explanations or justifications on the actual similar problems on
your exam. I will keep updating these solutions with better
corrected/improved versions. The first 6 slides are from Exam
2 practice problems but the material falls on our Final exam.

After our exam, I will place the solutions to it right after this
slide.



Problem 23 - Exam 2 Fall 2006

Evaluate the integral ∫ 1

0

∫ 1

√
y

√
x3 + 1 dx dy

by reversing the order of integration.

Solution:

Note that the region R defined by
{(x , y) | √y ≤ x ≤ 1, 0 ≤ y ≤ 1} is equal to the region
{(x , y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ x2}.
Thus, ∫ ∫

R

√
x3 + 1 dA =

∫ 1

0

∫ 1

√
y

√
x3 + 1 dx dy =

∫ 1

0

∫ x2

0

√
x3 + 1 dy dx =

∫ 1

0

[√
x3 + 1 y

]x2

0
dx =

∫ 1

0

√
x3 + 1 x2dx

=
1

3

∫ 1

0

(x3 + 1)
1
2 · 3x2 dx =

1

3
(
2

3
(x3 + 1)

3
2 )

∣∣∣∣1
0

=
2

9
(2

3
2 − 1).
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Problem 32(3) - From Exam 2

Find the iterated integral,∫ 1

0

∫ 2−x

x
(x2 − y)dy dx .

Solution:∫ 1

0

∫ 2−x

x
(x2 − y) dy dx =

∫ 1

0

[
x2y − y2

2

]2−x

x

dx

=

∫ 1

0
x2(2−x)− (2− x)2

2
−(x3−x2

2
) dx = 2

∫ 1

0
−x3+x2+x−1 dx

= −1

2
x4 +

2

3
x3 + x2 − 2x

∣∣∣∣1
0

= −1

2
+

2

3
+ 1− 2 = −5

6
.
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Problem 32(4) - From Exam 2

Find the iterated integral,∫ 1

0

∫ 1

x2

x3 sin(y3)dy dx .

(Hint: Reverse the order of integration)

Solution:

Reverse the order of integration:∫ 1

0

∫ 1

x2

x3 sin(y3) dy dx =

∫ 1

0

∫ √
y

0

x3 sin(y3) dx dy

=

∫ 1

0

[
x4

4
sin(y3)

]√y

0

dy =

∫ 1

0

y2

4
sin(y3) dy .

Let u = y3 and then du = 3y2 dy . Making this substitution,∫
y2

4
sin(y3) dy =

1

12

∫
sin (y3)3y2 dy = − 1

12
cos(y3).

Hence,∫ 1

0

y2

4
sin(y3) dy = − 1

12
cos(y3)

∣∣∣∣1
0

=
1

12
(1− cos(1)).
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Problem 33(2) - From Exam 2

Evaluate the following double integral.∫ ∫
R

ey2
dA, R = {(x , y) | 0 ≤ y ≤ 1, 0 ≤ x ≤ y}.

Solution:∫ ∫
R

ey2
dA =

∫ 1

0

∫ y

0
ey2

dx dy =

∫ 1

0

[
ey2

x
]y

0
dy

=

∫ 1

0
ey2

y dy =
1

2

∫ 1

0
ey2

(2y) dy

=
1

2
ey2

∣∣∣∣1
0

=
1

2
(e − e0) =

1

2
(e − 1).
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Problem 33(3) - From Exam 2

Evaluate the following double integral.∫ ∫
R

x
√

y2 − x2dA, R = {(x , y) | 0 ≤ y ≤ 1, 0 ≤ x ≤ y}.

Solution:∫ ∫
R

x
√

y2 − x2 dA =

∫ 1

0

∫ y

0

√
y2 − x2 x dx dy

= −1

2

∫ 1

0

∫ y

0
(y2 − x2)

1
2 (−2x) dx dy = −1

2

∫ 1

0

2

3
(y2 − x2)

3
2

∣∣∣∣y
0

dy

=
1

3

∫ 1

0
y3dy =

1

3
· 1

4
y4

∣∣∣∣1
0

=
1

12
.
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Problem 34(2) - From Exam 2

Find the volume V of the solid under the surface z = 2x + y2 and
above the region bounded by curves x − y2 = 0 and x − y3 = 0.

Solution:

V =

∫ 1

0

∫ y2

y3

(2x + y2) dx dy =

∫ 1

0

[
x2 + y2x

]y2

y3
dy

=

∫ 1

0
y4 + y4 − (y6 + y2y3) dy =

∫ 1

0
−y6 − y5 + 2y4 dy

= −y7

7
− y6

6
+

2

5
y5

∣∣∣∣1
0

= −1

7
− 1

6
+

2

5
.



Problem 34(2) - From Exam 2

Find the volume V of the solid under the surface z = 2x + y2 and
above the region bounded by curves x − y2 = 0 and x − y3 = 0.

Solution:

V =

∫ 1

0

∫ y2

y3

(2x + y2) dx dy

=

∫ 1

0

[
x2 + y2x

]y2

y3
dy

=

∫ 1

0
y4 + y4 − (y6 + y2y3) dy =

∫ 1

0
−y6 − y5 + 2y4 dy

= −y7

7
− y6

6
+

2

5
y5

∣∣∣∣1
0

= −1

7
− 1

6
+

2

5
.



Problem 34(2) - From Exam 2

Find the volume V of the solid under the surface z = 2x + y2 and
above the region bounded by curves x − y2 = 0 and x − y3 = 0.

Solution:

V =

∫ 1

0

∫ y2

y3

(2x + y2) dx dy =

∫ 1

0

[
x2 + y2x

]y2

y3
dy

=

∫ 1

0
y4 + y4 − (y6 + y2y3) dy =

∫ 1

0
−y6 − y5 + 2y4 dy

= −y7

7
− y6

6
+

2

5
y5

∣∣∣∣1
0

= −1

7
− 1

6
+

2

5
.



Problem 34(2) - From Exam 2

Find the volume V of the solid under the surface z = 2x + y2 and
above the region bounded by curves x − y2 = 0 and x − y3 = 0.

Solution:

V =

∫ 1

0

∫ y2

y3

(2x + y2) dx dy =

∫ 1

0

[
x2 + y2x

]y2

y3
dy

=

∫ 1

0
y4 + y4 − (y6 + y2y3) dy

=

∫ 1

0
−y6 − y5 + 2y4 dy

= −y7

7
− y6

6
+

2

5
y5

∣∣∣∣1
0

= −1

7
− 1

6
+

2

5
.



Problem 34(2) - From Exam 2

Find the volume V of the solid under the surface z = 2x + y2 and
above the region bounded by curves x − y2 = 0 and x − y3 = 0.

Solution:

V =

∫ 1

0

∫ y2

y3

(2x + y2) dx dy =

∫ 1

0

[
x2 + y2x

]y2

y3
dy

=

∫ 1

0
y4 + y4 − (y6 + y2y3) dy =

∫ 1

0
−y6 − y5 + 2y4 dy

= −y7

7
− y6

6
+

2

5
y5

∣∣∣∣1
0

= −1

7
− 1

6
+

2

5
.



Problem 34(2) - From Exam 2

Find the volume V of the solid under the surface z = 2x + y2 and
above the region bounded by curves x − y2 = 0 and x − y3 = 0.

Solution:

V =

∫ 1

0

∫ y2

y3

(2x + y2) dx dy =

∫ 1

0

[
x2 + y2x

]y2

y3
dy

=

∫ 1

0
y4 + y4 − (y6 + y2y3) dy =

∫ 1

0
−y6 − y5 + 2y4 dy

= −y7

7
− y6

6
+

2

5
y5

∣∣∣∣1
0

= −1

7
− 1

6
+

2

5
.



Problem 34(2) - From Exam 2

Find the volume V of the solid under the surface z = 2x + y2 and
above the region bounded by curves x − y2 = 0 and x − y3 = 0.

Solution:

V =

∫ 1

0

∫ y2

y3

(2x + y2) dx dy =

∫ 1

0

[
x2 + y2x

]y2

y3
dy

=

∫ 1

0
y4 + y4 − (y6 + y2y3) dy =

∫ 1

0
−y6 − y5 + 2y4 dy

= −y7

7
− y6

6
+

2

5
y5

∣∣∣∣1
0

= −1

7
− 1

6
+

2

5
.



Problem 1(a) - Fall 2008

Consider the points A = (1, 0, 0), B = (2, 1, 0) and C = (1, 2, 3).
Find the parametric equations for the line L passing through the
points A and C .

Solution:

A vector parallel to the line L is:

v =
−→
AC = 〈1− 1, 2− 0, 3− 0, 〉 = 〈0, 2, 3〉.

A point on the line is A = (1, 0, 0).

Therefore parametric equations for the line L are:

x = 1
y = 2t
z = 3t.
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Problem 1(b) - Fall 2008

Consider the points A = (1, 0, 0), B = (2, 1, 0) and C = (1, 2, 3).
Find an equation of the plane in R3 which contains the points
A, B, C .

Solution:

Since a plane is determined by its normal vector n and a point on
it, say the point A, it suffices to find n. Note that:

n =
−→
AB ×

−→
AC =

∣∣∣∣∣∣
i j k
1 1 0
0 2 3

∣∣∣∣∣∣ = 〈3,−3, 2〉.

So the equation of the plane is:

〈3,−3, 2〉 · 〈x − 1, y − 0, z − 0〉 = 3(x − 1)− 3y + 2z = 0.
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〈3,−3, 2〉 · 〈x − 1, y − 0, z − 0〉 = 3(x − 1)− 3y + 2z = 0.



Problem 1(c) - Fall 2008
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|
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AC |
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Problem 2 - Fall 2008

Find the volume under the graph of f (x , y) = x + 2xy and over
the bounded region in the first quadrant {(x , y) | x ≥ 0, y ≥ 0}
bounded by the curve y = 1− x2 and the x and y -axes.

Solution:∫ 1

0

∫ 1−x2

0
(x + 2xy) dy dx =

∫ 1

0
(xy + xy2)

∣∣∣∣1−x2

0

dx

=

∫ 1

0
x(1− x2) + x(1− x2)2 dx =

∫ 1

0
x5 − 3x3 + 2x dx

= (
x6

6
− 3x4

4
+ x2)

∣∣∣∣1
0

=
1

6
− 3

4
+ 1 =

5

12
.
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Problem 3 - Fall 2008

Let
I =

∫ 1

0

∫ 2

2x

sin(y2) dy dx .

1 Sketch the region of integration.

2 Write the integral I with the order of integration reversed.

3 Evaluate the integral I. Show your work.

Solution:

1 See the blackboard for a sketch.
2

I =

∫ 1

0

∫ 1
2 y

0

sin(y2) dx dy

3 By Fubini’s Theorem,∫ 1

0

∫ 1
2 y

0

sin(y2) dx dy =

∫ 1

0

sin(y2)x

∣∣∣∣
1
2 y

0

dy =

∫ 1

0

(sin(y2) · 1

2
y) dy

=
1

4

∫ 1

0

sin(y2) · 2y dy =
cos(y2)

4

∣∣∣∣1
0

=
1

4
(cos 1− 1).
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Problem 4(a, b, c) - Fall 2008

Consider the function F(x , y , z) = x2 + xy2 + z .
1 What is the gradient ∇F(x , y , z) of F at the point (1, 2,−1)?
2 Calculate the directional derivative of F at the point (1, 2,−1)

in the direction 〈1, 1, 1〉?
3 What is the maximal rate of change of F at the point

(1, 2,−1)?

Solution:

∇f = 〈2x + y2, 2xy , 1〉.
So,

∇f (1, 2,−1) = 〈6, 4, 1〉.

The unit vector u in the direction 〈1, 1, 1〉 is u = 〈1,1,1〉√
3

.

Duf (1, 2,−1) = ∇f (1, 2,−1) · u = 〈6, 4, 1〉 · 1√
3
〈1, 1, 1〉 = 11√

3
.

The maximum rate of change is the length of the gradient:

MRC(f ) = |∇f (1, 2,−1)| = |〈6, 4, 1〉| =
√

53.

.
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Problem 4(d) - Fall 2008

Consider the function F(x , y , z) = x2 + xy2 + z . Find the equation
of the tangent plane to the level surface F(x , y , z) = 4 at the point
(1, 2,−1).

Solution:

Recall that the gradient of F(x , y , z) = x2 + xy2 + z is normal
n to the surface.
Calculating, we obtain:

∇F(x , y , z) = 〈2x , 2xy , 1〉

n = ∇F(1, 2,−1) = 〈6, 4, 1〉.

The equation of the tangent plane is:

〈6, 4, 1〉·〈x−1, y−2, z +1〉 = 6(x−1)+4(y−2)+(z +1) = 0.
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Problem 5 - Fall 2008

Find the volume V of the solid under the surface z = 1− x2 − y2

and above the xy -plane.

Solution:

The domain of integration for the function z = 1− x2 − y2

described in polar coordinates is:

D = {(r , θ) | 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π}.
In polar coordinates r2 = x2 + y2 and so z = 1− r2.
Applying Fubini’s Theorem,

V =

∫ 2π

0

∫ 1

0
(1− r2)r dr dθ =

∫ 2π

0

∫ 1

0
(r − r3) dr dθ

=

∫ 2π

0

[
1

2
r2 − 1

4
r4

]1

0

dθ =

∫ 2π

0
(
1

2
− 1

4
) dθ

=
1

4

∫ 2π

0
dθ =

π

2
.
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Problem 6(a) - Fall 2008

Determine whether the following vector fields are conservative or
not. Find a potential function for those which are indeed
conservative.

1 F(x , y) = 〈x2 + ex + xy , xy − sin(y)〉.
2 G(x , y) = 〈3x2y + ex + y2, x3 + 2xy + 3y2〉.

Solution:

On this slide we only consider the function F(x , y).

Note that F(x , y) = P(x , y)i + Q(x , y)j, where
P(x , y) = x2 + ex + xy and Q(x , y) = xy − sin(y).

Since Py (x , y) = x 6= y = Qx(x , y), the vector field F(x , y) is
not conservative.
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Problem 6(b) - Fall 2008

Determine whether the following vector fields are conservative or not.
Find a potential function for those which are indeed conservative.

1 F(x , y) = 〈x2 + ex + xy , xy − sin(y)〉.
2 G(x , y) = 〈3x2y + ex + y2, x3 + 2xy + 3y2〉.

Solution:

On this slide we only consider the function G(x , y).

Since ∂
∂y (3x2y + ex + y2) = 3x2 + 2y = ∂

∂x (x3 + 2xy + 3y2), there

exists a potential function f(x , y), where ∇f = G.

Note that:
∂f

∂y
= x3 + 2xy + 3y 2 =⇒ f(x , y) = x3y + xy 2 + y 3 + g(x),

where g(x) is some function of x .

Since ∂f
∂x = 3x2y + ex + y2,

∂f

∂x
=

∂(x3y + xy 2 + y 3 + g(x))

∂x
= 3x2y + y 2 + g ′(x) = 3x2y + ex + y 2

=⇒ g ′(x) = ex =⇒ g(x) = ex + constant.

Hence, f(x , y) = x3y + xy2 + y3 + ex is a potential function.
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Problem 7 - Fall 2008

Evaluate the line integral∫
C

yz dx + xz dy + xy dz ,

where C is the curve starting at (0, 0, 0), traveling along a line
segment to (1, 0, 0) and then traveling along a second line segment
to (1, 2, 1).

Solution:
The parameterizations C1(t),C2(t) are:
C1(t) = 〈t, 0, 0〉 0 ≤ t ≤ 1
C2(t) = 〈1, 2t, t〉 0 ≤ t ≤ 1
So, C′

1(t) = 〈1, 0, 0〉 and C2(t) = 〈0, 2, 1〉.
Thus,

∫
C1

yz dx + xy dy + xy dz =∫ 1
0 [(0 · 0 · 1) + (t · 0 · 0) + (t · 0 · 0)] dt = 0.

Also,
∫
C2

yz dx + xz dy + xy dz

=
∫ 1
0 [(2t · t · 0) + (1 · t · 2) + (1 · 2t · 1)] dt =

∫ 1
0 4t dt = 4t2

2

∣∣∣1
0

= 4
2 = 2. So, the entire integral equals 0 + 2 = 2.
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Problem 8(a) - Fall 2008

Use Green’s Theorem to show that if D ⊂ R2 is the bounded
region with boundary a positively oriented simple closed curve C,
then the area of D can be calculated by the formula:

Area(D) =
1

2

∮
C
−y dx + x dy

Solution:

Recall Green’s Theorem:∮
C

P dx + Q dy =

∫ ∫
D
(
∂Q

∂x
− ∂P

∂y
) dA.

Hence,

1

2

∮
C
−y dx + x dy =

∫ ∫
D
(
∂x

∂x
− ∂ − y

∂y
) dA

=
1

2

∫ ∫
D
(1 + 1) dA =

∫ ∫
D

dA = Area(D)
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Problem 8(b) - Fall 2008

Consider the ellipse 4x2 + y2 = 1. Use the above area formula to
calculate the area of the region D ⊂ R2 with boundary this ellipse.
(Hint: This ellipse can be parametrized by r(t) = 〈1

2 cos(t), sin(t)〉
for 0 ≤ t ≤ 2π.)
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Problem 9(a) - Spring 2008

For the space curve r(t) = 〈t2 − 1, t2, t/2〉,
(a) find the velocity, speed, and acceleration of a particle whose

position function is r(t) at time t = 4.

Solution:

The velocity v(t) is equal to r′(t):

v(t) = r′(t) = 〈2t, 2t,
1

2
〉

v(4) = 〈8, 8,
1

2
〉.

The acceleration a(t) is equal to v′(t):

a(t) = v′(t) = 〈2, 2, 0〉
a(4) = 〈2, 2, 0〉.

The speed s(4) is equal to |v(4)|:

s(4) = |v(4)| =
√

64 + 64 +
1

4
=

√
128 +

1

4
.
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Problem 9(b) - Spring 2008

For the space curve r(t) = 〈t2 − 1, t2, t/2〉,
(b) find all points where the particle with position vector r(t)

intersects the plane x + y − 2z = 0.

Solution:

Plug the x , y and z-coordinates of r(t) into the equation of
the plane and solve for t:

(t2 − 1) + t2 − 2(
t

2
) = 2t2 − t − 1 = (2t + 1)(t − 1) = 0

=⇒ t = 1 or t = −1

2
.

Next evaluate the points on r(t) at these times to obtain the
2 points of intersection:

r(1) = 〈12 − 1, 12,
1

2
〉 = 〈0, 1,

1

2
〉

r(−1

2
) = 〈(−1

2
)2 − 1, (−1

2
)2,

1

2
(−1

2
)〉 = 〈−3

4
,
1

4
,−1

4
〉.
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Plug the x , y and z-coordinates of r(t) into the equation of
the plane and solve for t:

(t2 − 1) + t2 − 2(
t

2
) = 2t2 − t − 1 = (2t + 1)(t − 1) = 0

=⇒ t = 1 or t = −1

2
.

Next evaluate the points on r(t) at these times to obtain the
2 points of intersection:

r(1) = 〈12 − 1, 12,
1

2
〉 = 〈0, 1,

1

2
〉

r(−1

2
) = 〈(−1

2
)2 − 1, (−1

2
)2,

1

2
(−1

2
)〉 = 〈−3

4
,
1

4
,−1

4
〉.



Problem 10 - Spring 2008

Let D be the region of the xy -plane above the graph of y = x2 and
below the line y = x .

(a) Determine an iterated integral expression for the double integral∫ ∫
D xy dA

(b) Find an equivalent iterated integral to the one found in part (a)
with the reversed order of integration.

(c) Evaluate one of the two iterated integrals in parts (a), (b).

Solution:

Part (a)
∫ ∫

D

xy dA =

∫ 1

0

∫ x

x2

xy dy dx .

Part (b)
∫ 1

0

∫ √
y

y

xy dx dy .

Part (c)
∫ 1

0

∫ x

x2

xy dy dx =

∫ 1

0

[
1

2
xy2

]x

x2

dx

=

∫ 1

0

(
1

2
x3 − 1

2
x5

)
dx =

1

8
x4 − 1

12
x6

∣∣∣∣1
0

=
1

8
− 1

12
=

1

24



Problem 10 - Spring 2008

Let D be the region of the xy -plane above the graph of y = x2 and
below the line y = x .

(a) Determine an iterated integral expression for the double integral∫ ∫
D xy dA

(b) Find an equivalent iterated integral to the one found in part (a)
with the reversed order of integration.

(c) Evaluate one of the two iterated integrals in parts (a), (b).

Solution:

Part (a)
∫ ∫

D

xy dA =

∫ 1

0

∫ x

x2

xy dy dx .

Part (b)
∫ 1

0

∫ √
y

y

xy dx dy .

Part (c)
∫ 1

0

∫ x

x2

xy dy dx =

∫ 1

0

[
1

2
xy2

]x

x2

dx

=

∫ 1

0

(
1

2
x3 − 1

2
x5

)
dx =

1

8
x4 − 1

12
x6

∣∣∣∣1
0

=
1

8
− 1

12
=

1

24



Problem 10 - Spring 2008

Let D be the region of the xy -plane above the graph of y = x2 and
below the line y = x .

(a) Determine an iterated integral expression for the double integral∫ ∫
D xy dA

(b) Find an equivalent iterated integral to the one found in part (a)
with the reversed order of integration.

(c) Evaluate one of the two iterated integrals in parts (a), (b).

Solution:

Part (a)
∫ ∫

D

xy dA =

∫ 1

0

∫ x

x2

xy dy dx .

Part (b)
∫ 1

0

∫ √
y

y

xy dx dy .

Part (c)
∫ 1

0

∫ x

x2

xy dy dx =

∫ 1

0

[
1

2
xy2

]x

x2

dx

=

∫ 1

0

(
1

2
x3 − 1

2
x5

)
dx =

1

8
x4 − 1

12
x6

∣∣∣∣1
0

=
1

8
− 1

12
=

1

24



Problem 10 - Spring 2008

Let D be the region of the xy -plane above the graph of y = x2 and
below the line y = x .

(a) Determine an iterated integral expression for the double integral∫ ∫
D xy dA

(b) Find an equivalent iterated integral to the one found in part (a)
with the reversed order of integration.

(c) Evaluate one of the two iterated integrals in parts (a), (b).

Solution:

Part (a)
∫ ∫

D

xy dA =

∫ 1

0

∫ x

x2

xy dy dx .

Part (b)
∫ 1

0

∫ √
y

y

xy dx dy .

Part (c)
∫ 1

0

∫ x

x2

xy dy dx

=

∫ 1

0

[
1

2
xy2

]x

x2

dx

=

∫ 1

0

(
1

2
x3 − 1

2
x5

)
dx =

1

8
x4 − 1

12
x6

∣∣∣∣1
0

=
1

8
− 1

12
=

1

24



Problem 10 - Spring 2008

Let D be the region of the xy -plane above the graph of y = x2 and
below the line y = x .

(a) Determine an iterated integral expression for the double integral∫ ∫
D xy dA

(b) Find an equivalent iterated integral to the one found in part (a)
with the reversed order of integration.

(c) Evaluate one of the two iterated integrals in parts (a), (b).

Solution:

Part (a)
∫ ∫

D

xy dA =

∫ 1

0

∫ x

x2

xy dy dx .

Part (b)
∫ 1

0

∫ √
y

y

xy dx dy .

Part (c)
∫ 1

0

∫ x

x2

xy dy dx =

∫ 1

0

[
1

2
xy2

]x

x2

dx

=

∫ 1

0

(
1

2
x3 − 1

2
x5

)
dx =

1

8
x4 − 1

12
x6

∣∣∣∣1
0

=
1

8
− 1

12
=

1

24



Problem 10 - Spring 2008

Let D be the region of the xy -plane above the graph of y = x2 and
below the line y = x .

(a) Determine an iterated integral expression for the double integral∫ ∫
D xy dA

(b) Find an equivalent iterated integral to the one found in part (a)
with the reversed order of integration.

(c) Evaluate one of the two iterated integrals in parts (a), (b).

Solution:

Part (a)
∫ ∫

D

xy dA =

∫ 1

0

∫ x

x2

xy dy dx .

Part (b)
∫ 1

0

∫ √
y

y

xy dx dy .

Part (c)
∫ 1

0

∫ x

x2

xy dy dx =

∫ 1

0

[
1

2
xy2

]x

x2

dx

=

∫ 1

0

(
1

2
x3 − 1

2
x5

)
dx

=
1

8
x4 − 1

12
x6

∣∣∣∣1
0

=
1

8
− 1

12
=

1

24



Problem 10 - Spring 2008

Let D be the region of the xy -plane above the graph of y = x2 and
below the line y = x .

(a) Determine an iterated integral expression for the double integral∫ ∫
D xy dA

(b) Find an equivalent iterated integral to the one found in part (a)
with the reversed order of integration.

(c) Evaluate one of the two iterated integrals in parts (a), (b).

Solution:

Part (a)
∫ ∫

D

xy dA =

∫ 1

0

∫ x

x2

xy dy dx .

Part (b)
∫ 1

0

∫ √
y

y

xy dx dy .

Part (c)
∫ 1

0

∫ x

x2

xy dy dx =

∫ 1

0

[
1

2
xy2

]x

x2

dx

=

∫ 1

0

(
1

2
x3 − 1

2
x5

)
dx =

1

8
x4 − 1

12
x6

∣∣∣∣1
0

=
1

8
− 1

12
=

1

24



Problem 10 - Spring 2008

Let D be the region of the xy -plane above the graph of y = x2 and
below the line y = x .

(a) Determine an iterated integral expression for the double integral∫ ∫
D xy dA

(b) Find an equivalent iterated integral to the one found in part (a)
with the reversed order of integration.

(c) Evaluate one of the two iterated integrals in parts (a), (b).

Solution:

Part (a)
∫ ∫

D

xy dA =

∫ 1

0

∫ x

x2

xy dy dx .

Part (b)
∫ 1

0

∫ √
y

y

xy dx dy .

Part (c)
∫ 1

0

∫ x

x2

xy dy dx =

∫ 1

0

[
1

2
xy2

]x

x2

dx

=

∫ 1

0

(
1

2
x3 − 1

2
x5

)
dx =

1

8
x4 − 1

12
x6

∣∣∣∣1
0

=
1

8
− 1

12

=
1

24



Problem 10 - Spring 2008

Let D be the region of the xy -plane above the graph of y = x2 and
below the line y = x .

(a) Determine an iterated integral expression for the double integral∫ ∫
D xy dA

(b) Find an equivalent iterated integral to the one found in part (a)
with the reversed order of integration.

(c) Evaluate one of the two iterated integrals in parts (a), (b).

Solution:

Part (a)
∫ ∫

D

xy dA =

∫ 1

0

∫ x

x2

xy dy dx .

Part (b)
∫ 1

0

∫ √
y

y

xy dx dy .

Part (c)
∫ 1

0

∫ x

x2

xy dy dx =

∫ 1

0

[
1

2
xy2

]x

x2

dx

=

∫ 1

0

(
1

2
x3 − 1

2
x5

)
dx =

1

8
x4 − 1

12
x6

∣∣∣∣1
0

=
1

8
− 1

12
=

1

24



Problem 11 - Spring 2008

Find the absolute maximum and absolute minimum values of
f (x , y) = x2 + 2y2 − 2y in the set D = {(x , y) : x2 + y2 ≤ 4}.

Solution:

Find critical points of f (x , y):

∇f = 〈2x , 4y − 2〉 = 0 =⇒ x = 0 and y =
1

2
.

Use Lagrange multipliers to study max and min values of f on the
circle g(x , y) = x2 + y2 = 4:

∇f 〈2x , 4y − 2〉 = λ∇g = λ〈2x , 2y〉.

We get 2x = λ2x =⇒ λ = 1 or x = 0.

If λ = 1, then 4y − 2 = 2y =⇒ y = 1.

Plugging in g(x , y), gives (0, 1
2 ), (0,±2) and (±

√
3, 1). We get

f (0, 1
2 ) = − 1

2 , f (0, 2) = 4, f (0,−2) = 12, f (±
√

3, 1) = 3.

The maximum value of f (x , y) is 12 and its minimum value is − 1
2 .
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Problem 12(a) - Spring 2008

Let D be the region in the first quadrant x , y ≥ 0 that lies between the
two circles x2 + y2 = 4 and x2 + y2 = 9.

(a) Describe the region D using polar coordinates.

(b) Evaluate the double integral
∫ ∫

D 3x + 3y dA.

Solution:

The domain is:
D = {(r , θ) | 2 ≤ r ≤ 3, 0 ≤ θ ≤ π

2
}.

Calculate the integral using the substitution:

x = r cos θ y = r sin θ dA = r dr dθ;∫ ∫
D

(3x + 3y)dA =

∫ π
2

0

∫ 3

2

(3r cos θ + 3r sin θ)r dr dθ

=

∫ π
2

0

∫ 3

2

3r 2(cos θ + sin θ) dr dθ =

∫ π
2

0

[
r 3(cos θ + sin θ)

]3

2
dθ

=

∫ π
2

0

(27− 8)(cos θ + sin θ) dθ = 19(sin θ − cos θ)
∣∣∣ π

2

0
= 19 + 19 = 38.
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Problem 13(a) - Spring 2008

(a) Find
∂z

∂x
and

∂z

∂y
at the point (1, 0,−1) for the implicit

function z
determined by the equation x3 + y3 + z3 − 3xyz = 0.

Solution:

Consider the function F(x , y , z) = x3 + y3 + z3 − 3yxz .
Since F(x , y , z) is constant on the surface, the Chain Rule
gives:

∂F

∂x

∂x

∂x
+

∂F

∂y

∂y

∂x
+

∂F

∂z

∂z

∂x
=

∂F

∂x
+

∂F

∂z

∂z

∂x
= 0

∂F

∂y

∂x

∂y
+

∂F

∂y

∂y

∂y
+

∂F

∂z

∂z

∂y
=

∂F

∂y
+

∂F

∂z

∂z

∂y
= 0.

Thus,
∂z

∂x
=
−∂F

∂x
∂F
∂z

=
−3x2 + 3yz

3z2 − 3xy
=
−x2 + yz

z2 − xy
,

∂z

∂y
=
−∂F

∂y

∂F
∂z

=
−3y2 + 3xz

3z2 − 3xy
=
−y2 + xz

z2 − xy
.
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Problem 13(b) - Spring 2008

(b) Is the tangent plane to the surface x3 + y3 + z3 − 3xyz = 0
at the point (1, 0,−1) perpendicular to the plane
2x + y − 3z = 2? Justify your answer with an appropriate
calculation.

Solution:

Since F(x , y , z) = x3 + y3 + z3 − 3xyz is constant along the
surface F(x , y , z) = 0, ∇F is normal (orthogonal) to the
surface.

Calculating, we obtain:

∇F = 〈3x2 − 3yz , 3y2 − 3xz , 3z2 − 3xy〉

∇F(1, 0,−1) = 〈3, 3, 3〉,

which is the normal vector to the tangent plane of the
surface.

Since the normal to the plane 2x + y − 3z = 2 is 〈2, 1,−3〉
and 〈3, 3, 3〉 · 〈2, 1,−3〉 = 0, it is perpendicular.



Problem 13(b) - Spring 2008

(b) Is the tangent plane to the surface x3 + y3 + z3 − 3xyz = 0
at the point (1, 0,−1) perpendicular to the plane
2x + y − 3z = 2? Justify your answer with an appropriate
calculation.

Solution:

Since F(x , y , z) = x3 + y3 + z3 − 3xyz is constant along the
surface F(x , y , z) = 0, ∇F is normal (orthogonal) to the
surface.

Calculating, we obtain:

∇F = 〈3x2 − 3yz , 3y2 − 3xz , 3z2 − 3xy〉

∇F(1, 0,−1) = 〈3, 3, 3〉,

which is the normal vector to the tangent plane of the
surface.

Since the normal to the plane 2x + y − 3z = 2 is 〈2, 1,−3〉
and 〈3, 3, 3〉 · 〈2, 1,−3〉 = 0, it is perpendicular.



Problem 13(b) - Spring 2008

(b) Is the tangent plane to the surface x3 + y3 + z3 − 3xyz = 0
at the point (1, 0,−1) perpendicular to the plane
2x + y − 3z = 2? Justify your answer with an appropriate
calculation.

Solution:

Since F(x , y , z) = x3 + y3 + z3 − 3xyz is constant along the
surface F(x , y , z) = 0, ∇F is normal (orthogonal) to the
surface.

Calculating, we obtain:

∇F = 〈3x2 − 3yz , 3y2 − 3xz , 3z2 − 3xy〉

∇F(1, 0,−1) = 〈3, 3, 3〉,

which is the normal vector to the tangent plane of the
surface.

Since the normal to the plane 2x + y − 3z = 2 is 〈2, 1,−3〉
and 〈3, 3, 3〉 · 〈2, 1,−3〉 = 0, it is perpendicular.



Problem 13(b) - Spring 2008

(b) Is the tangent plane to the surface x3 + y3 + z3 − 3xyz = 0
at the point (1, 0,−1) perpendicular to the plane
2x + y − 3z = 2? Justify your answer with an appropriate
calculation.

Solution:

Since F(x , y , z) = x3 + y3 + z3 − 3xyz is constant along the
surface F(x , y , z) = 0, ∇F is normal (orthogonal) to the
surface.

Calculating, we obtain:

∇F = 〈3x2 − 3yz , 3y2 − 3xz , 3z2 − 3xy〉

∇F(1, 0,−1) = 〈3, 3, 3〉,

which is the normal vector to the tangent plane of the
surface.

Since the normal to the plane 2x + y − 3z = 2 is 〈2, 1,−3〉
and 〈3, 3, 3〉 · 〈2, 1,−3〉 = 0, it is perpendicular.



Problem 13(b) - Spring 2008

(b) Is the tangent plane to the surface x3 + y3 + z3 − 3xyz = 0
at the point (1, 0,−1) perpendicular to the plane
2x + y − 3z = 2? Justify your answer with an appropriate
calculation.

Solution:

Since F(x , y , z) = x3 + y3 + z3 − 3xyz is constant along the
surface F(x , y , z) = 0, ∇F is normal (orthogonal) to the
surface.

Calculating, we obtain:

∇F = 〈3x2 − 3yz , 3y2 − 3xz , 3z2 − 3xy〉

∇F(1, 0,−1) = 〈3, 3, 3〉,

which is the normal vector to the tangent plane of the
surface.

Since the normal to the plane 2x + y − 3z = 2 is 〈2, 1,−3〉
and 〈3, 3, 3〉 · 〈2, 1,−3〉 = 0, it is perpendicular.



Problem 14(a) - Spring 2008

(a) Consider the vector field G(x , y) = 〈4x3 + 2xy , x2〉. Show that G is
conservative (i.e. G is a potential or a gradient vector field), and use the
fundamental theorem for line integrals to determine the value of

∫
C
G · dr,

where C is the contour consisting of the line starting at (2,−2) and
ending at (−1, 1).

Solution:

Since ∂
∂y (4x3 + 2xy) = 2x = ∂

∂x (x2), there exists a potential

function F(x , y), where ∇F = G.

Note that: ∂F

∂y
= x2 =⇒ F(x , y) = x2y + g(x),

where g(x) is some function of x .

Since ∂F
∂x = 4x3 + 2xy ,

∂F

∂x
=

∂(x2y + g(x))

∂x
= 2xy + g ′(x) = 4x3 + 2xy

=⇒ g ′(x) = 4x3 =⇒ g(x) = x4 + constant.

Hence, F(x , y) = x4 + x2y is a potential function.

By the fundamental theorem of calculus for line integrals,∫
C

G · dr =

∫
C

∇F · dr = F(−1, 1)− F(2,−2) = 2− 8 = −6.
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Problem 14(b) - Spring 2008

(b) Now let T denote the closed contour consisting of the triangle with
vertices at (0,0),(1,0), and (1,1) with the counterclockwise orientation,
and let F(x , y) = 〈 1

2
y 2 − y , xy〉. Compute

∫
T
F · dr directly (from the

definition of line integral).

Solution:

The curve T is the union of the segment C1 from (0, 0) to (1, 0),
the segment C2 from (1, 0) to (1, 1) and the segment C3 from (1, 1)
to (0, 0).

Parameterize these segments as follows:

C1(t) = 〈t, 0〉 0 ≤ t ≤ 1
C2(t) = 〈1, t〉 0 ≤ t ≤ 1
C2(t) = 〈1− t, 1− t〉 0 ≤ t ≤ 1∫

T
F · dr =

∫
C1

F · dr +

∫
C2

F · dr +

∫
C3

F · dr

=

∫ 1

0
〈0, 0〉·〈1, 0〉dt+

∫ 1

0
〈
1

2
t2−t, t〉·〈0, 1〉dt+

∫ 1

0

〈
1

2
(1− t)2−(1− t), (1− t)2

〉
·〈−1,−1〉dt

= 0 +

∫ 1

0
t dt +

∫ 1

0
−

3

2
t2 + 2t −

1

2
dt =

∫ 1

0
−

3

2
t2 + 3t −

1

2
dt

= −
1

2
t3 +

3

2
t2 −

1

2
t

∣∣∣∣1
0

= −
1

2
+

3

2
−

1
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Problem 14(c) - Spring 2008

Let F(x , y) = 〈1
2y2 − y , xy〉.

(c) Explain how Green’s theorem can be used to show that the
integral

∫
T F · dr in (b) must be equal to the area of the

region D interior to T.

Solution:

By Green’s Theorem,∫
T

F · dr =

∫
T
(
1

2
y2 − y) dx + xy dy

=

∫ ∫
D

∂(xy)

∂x
−

∂(1
2y2 − y)

∂y
dA =

∫ ∫
D
(y − y + 1) dA

=

∫ ∫
D

dA.

Since 1
2 =

∫ ∫
D dA is the area of the triangle D,

then the integral 1
2 in part (b) is equal to this area.
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Problem 15(a,b,c) - Fall 2007

Let
I =

∫ 4

0

∫ 2

√
y
ex3

dx dy .

(a) Sketch the region of integration

(b) Write the integral I with the order of integration reversed.

(c) Evaluate the integral I. Show your work.

Solution:

(a) (b) Make your sketch and from the sketch, we see:

I =

∫ 4

0

∫ 2

√
y
ex3

dx dy =

∫ 2

0

∫ x2

0
ex3

dy dx .

(c) We next evaluate the integral using part (b).

I =

∫ 2

0

∫ x2

0
ex3

dy dx =

∫ 2

0

[
ex3

y
]x2

0
dx =

∫ 2

0
ex3

x2 dx

=
1

3

∫ 2

0
ex3

(3x2) dx =
1

3
ex3

∣∣∣∣2
0

=
1

3
(e8 − e0) =

1

3
(e8 − 1).
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Problem 16 - Fall 2007

Find the distance from the point (3, 2,−7) to the line L

x = 1 + t, y = 2− t, z = 1 + 3t.

Solution:

Note that the plane T passing through P = (3, 2,−7) with
normal vector the direction n = 〈1,−1, 3〉 of the line L must
intersect L in the point Q closest to P. We now find Q.

The equation of the plane T is:

(x − 3)− (y − 2) + 3(z + 7) = 0.

Substitute in this equation the parametric values of L and
solve for t:

0 = (1 + t)− 3− [(2− t)− 2] + 3[(1 + 3t) + 7] = 11t + 22.

Hence, t = −2 and Q = 〈−1, 4,−5〉.
The distance from P and Q is d =

√
42 + 22 + 22 =

√
24,

and thus the distance from P to L.
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Problem 17(a) - Fall 2007

Find the velocity and acceleration of a particle moving along the
curve

r(t) = 〈t, t2, t3〉

at the point (2, 4, 8).

Solution:

Recall that the velocity v(t) = r′(t) and the acceleration
a(t) = r′(t):

v(t) = r′(t) = 〈1, 2t, 3t2〉

a(t) = v′(t) = 〈0, 2, 6t〉.

As the point (2, 4, 8) corresponds to t = 2 on r(t),

v(2) = 〈1, 4, 12〉
a(2) = 〈0, 2, 12〉.
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Problem 17(b) - Fall 2007

Find all points where the curve in part (a) intersects the surface
z = 3x3 + xy − x .

Solution:

Plug the x , y and z-coordinates into the equation of the
surface and solve for t.

t3 = 3t3 + t3 − t

=⇒ 3t3 − t = t(3t2 − 1) = 0 =⇒ t = 0

or t = ± 1√
3
.

Next plug these t values into r(t) to get the 3 points of
intersection:

r(0) = 〈0, 0, 0, 〉

r(
1√
3
) = 〈 1√

3
,
1

3
,

1

3
√

3
〉

r(− 1√
3
) = 〈− 1√

3
,
1

3
,− 1

3
√

3
〉.
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Problem 18 - Fall 2007

Find the volume V of the solid which lies below the sphere
x2 + y2 + z2 = 4, above the xy -plane, and inside the cylinder
x2 + y2 = 3.

Solution:

We first describe in polar coordinates the domain D ⊂ R2 for the
integral. D = {(r , θ) | 0 ≤ r ≤

√
3, 0 ≤ θ ≤ 2π}.

The graphing function is z =
√

4− x2 − y2 =
√

4− r2.

This gives the volume:

V =

∫ 2π

0

∫ √
3

0

√
4− r2 dA =

∫ 2π

0

∫ √
3

0

√
4− r2 r dr dθ

= −1

2

∫ 2π

0

∫ √
3

0

(4−r2)
1
2 (−2r) dr dθ = −1

2

∫ 2π

0

[
2

3
(4− r2)

3
2

]√3

0

dθ

= −1

3

∫ 2π

0

(1− 8) dθ =

∫ 2π

0

7

3
dθ =

7

3
θ

∣∣∣∣2π

0

=
14π

3
.
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Problem 19(a) - Fall 2007

Consider the line integral
∫

C

√
1 + x dx + 2xy dy ,

where C is the triangular path starting from (0, 0), to (2, 0), to (2, 3), and back
to (0, 0).

(a) Evaluate this line integral directly, without using Green’s Theorem.

Solution:

The curve C is the union of the segment C1 from (0, 0) to (2, 0), the
segment C2 from (2, 0) to (2, 3) and the segment C3 from (2, 3) to (0, 0).
Parameterize these segments:

C1(t) = 〈2t, 0〉 0 ≤ t ≤ 1
C2(t) = 〈2, 3t〉 0 ≤ t ≤ 1
C3(t) = 〈2− 2t, 3− 3t〉 0 ≤ t ≤ 1.

Thus,
∫
C

√
1 + x dx + 2xy dy

=

∫
C1

√
1 + x dx + 2xy dy +

∫
C2

√
1 + x dx + 2xy dy +

∫
C3

√
1 + x dx + 2xy dy

=

∫ 1

0

√
1 + 2t(2) dt+

∫ 1

0
4·3t(3) dt+

∫ 1

0

√
1 + (2− 2t)(−2)+2(2−2t)(3−3t)(−3)dt

=

∫ 1

0

(
2
√

1 + 2t + 36t2 +
√

3− 2t − 36t + 72t − 36
)

dt.

This long straightforward integral is left to you the student to do.
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Problem 19(b) - Fall 2007

Consider the line integral∫
C

√
1 + x dx + 2xy dy ,

where C is the triangular path starting from (0, 0), to (2, 0), to
(2, 3), and back to (0, 0).
Evaluate this line integral using Green’s theorem.

Solution:

Let D denote the dimensional triangle bounded by C.
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D
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∂(2xy)
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− ∂(

√
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dA
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D

2y dA =

∫ 2

0

∫ 3
2 x

0

2y dy dx =
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y2

] 3
2 x

0
dx

=

∫ 2

0

9

4
x2 dx =

3

4
x3
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0

= 6.
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Problem 20(a) - Fall 2007

Consider the vector field F = (y2/x2)i− (2y/x)j.
Find a function f such that ∇f = F.

Solution:

Suppose f exists. Then:

∂f

∂x
=

y2

x2
=⇒ f (x , y) =

∫
y2

x2
dx = −y2

x
+ g(y),

where g(y) is a function of y .
Then:

∂f

∂y
=

∂

∂y
(−y2

x
+ g(y)) = −2y

x
+ g ′(y) = −2y

x
.

Hence,
g ′(y) = 0 =⇒ g(y) is constant.

Taking the constant g(y) to be zero, we obtain:

f (x , y) = −y2

x
.
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Problem 20(b) - Fall 2007

Consider the vector field F = (y2/x2)i− (2y/x)j.
Let C be the curve given by r(t) = 〈t3, sin t〉 for π

2 ≤ t ≤ π.
Evaluate the line integral

∫
C F · dr.

Solution:

We will apply the potential function f (x , y) = −y2

x in part
(a) and the fundamental theorem of calculus for line integrals.

We get:∫
C
F · dr = f (r(π))− f (r(

π

2
)) = f (π3, 0)− f (

π3

8
, 1) =

8

π3
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Problem 21 - Fall 2006

Find parametric equations for the line L in which the planes
x − 2y + z = 1 and 2x + y + z = 1 intersect.

Solution:

The direction vector v of the line L is parallel to both planes.

Hence, v = n1 × n2 where n1 = 〈1,−2, 1〉 and n2 = 〈2, 1, 1〉 are the
normal vectors of the respective planes:

v = n1 × n2 =

∣∣∣∣∣∣
i j k
1 −2 1
2 1 1

∣∣∣∣∣∣ = 〈−3, 1, 5〉.

Next find the intersection point of L with the xy -plane by setting
z = 0:

x − 2y = 1

2x + y = 1
=⇒ ( 3

5 ,− 1
5 , 0) is the intersection point.

Parametric equations are:
x = 3

5 − 3t
y = − 1

5 + t
z = 5t.
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Problem 22 - Fall 2006

Consider the surface x2 + y2 − 2z2 = 0 and the point P(1, 1, 1)
which lies on the surface.
(i) Find the equation of the tangent plane to the surface at P.
(ii) Find the equation of the normal line to the surface at P.

Solution:

Recall that the gradient of F(x , y , z) = x2 + y2 − 2z2 is
normal (orthogonal) to the surface.
Calculating, we obtain:

∇F(x , y , z) = 〈2x , 2y ,−4z〉
∇F(1, 1, 1) = 〈2, 2,−4〉.

The equation of the tangent plane is:

〈2, 2,−4〉·〈x−1, y−1, z−1〉 = 2(x−1)+2(y−1)−4(z−1) = 0

The vector equation of the normal line is:

L(t) = 〈1, 1, 1, 〉+ t〈2, 2,−4〉 = 〈1 + 2t, 1 + 2t, 1− 4t〉.
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Problem 23 - Fall 2006

Find the maximum and minimum values of the function

f (x , y) = x2 + y2 − 2x

on the disc x2 + y2 ≤ 4.

Solution:

We first find the critical points.

∇f = 〈2x − 2, 2y〉 = 0 =⇒ x = 1 and y = 0.

Next use Lagrange multipliers to study max and min of f on
the boundary circle g(x , y) = x2 + y2 = 4:
∇f = 〈2x − 2, 2y〉 = λ∇g = λ〈2x , 2y〉.
2y = λ2y =⇒ y = 0 or λ = 1.

y = 0 =⇒ x = ±2.

λ = 1 =⇒ 2x − 2 = 2x , which is impossible.

Now check the values of f at 3 points:

f (1, 0) = −1, f (2, 0) = 0, f (−2, 0) = 8.

The maximum value is 8 and the minimum value is −1.
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Problem 24 - Fall 2006

Evaluate the iterated integral∫ 1

0

∫ √
1−x2

0

√
x2 + y2 dy dx .

Solution:

The domain of integration for the function described in polar
coordinates is:

D = {(r , θ) | 0 ≤ r ≤ 1, 0 ≤ θ ≤ π

2
}.

Since
dA = dy dx

in polar coordinates is: r dr dθ and r =
√

x2 + y2,∫ 1

0

∫ √
1−x2

0

√
x2 + y2 dy dx =

∫ π
2

0

∫ 1

0
r2 dr dθ

∫ π
2

0

[
r3

3

]1

0

dθ =
1

3

∫ π
2

0
dθ =

θ

3

∣∣∣∣π
2

0

=
π

6
.
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Problem 25(b) - Fall 2006

Find the volume V of the solid under the surface z = 4− x2 − y2

and above the region in the xy -plane between the circles
x2 + y2 = 1 and x2 + y2 = 4.

Solution:

The domain of integration for the function z = 4− x2 − y2

described in polar coordinates is:

D = {(r , θ) | 1 ≤ r ≤ 2, 0 ≤ θ ≤ 2π}.
In polar coordinates r2 = x2 + y2 and so z = 4− r2.
Applying Fubini’s Theorem,

V =

∫ 2π

0

∫ 2

1
(4− r2)r dr dθ =

∫ 2π

0

∫ 2

1
(4r − r3) dr dθ

=

∫ 2π

0

[
2r2 − 1

4
r4

]2

1

dθ =

∫ 2π

0
(8− 4)− (2− 1

4
)dθ

=
9

4

∫ 2π

0
dθ =

9π

2
.
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Problem 26(a) - Fall 2006

Determine whether the following vector fields are conservative or
not. Find a potential function for those which are indeed
conservative.

(a) F(x , y) = (x2 + xy)i + (xy − y2)j.

Solution:

Note that F(x , y) = P(x , y)i + Q(x , y)j, where
P(x , y) = x2 + xy and Q(x , y) = xy − y2.

Since Py (x , y) = x 6= y = Qx(x , y), the vector field F(x , y) is
not conservative.
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Problem 26(b) - Fall 2006

Determine whether the following vector fields are conservative or not.
Find a potential function for those which are indeed conservative.

(b) F(x , y) = (3x2y + y2)i + (x3 + 2xy + 3y2)j.

Solution:

Note that F(x , y) = P(x , y)i + Q(x , y)j, where P(x , y) = 3x2y + y2

and Q(x , y) = x3 + 2xy + 3y2.
Since Py (x , y) = 3x2 + 2y = Qx(x , y) and P(x , y) and Q(x , y) are
infinitely differentiable on the entire plane, F(x , y) has a potential
function f (x , y). Thus,

∂f

∂x
= 3x2y +y2 =⇒ f (x , y) =

∫
3x2y +y2 dx = x3y +y2x +g(y).

Since fy = Q, then

∂f

∂y
=

∂

∂y
(x3y + y2x + g(y)) = x3 + 2xy + g ′(y) = x3 + 2xy + 3y2.

Hence, g ′(y) = 3y2 =⇒ g(y) = y3 + C, for some constant C.

Taking C = 0, gives: f (x , y) = x3y + y2x + y3.
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Problem 27 - Fall 2006

Evaluate the line integral
∫
C(x2 + y)dx + (xy + 1)dy , where C is the

curve starting at (0, 0), traveling along a line segment to (1, 2) and then
traveling along a second line segment to (0, 3).

Solution:

Let C1 be the segment from (0, 0) to (1, 2) and let C2 be the
segment from (1, 2) to (0, 3).
Parameterizations for these segments are:

C1(t) = 〈t, 2t〉 0 ≤ t ≤ 1

C2(t) = 〈1− t, 2 + t〉 0 ≤ t ≤ 1.

Now calculate:∫
C

(x2 + y) dx + (xy + 1) dy =

∫
C1∪C2

(x2 + y) dx + (xy + 1) dy

=

∫ 1

0

(t2+2t) dt+(2t2+1)2 dt+

∫ 1

0

[(1−t)2+2+t](−1)+(1−t)(2+t)+1 dt

=

∫ 1

0

3t2 + 2t − 2 dt = t3 + t2 + 2t
∣∣∣1
0

= 1 + 1 + 2 = 4.
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Problem 28 - Fall 2006

Use Green’s Theorem to evaluate the line integral
∫
C F · dr where

F = 〈y3 + sin 2x , 2xy2 + cos y〉 and C is the unit circle x2 + y2 = 1 which
is oriented counterclockwise.

Solution:

First rewrite
∫
C F · dr in standard form:∫

C

F · dr =

∫
C

(y 3 + sin 2x) dx + (2xy 2 + cos y) dy .

Recall and apply Green’s Theorem:∫
C

P dx + Q dy =

∫ ∫
D

∂Q

∂x
− ∂P

∂y
dA,

where D is the disk with boundary C:∫
C

(y 3+sin 2x) dx+(2xy 2+cos y) dy =

∫ ∫
D

2y 2−3y 2dA = −
∫ ∫

D

y 2 dA.

Next evaluate the integral using polar coordinates:

−
∫ ∫

D

y 2 dA = −
∫ 2π

0

∫ 1

0

(r sin θ)2r dr dθ = −
∫ 2π

0

[
r 4

4
sin2 θ

]1

0

dθ

= −1

4

∫ 2π

0

sin2 θ dθ.
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C F · dr in standard form:∫

C

F · dr =

∫
C

(y 3 + sin 2x) dx + (2xy 2 + cos y) dy .

Recall and apply Green’s Theorem:∫
C

P dx + Q dy =

∫ ∫
D

∂Q

∂x
− ∂P

∂y
dA,

where D is the disk with boundary C:∫
C

(y 3+sin 2x) dx+(2xy 2+cos y) dy =

∫ ∫
D

2y 2−3y 2dA = −
∫ ∫

D

y 2 dA.

Next evaluate the integral using polar coordinates:

−
∫ ∫

D

y 2 dA = −
∫ 2π

0

∫ 1

0

(r sin θ)2r dr dθ = −
∫ 2π

0

[
r 4

4
sin2 θ

]1

0

dθ

= −1

4

∫ 2π

0

sin2 θ dθ.



Problem 29

(a) Express the double integral
∫ ∫

R x2y − x dA as an iterated
integral and evaluate it, where R is the first quadrant region
enclosed by the curves y = 0, y = x2 and y = 2− x .

Solution:

First rewrite the integral as an iterated integral.∫ ∫
R

(x2y − x) dA =

∫ 1

0

∫ 2−y

√
y

(x2y − x) dx dy

=

∫ 1

0

[
x3y2

3
− x2

2

]2−y

√
y

dy

=

∫ 1

0

[
(2− y)3y2

3
− (2− y)2

2

]
−

[
y

7
2

3
− y

2

]
dy

The remaining straightforward integral is left to you the student to

do.
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Problem 29

(b) Find an equivalent iterated integral expression for the double
integral in (a), where the order of integration is reversed from
the order used in part (a). (Do not evaluate this integral.

)

Solution: ∫ ∫
R
(x2y − x) dA

=

∫ 1

0

∫ x2

0
(x2y − x) dy dx +

∫ 2

1

∫ 2−x

0
(x2y − x) dy dx .
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Problem 30

Calculate the line integral
∫

C

F · dr,

where F(x , y) = y2x i + xy j, and C is the path starting at (1, 2), moving
along a line segment to (3, 0) and then moving along a second line
segment to (0, 1).

Solution:

Let C1 be the segment from (1, 2) to (3, 0) and let C2 be the
segment from (3, 0) to (0, 1).

Parameterizations for these curves are:
C1(t) = 〈1 + 2t, 2− 2t〉 0 ≤ t ≤ 1
C2(t) = 〈3− 3t, t〉 0 ≤ t ≤ 1

Next calculate:∫
C

y2x dx + xy dy =

∫
C1

y2x dx + xy dy +

∫
C2

y2x dx + xy dy =∫ 1

0

(2−2t)2(1+2t)2 dt+(1+2t)(2−2t)(−2) dt+

∫ 1

0

t2(3−3t)(−3) dt+(3−3t)t dt.

I leave the remaining long but straightforward calculation to you the
student.
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Problem 31

Evaluate the integral
∫ ∫

R

y
√

x2 + y2 dA

with R
the region {(x , y) : 1 ≤ x2 + y2 ≤ 2, 0 ≤ y ≤ x .

}

Solution:

First describe the domain R in polar coordinates:

R = {1 ≤ r ≤
√

2, 0 ≤ θ ≤ π

4
}.

Rewrite the integral in polar coordinates:∫ ∫
R

y
√

x2 + y2 dA =

∫ π
4

0

∫ √
2

1

(r sin θ r)r dr dθ.

Now evaluating the integral:∫ π
4

0

∫ √
2

1

sin θ r3dr dθ =

∫ π
4

0

[
1

4
sin θ r4

]√2

1

dθ

=
3

4

∫ π
4

0

sin θ dθ =
3

4
(− cos θ)

∣∣∣π
4

0
=

3

4

(
1− 1√

2

)
.
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Problem 32

(a) Show that the vector field F(x , y) =
〈

1
y + 2x ,− x

y2 + 1
〉

is

conservative by finding a potential function f (x , y).

Solution:

Suppose f (x , y) is the desired potential function.

Then: fx(x , y) = 1
y + 2x =⇒ f (x , y) = x

y + x2 + g(y), where
g(y) is a function of y .

Then:

fy (x , y) =
−x

y2
+ g ′(y) =

−x

y2
+ 1

=⇒ g ′(y) = 1 =⇒ g(y) = y + K,

where K is a constant.

Taking K = 0, we obtain: f (x , y) = x
y + x2 + y .
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Problem 32

(b) Let C be the path described by the parametric curve
r(t) = 〈1 + 2t, 1 + t2〉 for (a) to determine the value of the
line integral

∫
C F · dr.

Solution:

By the Fundamental Theorem of Calculus for line integrals,∫
C
F · dr = f (x2, y2)− f (x1, y1),

where (x1, y1) is the beginning point for r(t) and (x2, y2) is the
ending point for r(t). Note that the person who made this problem
forgot to give the beginning and ending times, so this is all we can
do.
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Problem 33

(a) Find the equation of the tangent plane at the point
P = (1, 1− 1) in the level surface
f (x , y , z) = 3x2 + xyz + z2 = 1.

Solution:

Recall that the gradient field ∇f (x , y , z) is orthogonal to the
level set surfaces of f (x , y). Hence n = ∇f (1, 1,−1) is a
normal vector for the tangent plane.
Calculating:

∇f = 〈6x + yz , xz , xy + 2z〉

∇f (1, 1,−1) = 〈6− 1,−1, 1− 2〉 = 〈5,−1,−1〉.

The equation of the tangent plane is:

〈5,−1,−1〉·〈x−1, y−1, z+1〉 = 5(x−1)−(y−1)−(z+1) = 0.
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Problem 33

(b) Find the directional derivative of the function f (x , y , z) at
P = (1, 1,−1) in the direction of the tangent vector to the space
curve r(t) = 〈2t2 − t, t−2, t2 − 2t3〉 at t = 1.

Solution:

First find the tangent vector v to r(t) at t = 1:

r′(t) = 〈4t − 1,−2t−3, 2t − 6t2〉
v = r′(1) = 〈3,−2,−4〉.

The unit vector u in the direction of v is:

u =
v

|v|
=
〈3,−2,−4〉√

29
.

By part (a), ∇f at (1, 1,−1) is:

∇f (1, 1,−1) = 〈5,−1,−1〉.

The directional derivative is:

Duf (1, 1,−1) = ∇f (1, 1,−1) · 1√
29
〈3,−2,−4〉

=
1√
29

(〈5,−1,−1〉 · 〈3,−2,−4〉 =
21√
29

.
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Problem 34

Find the absolute maxima and minima of the function

f (x , y) = x2 − 2xy + 2y2 − 2y .

in the region bounded by the lines x = 0, y = 0 and x + y = 7.

Solution:

This problem is left to you the student to do.
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Problem 35

Consider the function f (x , y) = xexy . Let P be the point (1, 0).
(a) Find the rate of change of the function f at the point P in

the direction of the point Q = (3, 2).

Solution:

The unit vector u in the direction 〈3, 2〉 is:

u =

−→
PQ

|
−→
PQ|

=
〈2, 2〉√
4 + 4

=
1√
2
〈1, 1〉.

Calculate ∇f (1, 0):

∇f = 〈exy + xyexy , x2exy 〉

∇f (1, 0) = 〈1, 1〉.

The directional derivative is:

Duf (0, 1) = ∇f (1, 0) · u = 〈1, 1〉 · 1√
2
〈1, 1〉 =

2√
2
.
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Problem 36

(a) Find the work done by the vector field F(x , y) = 〈x − y , x〉
over the circle r(t) = 〈cos t, sin t〉, 0 ≤ t ≤ 2π.

Solution:

The work W done is:

W =

∫
C
F · dr =

∫
C
(x − y) dx + x dy .

Note r(t) = 〈cos t, sin t〉 parameterizes C and
r′(t) = 〈− sin t, cos t〉.
So, the work done is:

W =

∫ 2π

0
(cos t − sin t)(− sin t) dt +

∫ 2π

0
cos t cos t dt

= −
∫ 2π

0
sin(t) cos(t) dt +

∫ 2π

0
sin2(t) + cos2(t) dt

= − sin2(t)

2

∣∣∣∣2π

0

+ 2π = 2π.
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Problem 36

(b) Use Green’s Theorem to calculate the line integral∫
C(−y2) dx + xy dy , over the positively (counterclockwise)

oriented closed curve C defined by x = 1, y = 1 and the
coordinate axes.

Solution:

Recall that Green’s Theorem is:∫
C

P dx + Q dy =

∫ ∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA,

where D is the square bounded by C.

Applying Green’s Theorem, we obtain:∫
C
(−y2) dx+(xy) dy =

∫ 1

0

∫ 1

0
(y+2y) dy dx = 3

∫ 1

0

∫ 1

0
y dy dx

= 3

∫ 1

0

[
y2

2

]1

0

dx = 3

∫ 1

0

1

2
dx =

3

2
.
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0

dx = 3

∫ 1

0

1

2
dx =

3

2
.



Problem 37

(a) Show that the vector field F(x , y) = 〈x2y , 1
3x3〉 is

conservative and find a function f such that F = ∇f .

Solution:

Since ∂

∂y
(x2y) = x2 =

∂

∂x
(
1

3
x3),

the vector field is conservative.
Suppose f (x , y) is a potential function for F(x , y). Then:

fx(x , y) = x2y =⇒ f (x , y) =

∫
x2y dx =

x3y

3
+ g(y),

where g(y) is a function of y .
Then:

fy (x , y) =
∂

∂y
(
x3y

3
+ g(y)) =

1

3
x3 + g ′(y) =

1

3
x3

=⇒ g ′(y) = 0 =⇒ g(y) = C,

for some constant C.
Setting C = 0, we get: f (x , y) =

x3y

3
.
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Problem 37

(b) Using the result in part (a), calculate the line integral∫
C F · dr, along the curve C which is the arc of y = x4 from

(0, 0) to (2, 16).

Solution:

By the Fundamental Theorem of Calculus,∫
C
F · dr = f (2, 16)− f (0, 0) =

8 · 16

3
− 0 = 128.
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Problem 38

Consider the surface x2 + y2 − 1
4z2 = 0 and the point

P(1, 2,−2
√

5) which lies on the surface.
(a) Find the equation of the tangent plane to the surface at the

point P.
(b) Find the equation of the normal line to the surface at the

point P.

Solution:

Let F(x , y , z) = x2 + y2 − 1
4z2 and note that ∇F is normal to

the level set surface x2 + y2 − 1
4z2 = 0.

Calculating ∇F at (1, 2,−2
√

5), we obtain:
∇F = 〈2x , 2y ,−1

2z〉 ∇F(1, 2,−2
√

5) = 〈2, 4,
√

5〉.
The equation of the tangent plane is:

〈2, 4,
√

5〉·〈x−1, y−2, z+2
√

5〉 = 2(x−1)+4(y−2)+
√

5(z+2
√

5) = 0.

The vector equation of the normal line is:

L(t) = 〈1, 2,−2
√

5〉+t〈2, 4,
√

5〉 = 〈1+2t, 2+4t,−2
√

5+
√

5t〉.
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Problem 39

A flat circular plate has the shape of the region x2 + y2 ≤ 1. The plate
(including the boundary x2 + y2 = 1) is heated so that the temperature
at any point (x , y) on the plate is given by T(x , y) = x2 + 2y2 − x . Find
the temperatures at the hottest and the coldest points on the plate,
including the boundary x2 + y2 = 1.

Solution:

First find the critical points:

∇T = 〈2x − 1, 4y〉 = 〈0, 0〉 =⇒ x =
1

2
and y = 0.

Apply Lagrange multipliers with the constraint function
g(x , y) = x2 + y2 = 1:

∇T = 〈2x − 1, 4y〉 = λ∇g = λ〈2x , 2y〉,

=⇒ 4y = λ2y =⇒ λ = 2 or y = 0.

y = 0 =⇒ x = ±1.
λ = 2 =⇒ 2x − 1 = 2(2x) = 4x =⇒ x = − 1

2 and y = ±
√

3
2 .

Checking values:

f ( 1
2 , 0) = − 1

4 , f (1, 0) = 0, f (−1, 0) = 2, f (− 1
2 ,±

√
3

2 ) = 9
4 .

The maximum value is 9
4 and the minimum value is − 1

4 .
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Problem 40

The acceleration of a particle at any time t is given by

a(t) = 〈−3 cos t,−3 sin t, 2〉,
while its initial velocity is v(0) = 〈0, 3, 0〉. At what times, if any are the
velocity and the acceleration of the particle orthogonal?

Solution:

First find the velocity v(t) by integrating a(t) and using the initial
value v(0) = 〈0, 3, 0〉:

v(t) =

∫
a(t) dt =

∫
〈−3 cos t,−3 sin t, 2〉 dt

= 〈−3 sin t + x0, 3 cos t + y0, 2t + z0〉.
Since v(0) = 〈0, 3, 0〉, we get
〈−3 sin(0)+ x0, 3 cos(0)+ y0, 2 · 0+ z0〉 = 〈x0, 3+ y0, z0〉 = 〈0, 3, 0〉,

=⇒ x0 = y0 = z0 = 0.
Hence,

v(t) = 〈−3 sin t, 3 cos t, 2t〉.
Take dot products and solve for t:

a(t) · v(t) = 9 cos t sin t − 9 sin t cos t + 4t = 4t = 0

=⇒ t = 0.
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