Solutions to old Exam 2 problems

Hi students!

I am putting this version of my review for the second midterm review (place and time TBA) here on the website. DO NOT PRINT!!; it is very long!! Enjoy!!
Your course chair, Bill

PS. There are probably errors in some of the solutions presented here and for a few problems you need to complete them or simplify the answers; some questions are left to you the student. Also you might need to add more detailed explanations or justifications on the actual similar problems on your exam. I will keep updating these solutions with better corrected/improved versions. The first 5 slides are from Exam 1 practice problems but the material falls on our Exam 2.
After our exam, I will place the solutions to it right after this slide.

Problem 1(a) - Spring 2009

Let $f(x, y)=x^{2} y-y^{2}-2 y-x^{2}$.
Find all of the critical points of f and classify them as either local maximum, local minimum, or saddle points.

Problem 1(a) - Spring 2009

Let $f(x, y)=x^{2} y-y^{2}-2 y-x^{2}$.
Find all of the critical points of f and classify them as either local maximum, local minimum, or saddle points.

Step 1: Find the critical points.

- Calculate $\nabla f(x, y)$ and solve

Problem 1(a) - Spring 2009

Let $f(x, y)=x^{2} y-y^{2}-2 y-x^{2}$.
Find all of the critical points of f and classify them as either local maximum, local minimum, or saddle points.

Step 1: Find the critical points.

- Calculate $\nabla f(x, y)$ and solve

$$
\nabla f(x, y)=\left\langle 2 x y-2 x, x^{2}-2 y-2\right\rangle=\langle 0,0\rangle
$$

Problem 1(a) - Spring 2009

Let $f(x, y)=x^{2} y-y^{2}-2 y-x^{2}$.
Find all of the critical points of f and classify them as either local maximum, local minimum, or saddle points.

Step 1: Find the critical points.

- Calculate $\nabla f(x, y)$ and solve

$$
\nabla f(x, y)=\left\langle 2 x y-2 x, x^{2}-2 y-2\right\rangle=\langle 0,0\rangle
$$

- The first equation $2 x y-2 x=2 x(y-1)=0$ implies $x=0$ or $y=1$

Problem 1(a) - Spring 2009

Let $f(x, y)=x^{2} y-y^{2}-2 y-x^{2}$.
Find all of the critical points of f and classify them as either local maximum, local minimum, or saddle points.

Step 1: Find the critical points.

- Calculate $\nabla f(x, y)$ and solve

$$
\nabla f(x, y)=\left\langle 2 x y-2 x, x^{2}-2 y-2\right\rangle=\langle 0,0\rangle
$$

- The first equation $2 x y-2 x=2 x(y-1)=0$ implies $x=0$ or $y=1$
- If $x=0$, the second equation $-2 y-2=0 \Rightarrow y=-1$.

Problem 1(a) - Spring 2009

Let $f(x, y)=x^{2} y-y^{2}-2 y-x^{2}$.
Find all of the critical points of f and classify them as either local maximum, local minimum, or saddle points.

Step 1: Find the critical points.

- Calculate $\nabla f(x, y)$ and solve

$$
\nabla f(x, y)=\left\langle 2 x y-2 x, x^{2}-2 y-2\right\rangle=\langle 0,0\rangle
$$

- The first equation $2 x y-2 x=2 x(y-1)=0$ implies $x=0$ or $y=1$
- If $x=0$, the second equation $-2 y-2=0 \Rightarrow y=-1$.
- If $y=1$, the second equation $x^{2}-4=0 \Rightarrow x= \pm 2$.

Problem 1(a) - Spring 2009

Let $f(x, y)=x^{2} y-y^{2}-2 y-x^{2}$.
Find all of the critical points of f and classify them as either local maximum, local minimum, or saddle points.

Step 1: Find the critical points.

- Calculate $\nabla f(x, y)$ and solve

$$
\nabla f(x, y)=\left\langle 2 x y-2 x, x^{2}-2 y-2\right\rangle=\langle 0,0\rangle
$$

- The first equation $2 x y-2 x=2 x(y-1)=0$ implies $x=0$ or $y=1$
- If $x=0$, the second equation $-2 y-2=0 \Rightarrow y=-1$.
- If $y=1$, the second equation $x^{2}-4=0 \Rightarrow x= \pm 2$.
- This gives a set of three critical points:

$$
\{(0,-1),(-2,1),(2,1)\} .
$$

Problem 1(a) - Spring 2009

Let $f(x, y)=x^{2} y-y^{2}-2 y-x^{2}$.
Find all of the critical points of f and classify them as either local maximum, local minimum, or saddle points.

Problem 1(a) - Spring 2009

Let $f(x, y)=x^{2} y-y^{2}-2 y-x^{2}$.
Find all of the critical points of f and classify them as either local maximum, local minimum, or saddle points.

Solution: Continuation of problem 1(a).

- The set of critical points is $\{(0,-1),(-2,1),(2,1)\}$.

Problem 1(a) - Spring 2009

Let $f(x, y)=x^{2} y-y^{2}-2 y-x^{2}$.
Find all of the critical points of f and classify them as either local maximum, local minimum, or saddle points.

Solution: Continuation of problem 1(a).

- The set of critical points is $\{(0,-1),(-2,1),(2,1)\}$.
- Now write the Hessian of $f(x, y)$:

Problem 1(a) - Spring 2009

Let $f(x, y)=x^{2} y-y^{2}-2 y-x^{2}$.
Find all of the critical points of f and classify them as either local maximum, local minimum, or saddle points.

Solution: Continuation of problem 1(a).

- The set of critical points is $\{(0,-1),(-2,1),(2,1)\}$.
- Now write the Hessian of $f(x, y)$:

$$
D=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|
$$

Problem 1(a) - Spring 2009

Let $f(x, y)=x^{2} y-y^{2}-2 y-x^{2}$.
Find all of the critical points of f and classify them as either local maximum, local minimum, or saddle points.

Solution: Continuation of problem 1(a).

- The set of critical points is $\{(0,-1),(-2,1),(2,1)\}$.
- Now write the Hessian of $f(x, y)$:

$$
D=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|=\left|\begin{array}{cc}
2 y-2 & 2 x \\
2 x & -2
\end{array}\right|
$$

Problem 1(a) - Spring 2009

Let $f(x, y)=x^{2} y-y^{2}-2 y-x^{2}$.
Find all of the critical points of f and classify them as either local maximum, local minimum, or saddle points.

Solution: Continuation of problem 1(a).

- The set of critical points is $\{(0,-1),(-2,1),(2,1)\}$.
- Now write the Hessian of $f(x, y)$:

$$
D=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|=\left|\begin{array}{cc}
2 y-2 & 2 x \\
2 x & -2
\end{array}\right|=-4 y+4-4 x^{2}
$$

Problem 1(a) - Spring 2009

Let $f(x, y)=x^{2} y-y^{2}-2 y-x^{2}$.
Find all of the critical points of f and classify them as either local maximum, local minimum, or saddle points.

Solution: Continuation of problem 1(a).

- The set of critical points is $\{(0,-1),(-2,1),(2,1)\}$.
- Now write the Hessian of $f(x, y)$:

$$
D=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|=\left|\begin{array}{cc}
2 y-2 & 2 x \\
2 x & -2
\end{array}\right|=-4 y+4-4 x^{2}
$$

- Apply the Second Derivative Test.
- $D(0,-1)=8>0$ and $f_{x x}=-4<0$, so $(0,-1)$ is a local maximum.

Problem 1(a) - Spring 2009

Let $f(x, y)=x^{2} y-y^{2}-2 y-x^{2}$.
Find all of the critical points of f and classify them as either local maximum, local minimum, or saddle points.

Solution: Continuation of problem 1(a).

- The set of critical points is $\{(0,-1),(-2,1),(2,1)\}$.
- Now write the Hessian of $f(x, y)$:

$$
D=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|=\left|\begin{array}{cc}
2 y-2 & 2 x \\
2 x & -2
\end{array}\right|=-4 y+4-4 x^{2}
$$

- Apply the Second Derivative Test.
- $D(0,-1)=8>0$ and $f_{x x}=-4<0$, so $(0,-1)$ is a local maximum.
- $D(-2,1)=-16<0$, so $(-2,1)$ is a saddle point.

Problem 1(a) - Spring 2009

Let $f(x, y)=x^{2} y-y^{2}-2 y-x^{2}$.
Find all of the critical points of f and classify them as either local maximum, local minimum, or saddle points.

Solution: Continuation of problem 1(a).

- The set of critical points is $\{(0,-1),(-2,1),(2,1)\}$.
- Now write the Hessian of $f(x, y)$:

$$
D=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|=\left|\begin{array}{cc}
2 y-2 & 2 x \\
2 x & -2
\end{array}\right|=-4 y+4-4 x^{2}
$$

- Apply the Second Derivative Test.
- $D(0,-1)=8>0$ and $f_{x x}=-4<0$, so $(0,-1)$ is a local maximum.
- $D(-2,1)=-16<0$, so $(-2,1)$ is a saddle point.
- $D(2,1)=-16<0$, so $(2,1)$ is a saddle point.

Problem 1(b) - Spring 2009

Let $f(x, y)=x^{2} y-y^{2}-2 y-x^{2}$.
Find the linearization $\mathrm{L}(x, y)$ of f at the point $(1,2)$ and use it to approximate $f(0.9,2.1)$.

Problem 1(b) - Spring 2009

Let $f(x, y)=x^{2} y-y^{2}-2 y-x^{2}$.
Find the linearization $\mathrm{L}(x, y)$ of f at the point $(1,2)$ and use it to approximate $f(0.9,2.1)$.

Solution:

- Calculate the partial derivatives of f at $(1,2)$:

Problem 1(b) - Spring 2009

Let $f(x, y)=x^{2} y-y^{2}-2 y-x^{2}$.
Find the linearization $\mathrm{L}(x, y)$ of f at the point $(1,2)$ and use it to approximate $f(0.9,2.1)$.

Solution:

- Calculate the partial derivatives of f at $(1,2)$:

$$
\nabla f(x, y)=\left\langle 2 x y-2 x, x^{2}-2 y-2\right\rangle \quad \nabla f(1,2)=\langle 2,-5\rangle
$$

Problem 1(b) - Spring 2009

Let $f(x, y)=x^{2} y-y^{2}-2 y-x^{2}$.
Find the linearization $\mathrm{L}(x, y)$ of f at the point $(1,2)$ and use it to approximate $f(0.9,2.1)$.

Solution:

- Calculate the partial derivatives of f at $(1,2)$:

$$
\nabla f(x, y)=\left\langle 2 x y-2 x, x^{2}-2 y-2\right\rangle \quad \nabla f(1,2)=\langle 2,-5\rangle
$$

- Compute the linearization $\mathbf{L}(x, y)$ of f at $(1,2)$:

Problem 1(b) - Spring 2009

Let $f(x, y)=x^{2} y-y^{2}-2 y-x^{2}$.
Find the linearization $\mathrm{L}(x, y)$ of f at the point $(1,2)$ and use it to approximate $f(0.9,2.1)$.

Solution:

- Calculate the partial derivatives of f at $(1,2)$:

$$
\nabla f(x, y)=\left\langle 2 x y-2 x, x^{2}-2 y-2\right\rangle \quad \nabla f(1,2)=\langle 2,-5\rangle
$$

- Compute the linearization $\mathbf{L}(x, y)$ of f at $(1,2)$:

$$
\begin{aligned}
\mathrm{L}(x, y) & =f(1,2)+f_{x}(1,2)(x-1)+f_{y}(1,2)(y-2) \\
& =-7+2(x-1)-5(y-2)
\end{aligned}
$$

Problem 1(b) - Spring 2009

Let $f(x, y)=x^{2} y-y^{2}-2 y-x^{2}$.
Find the linearization $\mathrm{L}(x, y)$ of f at the point $(1,2)$ and use it to approximate $f(0.9,2.1)$.

Solution:

- Calculate the partial derivatives of f at $(1,2)$:

$$
\nabla f(x, y)=\left\langle 2 x y-2 x, x^{2}-2 y-2\right\rangle \quad \nabla f(1,2)=\langle 2,-5\rangle
$$

- Compute the linearization $\mathrm{L}(x, y)$ of f at $(1,2)$:

$$
\begin{aligned}
\mathbf{L}(x, y) & =f(1,2)+f_{x}(1,2)(x-1)+f_{y}(1,2)(y-2) \\
& =-7+2(x-1)-5(y-2)
\end{aligned}
$$

- Approximate $f(0.9,2.1)$ by $\mathbf{L}(0.9,2.1)$:

Problem 1(b) - Spring 2009

Let $f(x, y)=x^{2} y-y^{2}-2 y-x^{2}$.
Find the linearization $\mathbf{L}(x, y)$ of f at the point $(1,2)$ and use it to approximate $f(0.9,2.1)$.

Solution:

- Calculate the partial derivatives of f at $(1,2)$:

$$
\nabla f(x, y)=\left\langle 2 x y-2 x, x^{2}-2 y-2\right\rangle \quad \nabla f(1,2)=\langle 2,-5\rangle
$$

- Compute the linearization $\mathbf{L}(x, y)$ of f at $(1,2)$:

$$
\begin{aligned}
\mathrm{L}(x, y) & =f(1,2)+f_{x}(1,2)(x-1)+f_{y}(1,2)(y-2) \\
& =-7+2(x-1)-5(y-2)
\end{aligned}
$$

- Approximate $f(0.9,2.1)$ by $\mathbf{L}(0.9,2.1)$:

$$
\mathrm{L}(0.9,2.1)=-7+2(-0.1)-5(0.1)=-7.7
$$

Problem 2 (a-c) - Spring 2009
Consider the function $f(x, y)=x^{2}-2 x y+3 y+y^{2}$. (a) Find the gradient $\nabla f(x, y)$.

Problem 2 (a-c) - Spring 2009
Consider the function $f(x, y)=x^{2}-2 x y+3 y+y^{2}$. (a) Find the gradient $\nabla f(x, y)$.

- $\nabla f(x, y)=\langle 2 x-2 y,-2 x+3+2 y\rangle$.

Problem 2 (a-c) - Spring 2009
Consider the function $f(x, y)=x^{2}-2 x y+3 y+y^{2}$. (a) Find the gradient $\nabla f(x, y)$.

- $\nabla f(x, y)=\langle 2 x-2 y,-2 x+3+2 y\rangle$.
(b)

Find the directional derivative of f at the point $(1,0)$ in the direction $\langle 3,4\rangle$.

Problem 2 (a-c) - Spring 2009

Consider the function $f(x, y)=x^{2}-2 x y+3 y+y^{2}$. (a) Find the gradient $\nabla f(x, y)$.

- $\nabla f(x, y)=\langle 2 x-2 y,-2 x+3+2 y\rangle$.
(b)

Find the directional derivative of f at the point $(1,0)$ in the direction $\langle 3,4\rangle$.

- Normalize the direction: $\mathbf{u}=\frac{\langle 3,4\rangle}{|\langle 3,4\rangle|}=\frac{1}{5}\langle 3,4\rangle$

Problem 2 (a-c) - Spring 2009

Consider the function $f(x, y)=x^{2}-2 x y+3 y+y^{2}$. (a) Find the gradient $\nabla f(x, y)$.

- $\nabla f(x, y)=\langle 2 x-2 y,-2 x+3+2 y\rangle$.

(b)

Find the directional derivative of f at the point $(1,0)$ in the direction $\langle 3,4\rangle$.

- Normalize the direction: $\mathbf{u}=\frac{\langle 3,4\rangle}{|\langle 3,4\rangle|}=\frac{1}{5}\langle 3,4\rangle$
- Evaluate: $D_{u} f(1,0)=\nabla f(1,0) \cdot \mathbf{u}$

Problem 2 (a-c) - Spring 2009

Consider the function $f(x, y)=x^{2}-2 x y+3 y+y^{2}$. (a) Find the gradient $\nabla f(x, y)$.

- $\nabla f(x, y)=\langle 2 x-2 y,-2 x+3+2 y\rangle$.

(b)

Find the directional derivative of f at the point $(1,0)$ in the direction $\langle 3,4\rangle$.

- Normalize the direction: $\mathbf{u}=\frac{\langle 3,4\rangle}{|\langle 3,4\rangle|}=\frac{1}{5}\langle 3,4\rangle$
- Evaluate: $D_{u} f(1,0)=\nabla f(1,0) \cdot \mathbf{u}=\langle 2,1\rangle \cdot \frac{1}{5}\langle 3,4\rangle$

Problem 2 (a-c) - Spring 2009

Consider the function $f(x, y)=x^{2}-2 x y+3 y+y^{2}$. (a) Find the gradient $\nabla f(x, y)$.

- $\nabla f(x, y)=\langle 2 x-2 y,-2 x+3+2 y\rangle$.

(b)

Find the directional derivative of f at the point $(1,0)$ in the direction $\langle 3,4\rangle$.

- Normalize the direction: $\mathbf{u}=\frac{\langle 3,4\rangle}{|\langle 3,4\rangle|}=\frac{1}{5}\langle 3,4\rangle$
- Evaluate: $D_{u} f(1,0)=\nabla f(1,0) \cdot \mathbf{u}=\langle 2,1\rangle \cdot \frac{1}{5}\langle 3,4\rangle=2$.

Problem 2 (a-c) - Spring 2009

Consider the function $f(x, y)=x^{2}-2 x y+3 y+y^{2}$. (a) Find the gradient $\nabla f(x, y)$.

- $\nabla f(x, y)=\langle 2 x-2 y,-2 x+3+2 y\rangle$.

(b)

Find the directional derivative of f at the point $(1,0)$ in the direction $\langle 3,4\rangle$.

- Normalize the direction: $\mathbf{u}=\frac{\langle 3,4\rangle}{|\langle 3,4\rangle|}=\frac{1}{5}\langle 3,4\rangle$
- Evaluate: $D_{u} f(1,0)=\nabla f(1,0) \cdot \mathbf{u}=\langle 2,1\rangle \cdot \frac{1}{5}\langle 3,4\rangle=2$.

(c)

Compute all second partial derivatives of f.

Problem 2 (a-c) - Spring 2009

Consider the function $f(x, y)=x^{2}-2 x y+3 y+y^{2}$. (a) Find the gradient $\nabla f(x, y)$.

- $\nabla f(x, y)=\langle 2 x-2 y,-2 x+3+2 y\rangle$.

(b)

Find the directional derivative of f at the point $(1,0)$ in the direction $\langle 3,4\rangle$.

- Normalize the direction: $\mathbf{u}=\frac{\langle 3,4\rangle}{\mid\langle 3,4\rangle}=\frac{1}{5}\langle 3,4\rangle$
- Evaluate: $D_{u} f(1,0)=\nabla f(1,0) \cdot \mathbf{u}=\langle 2,1\rangle \cdot \frac{1}{5}\langle 3,4\rangle=2$.

(c)

Compute all second partial derivatives of f.

- $f_{x x}(x, y)=\frac{\partial}{\partial x}(2 x-2 y)=2$
- $f_{x y}(x, y)=f_{y x}(x, y)=\frac{\partial}{\partial y}(2 x-2 y)=-2$
- $f_{y y}(x, y)=\frac{\partial}{\partial y}(-2 x+3+2 y)=2$.

Problem 2(d) - Spring 2009

Consider the function $f(x, y)=x^{2}-2 x y+3 y+y^{2}$. Suppose $x=s t^{2}$ and $y=e^{s-t}$. Find $\frac{\partial f}{\partial s}$ and $\frac{\partial f}{\partial t}$ at $s=2$ and $t=1$.

Problem 2(d) - Spring 2009

Consider the function $f(x, y)=x^{2}-2 x y+3 y+y^{2}$.
Suppose $x=s t^{2}$ and $y=e^{s-t}$. Find $\frac{\partial f}{\partial s}$ and $\frac{\partial f}{\partial t}$ at $s=2$ and $t=1$.

Solution:

- If $s=2$ and $t=1$, then $x=2 \cdot 1^{2}=2$ and $y=e^{2-1}=e$.

Problem 2(d) - Spring 2009

Consider the function $f(x, y)=x^{2}-2 x y+3 y+y^{2}$.
Suppose $x=s t^{2}$ and $y=e^{s-t}$. Find $\frac{\partial f}{\partial s}$ and $\frac{\partial f}{\partial t}$ at $s=2$ and $t=1$.

Solution:

- If $s=2$ and $t=1$, then $x=2 \cdot 1^{2}=2$ and $y=e^{2-1}=e$.
- The Chain Rule states that

$$
\frac{\partial f}{\partial s}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial s} \quad \frac{\partial f}{\partial t}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial t} .
$$

Problem 2(d) - Spring 2009

Consider the function $f(x, y)=x^{2}-2 x y+3 y+y^{2}$.
Suppose $x=s t^{2}$ and $y=e^{s-t}$. Find $\frac{\partial f}{\partial s}$ and $\frac{\partial f}{\partial t}$ at $s=2$ and $t=1$.

Solution:

- If $s=2$ and $t=1$, then $x=2 \cdot 1^{2}=2$ and $y=e^{2-1}=e$.
- The Chain Rule states that

$$
\frac{\partial f}{\partial s}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial s} \quad \frac{\partial f}{\partial t}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial t}
$$

- So, $\quad \frac{\partial f}{\partial s}=(2 x-2 y)\left(t^{2}\right)+(-2 x+3+2 y)\left(e^{s-t}\right)$

Problem 2(d) - Spring 2009

Consider the function $f(x, y)=x^{2}-2 x y+3 y+y^{2}$.
Suppose $x=s t^{2}$ and $y=e^{s-t}$. Find $\frac{\partial f}{\partial s}$ and $\frac{\partial f}{\partial t}$ at $s=2$ and $t=1$.

Solution:

- If $s=2$ and $t=1$, then $x=2 \cdot 1^{2}=2$ and $y=e^{2-1}=e$.
- The Chain Rule states that

$$
\frac{\partial f}{\partial s}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial s} \quad \frac{\partial f}{\partial t}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial t}
$$

- So,

$$
\begin{aligned}
& \frac{\partial f}{\partial s}=(2 x-2 y)\left(t^{2}\right)+(-2 x+3+2 y)\left(e^{s-t}\right) \\
& =(4-2 e)+(-4+3+2 e)(e)
\end{aligned}
$$

Problem 2(d) - Spring 2009

Consider the function $f(x, y)=x^{2}-2 x y+3 y+y^{2}$.
Suppose $x=s t^{2}$ and $y=e^{s-t}$. Find $\frac{\partial f}{\partial s}$ and $\frac{\partial f}{\partial t}$ at $s=2$ and $t=1$.

Solution:

- If $s=2$ and $t=1$, then $x=2 \cdot 1^{2}=2$ and $y=e^{2-1}=e$.
- The Chain Rule states that

$$
\frac{\partial f}{\partial s}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial s} \quad \frac{\partial f}{\partial t}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial t}
$$

- So,

$$
\begin{aligned}
& \frac{\partial f}{\partial s}=(2 x-2 y)\left(t^{2}\right)+(-2 x+3+2 y)\left(e^{s-t}\right) \\
= & (4-2 e)+(-4+3+2 e)(e)=4-3 e+2 e^{2}
\end{aligned}
$$

Problem 2(d) - Spring 2009

Consider the function $f(x, y)=x^{2}-2 x y+3 y+y^{2}$.
Suppose $x=s t^{2}$ and $y=e^{s-t}$. Find $\frac{\partial f}{\partial s}$ and $\frac{\partial f}{\partial t}$ at $s=2$ and $t=1$.

Solution:

- If $s=2$ and $t=1$, then $x=2 \cdot 1^{2}=2$ and $y=e^{2-1}=e$.
- The Chain Rule states that

$$
\frac{\partial f}{\partial s}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial s} \quad \frac{\partial f}{\partial t}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial t}
$$

- So,

$$
\begin{aligned}
& \frac{\partial f}{\partial s}=(2 x-2 y)\left(t^{2}\right)+(-2 x+3+2 y)\left(e^{s-t}\right) \\
= & (4-2 e)+(-4+3+2 e)(e)=4-3 e+2 e^{2}
\end{aligned}
$$

-

$$
\frac{\partial f}{\partial t}=(2 x-2 y)(2 s t)+(-2 x+3+2 y)\left(-e^{s-t}\right)
$$

Problem 2(d) - Spring 2009

Consider the function $f(x, y)=x^{2}-2 x y+3 y+y^{2}$.
Suppose $x=s t^{2}$ and $y=e^{s-t}$. Find $\frac{\partial f}{\partial s}$ and $\frac{\partial f}{\partial t}$ at $s=2$ and $t=1$.

Solution:

- If $s=2$ and $t=1$, then $x=2 \cdot 1^{2}=2$ and $y=e^{2-1}=e$.
- The Chain Rule states that

$$
\frac{\partial f}{\partial s}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial s} \quad \frac{\partial f}{\partial t}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial t}
$$

- So, $\quad \frac{\partial f}{\partial s}=(2 x-2 y)\left(t^{2}\right)+(-2 x+3+2 y)\left(e^{s-t}\right)$

$$
=(4-2 e)+(-4+3+2 e)(e)=4-3 e+2 e^{2} .
$$

\bullet

$$
\begin{aligned}
& \frac{\partial f}{\partial t}=(2 x-2 y)(2 s t)+(-2 x+3+2 y)\left(-e^{s-t}\right) \\
= & (4-2 e)(4)+(-4+3+2 e)(-e)
\end{aligned}
$$

Problem 2(d) - Spring 2009

Consider the function $f(x, y)=x^{2}-2 x y+3 y+y^{2}$.
Suppose $x=s t^{2}$ and $y=e^{s-t}$. Find $\frac{\partial f}{\partial s}$ and $\frac{\partial f}{\partial t}$ at $s=2$ and $t=1$.

Solution:

- If $s=2$ and $t=1$, then $x=2 \cdot 1^{2}=2$ and $y=e^{2-1}=e$.
- The Chain Rule states that

$$
\frac{\partial f}{\partial s}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial s} \quad \frac{\partial f}{\partial t}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial t}
$$

- So,

$$
\begin{aligned}
& \frac{\partial f}{\partial s}=(2 x-2 y)\left(t^{2}\right)+(-2 x+3+2 y)\left(e^{s-t}\right) \\
= & (4-2 e)+(-4+3+2 e)(e)=4-3 e+2 e^{2}
\end{aligned}
$$

-

$$
\begin{gathered}
\frac{\partial f}{\partial t}=(2 x-2 y)(2 s t)+(-2 x+3+2 y)\left(-e^{s-t}\right) \\
=(4-2 e)(4)+(-4+3+2 e)(-e)=16-7 e-2 e^{2} .
\end{gathered}
$$

Problem 3(a) - Spring 2009

Consider the function $f(x, y)=e^{x y}$ over the region \mathbf{D} given by $x^{2}+4 y^{2} \leq 2$. Find the critical points of f.

Problem 3(a) - Spring 2009

Consider the function $f(x, y)=e^{x y}$ over the region \mathbf{D} given by $x^{2}+4 y^{2} \leq 2$. Find the critical points of f.

Solution:

- $\nabla f(x, y)=\left\langle y e^{x y}, x e^{x y}\right\rangle=\langle 0,0\rangle$

Problem 3(a) - Spring 2009

Consider the function $f(x, y)=e^{x y}$ over the region \mathbf{D} given by $x^{2}+4 y^{2} \leq 2$. Find the critical points of f.

Solution:

- $\nabla f(x, y)=\left\langle y e^{x y}, x e^{x y}\right\rangle=\langle 0,0\rangle$
- Since $e^{x y}$ is positive, the only critical point is $(0,0)$.

Problem 3(b) - Spring 2009
Find the extreme values on the boundary of \mathbf{D}.

Problem 3(b) - Spring 2009

Find the extreme values on the boundary of \mathbf{D}.

Solution:

- Use Lagrange Multipliers to study the behavior of f on the boundary $g(x, y)=x^{2}+4 y^{2}=2$.

Problem 3(b) - Spring 2009

Find the extreme values on the boundary of D.

Solution:

- Use Lagrange Multipliers to study the behavior of f on the boundary $g(x, y)=x^{2}+4 y^{2}=2$.

$$
\nabla f(x, y)=\left\langle y e^{x y}, x e^{x y}\right\rangle
$$

Problem 3(b) - Spring 2009

Find the extreme values on the boundary of D.

Solution:

- Use Lagrange Multipliers to study the behavior of f on the boundary $g(x, y)=x^{2}+4 y^{2}=2$.

$$
\nabla f(x, y)=\left\langle y e^{x y}, x e^{x y}\right\rangle=\lambda \nabla g(x, y)
$$

Problem 3(b) - Spring 2009

Find the extreme values on the boundary of D.

Solution:

- Use Lagrange Multipliers to study the behavior of f on the boundary $g(x, y)=x^{2}+4 y^{2}=2$.

$$
\begin{equation*}
\nabla f(x, y)=\left\langle y e^{x y}, x e^{x y}\right\rangle=\lambda \nabla g(x, y)=\lambda\langle 2 x, 8 y\rangle \tag{1}
\end{equation*}
$$

Problem 3(b) - Spring 2009

Find the extreme values on the boundary of \mathbf{D}.

Solution:

- Use Lagrange Multipliers to study the behavior of f on the boundary $g(x, y)=x^{2}+4 y^{2}=2$.

$$
\begin{equation*}
\nabla f(x, y)=\left\langle y e^{x y}, x e^{x y}\right\rangle=\lambda \nabla g(x, y)=\lambda\langle 2 x, 8 y\rangle \tag{1}
\end{equation*}
$$

- Since $g(0,0) \neq 2, x=0 \Rightarrow y \neq 0$,

Problem 3(b) - Spring 2009

Find the extreme values on the boundary of D.

Solution:

- Use Lagrange Multipliers to study the behavior of f on the boundary $g(x, y)=x^{2}+4 y^{2}=2$.

$$
\begin{equation*}
\nabla f(x, y)=\left\langle y e^{x y}, x e^{x y}\right\rangle=\lambda \nabla g(x, y)=\lambda\langle 2 x, 8 y\rangle \tag{1}
\end{equation*}
$$

- Since $g(0,0) \neq 2, x=0 \Rightarrow y \neq 0$, and $y=0 \Rightarrow x \neq 0$.

Problem 3(b) - Spring 2009

Find the extreme values on the boundary of D.

Solution:

- Use Lagrange Multipliers to study the behavior of f on the boundary $g(x, y)=x^{2}+4 y^{2}=2$.

$$
\begin{equation*}
\nabla f(x, y)=\left\langle y e^{x y}, x e^{x y}\right\rangle=\lambda \nabla g(x, y)=\lambda\langle 2 x, 8 y\rangle \tag{1}
\end{equation*}
$$

- Since $g(0,0) \neq 2, x=0 \Rightarrow y \neq 0$, and $y=0 \Rightarrow x \neq 0$.
- Since $e^{x y}$ is positive and not both x and y are 0 , the neither is 0 by equation 1.

Problem 3(b) - Spring 2009

Find the extreme values on the boundary of D.

Solution:

- Use Lagrange Multipliers to study the behavior of f on the boundary $g(x, y)=x^{2}+4 y^{2}=2$.

$$
\begin{equation*}
\nabla f(x, y)=\left\langle y e^{x y}, x e^{x y}\right\rangle=\lambda \nabla g(x, y)=\lambda\langle 2 x, 8 y\rangle \tag{1}
\end{equation*}
$$

- Since $g(0,0) \neq 2, x=0 \Rightarrow y \neq 0$, and $y=0 \Rightarrow x \neq 0$.
- Since $e^{x y}$ is positive and not both x and y are 0 , the neither is 0 by equation 1. Hence, $\lambda / e^{x y}=y / 2 x$

Problem 3(b) - Spring 2009

Find the extreme values on the boundary of D.

Solution:

- Use Lagrange Multipliers to study the behavior of f on the boundary $g(x, y)=x^{2}+4 y^{2}=2$.

$$
\begin{equation*}
\nabla f(x, y)=\left\langle y e^{x y}, x e^{x y}\right\rangle=\lambda \nabla g(x, y)=\lambda\langle 2 x, 8 y\rangle \tag{1}
\end{equation*}
$$

- Since $g(0,0) \neq 2, x=0 \Rightarrow y \neq 0$, and $y=0 \Rightarrow x \neq 0$.
- Since $e^{x y}$ is positive and not both x and y are 0 , the neither is 0 by equation 1 . Hence, $\lambda / e^{x y}=y / 2 x=x / 8 y$

Problem 3(b) - Spring 2009

Find the extreme values on the boundary of D.

Solution:

- Use Lagrange Multipliers to study the behavior of f on the boundary $g(x, y)=x^{2}+4 y^{2}=2$.

$$
\begin{equation*}
\nabla f(x, y)=\left\langle y e^{x y}, x e^{x y}\right\rangle=\lambda \nabla g(x, y)=\lambda\langle 2 x, 8 y\rangle \tag{1}
\end{equation*}
$$

- Since $g(0,0) \neq 2, x=0 \Rightarrow y \neq 0$, and $y=0 \Rightarrow x \neq 0$.
- Since $e^{x y}$ is positive and not both x and y are 0 , the neither is 0 by equation 1 . Hence, $\lambda / e^{x y}=y / 2 x=x / 8 y \Rightarrow 8 y^{2}=2 x^{2}$.

Problem 3(b) - Spring 2009

Find the extreme values on the boundary of D .

Solution:

- Use Lagrange Multipliers to study the behavior of f on the boundary $g(x, y)=x^{2}+4 y^{2}=2$.

$$
\begin{equation*}
\nabla f(x, y)=\left\langle y e^{x y}, x e^{x y}\right\rangle=\lambda \nabla g(x, y)=\lambda\langle 2 x, 8 y\rangle \tag{1}
\end{equation*}
$$

- Since $g(0,0) \neq 2, x=0 \Rightarrow y \neq 0$, and $y=0 \Rightarrow x \neq 0$.
- Since $e^{x y}$ is positive and not both x and y are 0 , the neither is 0 by equation 1. Hence, $\lambda / e^{x y}=y / 2 x=x / 8 y \Rightarrow 8 y^{2}=2 x^{2}$.
- Substituting into $g(x, y)=2$ gives $2 x^{2}=2$ and $8 y^{2}=2$.

Problem 3(b) - Spring 2009

Find the extreme values on the boundary of D .

Solution:

- Use Lagrange Multipliers to study the behavior of f on the boundary $g(x, y)=x^{2}+4 y^{2}=2$.

$$
\begin{equation*}
\nabla f(x, y)=\left\langle y e^{x y}, x e^{x y}\right\rangle=\lambda \nabla g(x, y)=\lambda\langle 2 x, 8 y\rangle \tag{1}
\end{equation*}
$$

- Since $g(0,0) \neq 2, x=0 \Rightarrow y \neq 0$, and $y=0 \Rightarrow x \neq 0$.
- Since $e^{x y}$ is positive and not both x and y are 0 , the neither is 0 by equation 1 . Hence, $\lambda / e^{x y}=y / 2 x=x / 8 y \Rightarrow 8 y^{2}=2 x^{2}$.
- Substituting into $g(x, y)=2$ gives $2 x^{2}=2$ and $8 y^{2}=2$.
- There are four possible extremum points:

$$
\left\{\left(-1,-\frac{1}{2}\right),\left(-1, \frac{1}{2}\right),\left(1,-\frac{1}{2}\right),\left(1, \frac{1}{2}\right)\right\}
$$

Problem 3(b) - Spring 2009

Find the extreme values on the boundary of D.

Solution:

- Use Lagrange Multipliers to study the behavior of f on the boundary $g(x, y)=x^{2}+4 y^{2}=2$.

$$
\begin{equation*}
\nabla f(x, y)=\left\langle y e^{x y}, x e^{x y}\right\rangle=\lambda \nabla g(x, y)=\lambda\langle 2 x, 8 y\rangle \tag{1}
\end{equation*}
$$

- Since $g(0,0) \neq 2, x=0 \Rightarrow y \neq 0$, and $y=0 \Rightarrow x \neq 0$.
- Since $e^{x y}$ is positive and not both x and y are 0 , the neither is 0 by equation 1 . Hence, $\lambda / e^{x y}=y / 2 x=x / 8 y \Rightarrow 8 y^{2}=2 x^{2}$.
- Substituting into $g(x, y)=2$ gives $2 x^{2}=2$ and $8 y^{2}=2$.
- There are four possible extremum points:

$$
\left\{\left(-1,-\frac{1}{2}\right),\left(-1, \frac{1}{2}\right),\left(1,-\frac{1}{2}\right),\left(1, \frac{1}{2}\right)\right\}
$$

- So the extreme values of f on the boundary of D are:

Max $=f(1,1 / 2)=f(-1,-1 / 2)=\sqrt{e}$,
Min $=f(1,-1 / 2)=f(-1,1 / 2)=\frac{1}{\sqrt{e}}$.

Problem 3(c) - Spring 2009

Consider the function $f(x, y)=e^{x y}$ over the region D given by $x^{2}+4 y^{2} \leq 2$. What is the absolute maximum value and absolute minimum value of $f(x, y)$ on \mathbf{D} ?

Problem 3(c) - Spring 2009

Consider the function $f(x, y)=e^{x y}$ over the region D given by $x^{2}+4 y^{2} \leq 2$. What is the absolute maximum value and absolute minimum value of $f(x, y)$ on \mathbf{D} ?

Solution:

- Recall that the only critical point of f is $(0,0)$, and that on the boundary $\{(-1,-1 / 2),(-1,1 / 2),(1,-1 / 2),(1,1 / 2)\}$ are possible extremum points.

Problem 3(c) - Spring 2009

Consider the function $f(x, y)=e^{x y}$ over the region D given by $x^{2}+4 y^{2} \leq 2$. What is the absolute maximum value and absolute minimum value of $f(x, y)$ on \mathbf{D} ?

Solution:

- Recall that the only critical point of f is $(0,0)$, and that on the boundary $\{(-1,-1 / 2),(-1,1 / 2),(1,-1 / 2),(1,1 / 2)\}$ are possible extremum points.
- Calculate the value of f at each point.

Problem 3(c) - Spring 2009

Consider the function $f(x, y)=e^{x y}$ over the region D given by $x^{2}+4 y^{2} \leq 2$. What is the absolute maximum value and absolute minimum value of $f(x, y)$ on \mathbf{D} ?

Solution:

- Recall that the only critical point of f is $(0,0)$, and that on the boundary $\{(-1,-1 / 2),(-1,1 / 2),(1,-1 / 2),(1,1 / 2)\}$ are possible extremum points.
- Calculate the value of f at each point.
- $f(0,0)=1$

Problem 3(c) - Spring 2009

Consider the function $f(x, y)=e^{x y}$ over the region D given by $x^{2}+4 y^{2} \leq 2$. What is the absolute maximum value and absolute minimum value of $f(x, y)$ on \mathbf{D} ?

Solution:

- Recall that the only critical point of f is $(0,0)$, and that on the boundary $\{(-1,-1 / 2),(-1,1 / 2),(1,-1 / 2),(1,1 / 2)\}$ are possible extremum points.
- Calculate the value of f at each point.
- $f(0,0)=1$
- $f(1,1 / 2)=f(-1,-1 / 2)=\sqrt{e}$

Problem 3(c) - Spring 2009

Consider the function $f(x, y)=e^{x y}$ over the region D given by $x^{2}+4 y^{2} \leq 2$. What is the absolute maximum value and absolute minimum value of $f(x, y)$ on \mathbf{D} ?

Solution:

- Recall that the only critical point of f is $(0,0)$, and that on the boundary $\{(-1,-1 / 2),(-1,1 / 2),(1,-1 / 2),(1,1 / 2)\}$ are possible extremum points.
- Calculate the value of f at each point.
- $f(0,0)=1$
- $f(1,1 / 2)=f(-1,-1 / 2)=\sqrt{e}$
- $f(1,-1 / 2)=f(-1,1 / 2)=\frac{1}{\sqrt{e}}$

Problem 3(c) - Spring 2009

Consider the function $f(x, y)=e^{x y}$ over the region D given by $x^{2}+4 y^{2} \leq 2$. What is the absolute maximum value and absolute minimum value of $f(x, y)$ on \mathbf{D} ?

Solution:

- Recall that the only critical point of f is $(0,0)$, and that on the boundary $\{(-1,-1 / 2),(-1,1 / 2),(1,-1 / 2),(1,1 / 2)\}$ are possible extremum points.
- Calculate the value of f at each point.
- $f(0,0)=1$
- $f(1,1 / 2)=f(-1,-1 / 2)=\sqrt{e}$
- $f(1,-1 / 2)=f(-1,1 / 2)=\frac{1}{\sqrt{e}}$
- So, the maximum value is \sqrt{e} and the minimum value is $\frac{1}{\sqrt{e}}$.

Problem 4(a) - Spring 2009

Evaluate the following iterated integral.

$$
\int_{-1}^{2} \int_{0}^{1}\left(x^{2} y-x y\right) d y d x
$$

Problem 4(a) - Spring 2009

Evaluate the following iterated integral.

$$
\int_{-1}^{2} \int_{0}^{1}\left(x^{2} y-x y\right) d y d x
$$

Solution:

$$
\int_{-1}^{2} \int_{0}^{1}\left(x^{2} y-x y\right) d y d x
$$

Problem 4(a) - Spring 2009

Evaluate the following iterated integral.

$$
\int_{-1}^{2} \int_{0}^{1}\left(x^{2} y-x y\right) d y d x
$$

Solution:

$$
\int_{-1}^{2} \int_{0}^{1}\left(x^{2} y-x y\right) d y d x=\int_{-1}^{2}\left[x^{2} \frac{y^{2}}{2}-x \frac{y^{2}}{2}\right]_{0}^{1} d x
$$

Problem 4(a) - Spring 2009

Evaluate the following iterated integral.

$$
\int_{-1}^{2} \int_{0}^{1}\left(x^{2} y-x y\right) d y d x
$$

Solution:

$$
\begin{gathered}
\int_{-1}^{2} \int_{0}^{1}\left(x^{2} y-x y\right) d y d x=\int_{-1}^{2}\left[x^{2} \frac{y^{2}}{2}-x \frac{y^{2}}{2}\right]_{0}^{1} d x \\
=\int_{-1}^{2}\left(\frac{x^{2}}{2}-\frac{x}{2}\right) d x
\end{gathered}
$$

Problem 4(a) - Spring 2009

Evaluate the following iterated integral.

$$
\int_{-1}^{2} \int_{0}^{1}\left(x^{2} y-x y\right) d y d x
$$

Solution:

$$
\begin{gathered}
\int_{-1}^{2} \int_{0}^{1}\left(x^{2} y-x y\right) d y d x=\int_{-1}^{2}\left[x^{2} \frac{y^{2}}{2}-x \frac{y^{2}}{2}\right]_{0}^{1} d x \\
=\int_{-1}^{2}\left(\frac{x^{2}}{2}-\frac{x}{2}\right) d x=\left[\frac{x^{3}}{6}-\frac{x^{2}}{4}\right]_{-1}^{2}
\end{gathered}
$$

Problem 4(a) - Spring 2009

Evaluate the following iterated integral.

$$
\int_{-1}^{2} \int_{0}^{1}\left(x^{2} y-x y\right) d y d x
$$

Solution:

$$
\begin{gathered}
\int_{-1}^{2} \int_{0}^{1}\left(x^{2} y-x y\right) d y d x=\int_{-1}^{2}\left[x^{2} \frac{y^{2}}{2}-x \frac{y^{2}}{2}\right]_{0}^{1} d x \\
=\int_{-1}^{2}\left(\frac{x^{2}}{2}-\frac{x}{2}\right) d x=\left[\frac{x^{3}}{6}-\frac{x^{2}}{4}\right]_{-1}^{2} \\
=\left(\frac{2^{3}}{6}-\frac{2^{2}}{4}\right)-\left(\frac{(-1)^{3}}{6}-\frac{(-1)^{2}}{4}\right)=\frac{16-12+2+3}{12}=\frac{3}{4}
\end{gathered}
$$

Problem 4(b) - Spring 2009

Find the volume \mathbf{V} of the region below $z=x^{2}-2 x y+3$ and above the rectangle $\mathbf{R}=[0,1] \times[-1,1]$.

Problem 4(b) - Spring 2009

Find the volume \mathbf{V} of the region below $z=x^{2}-2 x y+3$ and above the rectangle $\mathbf{R}=[0,1] \times[-1,1]$.

Solution: Calculate using Fubini's Theorem.

$$
\mathbf{V}=\iint_{\mathbf{R}}\left(x^{2}-2 x y+3\right) d A=\int_{0}^{1} \int_{-1}^{1}\left(x^{2}-2 x y+3\right) d y d x
$$

Problem 4(b) - Spring 2009

Find the volume \mathbf{V} of the region below $z=x^{2}-2 x y+3$ and above the rectangle $\mathbf{R}=[0,1] \times[-1,1]$.

Solution: Calculate using Fubini's Theorem.

$$
\begin{aligned}
& \mathbf{V}=\iint_{R}\left(x^{2}-2 x y+3\right) d A=\int_{0}^{1} \int_{-1}^{1}\left(x^{2}-2 x y+3\right) d y d x \\
& =\int_{-1}^{1} \int_{0}^{1}\left(x^{2}-2 x y+3\right) d x d y=\int_{-1}^{1}\left[\frac{x^{3}}{3}-x^{2} y+3 x\right]_{0}^{1} d y
\end{aligned}
$$

Problem 4(b) - Spring 2009

Find the volume \mathbf{V} of the region below $z=x^{2}-2 x y+3$ and above the rectangle $\mathbf{R}=[0,1] \times[-1,1]$.

Solution: Calculate using Fubini's Theorem.

$$
\begin{aligned}
& \mathbf{V}=\iint_{R}\left(x^{2}-2 x y+3\right) d A=\int_{0}^{1} \int_{-1}^{1}\left(x^{2}-2 x y+3\right) d y d x \\
& =\int_{-1}^{1} \int_{0}^{1}\left(x^{2}-2 x y+3\right) d x d y=\int_{-1}^{1}\left[\frac{x^{3}}{3}-x^{2} y+3 x\right]_{0}^{1} d y \\
& =\int_{-1}^{1}\left(\frac{1}{3}-y+3\right) d y
\end{aligned}
$$

Problem 4(b) - Spring 2009

Find the volume \mathbf{V} of the region below $z=x^{2}-2 x y+3$ and above the rectangle $\mathbf{R}=[0,1] \times[-1,1]$.

Solution: Calculate using Fubini's Theorem.

$$
\begin{gathered}
\mathbf{V}=\iint_{R}\left(x^{2}-2 x y+3\right) d A=\int_{0}^{1} \int_{-1}^{1}\left(x^{2}-2 x y+3\right) d y d x \\
=\int_{-1}^{1} \int_{0}^{1}\left(x^{2}-2 x y+3\right) d x d y=\int_{-1}^{1}\left[\frac{x^{3}}{3}-x^{2} y+3 x\right]_{0}^{1} d y \\
=\int_{-1}^{1}\left(\frac{1}{3}-y+3\right) d y=\left[\frac{y}{3}-\frac{y^{2}}{2}+3 y\right]_{-1}^{1}
\end{gathered}
$$

Problem 4(b) - Spring 2009

Find the volume \mathbf{V} of the region below $z=x^{2}-2 x y+3$ and above the rectangle $\mathbf{R}=[0,1] \times[-1,1]$.

Solution: Calculate using Fubini's Theorem.

$$
\begin{aligned}
& \mathbf{V}=\iint_{R}\left(x^{2}-2 x y+3\right) d A=\int_{0}^{1} \int_{-1}^{1}\left(x^{2}-2 x y+3\right) d y d x \\
& =\int_{-1}^{1} \int_{0}^{1}\left(x^{2}-2 x y+3\right) d x d y=\int_{-1}^{1}\left[\frac{x^{3}}{3}-x^{2} y+3 x\right]_{0}^{1} d y \\
& \quad=\int_{-1}^{1}\left(\frac{1}{3}-y+3\right) d y=\left[\frac{y}{3}-\frac{y^{2}}{2}+3 y\right]_{-1}^{1} \\
& =\left(\frac{1}{3}-\frac{1^{2}}{2}+3(1)\right)-\left(\frac{-1}{3}-\frac{(-1)^{2}}{2}+3(-1)\right)=6+\frac{2}{3}
\end{aligned}
$$

Problem 5(a) - Spring 2009

Consider the surface S given by the equation $x^{2}+y^{3}+z^{2}=0$. Give an equation for the tangent plane of S at the point (2, -2, 2).

Problem 5(a) - Spring 2009

Consider the surface S given by the equation $x^{2}+y^{3}+z^{2}=0$.
Give an equation for the tangent plane of S at the point (2, -2, 2).

Solution:

- Let $f(x, y, z)=x^{2}+y^{3}+z^{2}$.

Problem 5(a) - Spring 2009

Consider the surface S given by the equation $x^{2}+y^{3}+z^{2}=0$. Give an equation for the tangent plane of S at the point (2, -2, 2).

Solution:

- Let $f(x, y, z)=x^{2}+y^{3}+z^{2}$.
- Compute the gradient of f at $(2,-2,2)$.

$$
\nabla f(x, y, z)=\left\langle 2 x, 3 y^{2}, 2 z\right\rangle \quad \nabla f(2,-2,2)=\langle 4,12,4\rangle .
$$

Problem 5(a) - Spring 2009

Consider the surface S given by the equation $x^{2}+y^{3}+z^{2}=0$. Give an equation for the tangent plane of S at the point (2, -2, 2).

Solution:

- Let $f(x, y, z)=x^{2}+y^{3}+z^{2}$.
- Compute the gradient of f at $(2,-2,2)$.

$$
\nabla f(x, y, z)=\left\langle 2 x, 3 y^{2}, 2 z\right\rangle \quad \nabla f(2,-2,2)=\langle 4,12,4\rangle
$$

- The equation for the tangent plane is

$$
\nabla f(2,-2,2) \cdot\langle x-2, y+2, z-2\rangle=0
$$

Problem 5(a) - Spring 2009

Consider the surface S given by the equation $x^{2}+y^{3}+z^{2}=0$. Give an equation for the tangent plane of S at the point (2, -2, 2).

Solution:

- Let $f(x, y, z)=x^{2}+y^{3}+z^{2}$.
- Compute the gradient of f at $(2,-2,2)$.

$$
\nabla f(x, y, z)=\left\langle 2 x, 3 y^{2}, 2 z\right\rangle \quad \nabla f(2,-2,2)=\langle 4,12,4\rangle
$$

- The equation for the tangent plane is

$$
\begin{gather*}
\nabla f(2,-2,2) \cdot\langle x-2, y+2, z-2\rangle=0 \\
4(x-2)+12(y+2)+4(z-2)=0
\end{gather*}
$$

Problem 5(b) - Spring 2009

Consider the surface S given by the equation $x^{2}+y^{3}+z^{2}=0$. Give an equation for the normal line to S at the point (2, -2, 2).

Problem 5(b) - Spring 2009

Consider the surface S given by the equation $x^{2}+y^{3}+z^{2}=0$. Give an equation for the normal line to S at the point (2, -2, 2).

Solution:

- Let $f(x, y, z)=x^{2}+y^{3}+z^{2}$.

Problem 5(b) - Spring 2009

Consider the surface S given by the equation $x^{2}+y^{3}+z^{2}=0$. Give an equation for the normal line to S at the point (2, -2, 2).

Solution:

- Let $f(x, y, z)=x^{2}+y^{3}+z^{2}$.
- Compute the gradient of f at $(2,-2,2)$.

$$
\nabla f(x, y, z)=\left\langle 2 x, 3 y^{2}, 2 z\right\rangle \quad \nabla f(2,-2,2)=\langle 4,12,4\rangle
$$

Problem 5(b) - Spring 2009

Consider the surface S given by the equation $x^{2}+y^{3}+z^{2}=0$. Give an equation for the normal line to S at the point (2, -2, 2).

Solution:

- Let $f(x, y, z)=x^{2}+y^{3}+z^{2}$.
- Compute the gradient of f at $(2,-2,2)$.

$$
\nabla f(x, y, z)=\left\langle 2 x, 3 y^{2}, 2 z\right\rangle \quad \nabla f(2,-2,2)=\langle 4,12,4\rangle
$$

- The equation for the normal line is

$$
r(t)=\langle 2,-2,2\rangle+t\langle 4,12,4\rangle .
$$

Problem 26(a) - Exam 1 - Fall 2006

Let $g(x, y)=y e^{x}$. Estimate $g(0.1,1.9)$ using the linear approximation $\mathrm{L}(x, y)$ of $g(x, y)$ at $(x, y)=(0,2)$.

Problem 26(a) - Exam 1 - Fall 2006

Let $g(x, y)=y e^{x}$. Estimate $g(0.1,1.9)$ using the linear approximation $\mathrm{L}(x, y)$ of $g(x, y)$ at $(x, y)=(0,2)$.

Solution:

- Calculating partial derivatives at $(0,2)$, we obtain:

$$
\begin{array}{cc}
g_{x}(x, y)=y e^{x} & g_{y}(x, y)=e^{x} \\
g_{x}(0,2)=2 & g_{y}(0,2)=1
\end{array}
$$

Problem 26(a) - Exam 1 - Fall 2006

Let $g(x, y)=y e^{x}$. Estimate $g(0.1,1.9)$ using the linear approximation $\mathrm{L}(x, y)$ of $g(x, y)$ at $(x, y)=(0,2)$.

Solution:

- Calculating partial derivatives at $(0,2)$, we obtain:

$$
\begin{array}{cc}
g_{x}(x, y)=y e^{x} & g_{y}(x, y)=e^{x} \\
g_{x}(0,2)=2 & g_{y}(0,2)=1
\end{array}
$$

- Let $\mathbf{L}(x, y)$ be the linear approximation at $(0,2)$.

Problem 26(a) - Exam 1 - Fall 2006

Let $g(x, y)=y e^{x}$. Estimate $g(0.1,1.9)$ using the linear approximation $\mathrm{L}(x, y)$ of $g(x, y)$ at $(x, y)=(0,2)$.

Solution:

- Calculating partial derivatives at $(0,2)$, we obtain:

$$
\begin{array}{cc}
g_{x}(x, y)=y e^{x} & g_{y}(x, y)=e^{x} \\
g_{x}(0,2)=2 & g_{y}(0,2)=1
\end{array}
$$

- Let $\mathrm{L}(x, y)$ be the linear approximation at $(0,2)$.

$$
\mathrm{L}(x, y)=g(0,2)+g_{x}(0,2)(x-0)+g_{y}(0,2)(y-2)
$$

Problem 26(a) - Exam 1 - Fall 2006

Let $g(x, y)=y e^{x}$. Estimate $g(0.1,1.9)$ using the linear approximation $\mathrm{L}(x, y)$ of $g(x, y)$ at $(x, y)=(0,2)$.

Solution:

- Calculating partial derivatives at $(0,2)$, we obtain:

$$
\begin{array}{cc}
g_{x}(x, y)=y e^{x} & g_{y}(x, y)=e^{x} \\
g_{x}(0,2)=2 & g_{y}(0,2)=1
\end{array}
$$

- Let $\mathrm{L}(x, y)$ be the linear approximation at $(0,2)$.

$$
\begin{gathered}
\mathbf{L}(x, y)=g(0,2)+g_{x}(0,2)(x-0)+g_{y}(0,2)(y-2) \\
\mathbf{L}(x, y)=2+2 x+(y-2) .
\end{gathered}
$$

Problem 26(a) - Exam 1 - Fall 2006

Let $g(x, y)=y e^{x}$. Estimate $g(0.1,1.9)$ using the linear approximation $\mathrm{L}(x, y)$ of $g(x, y)$ at $(x, y)=(0,2)$.

Solution:

- Calculating partial derivatives at $(0,2)$, we obtain:

$$
\begin{array}{cc}
g_{x}(x, y)=y e^{x} & g_{y}(x, y)=e^{x} \\
g_{x}(0,2)=2 & g_{y}(0,2)=1
\end{array}
$$

- Let $\mathrm{L}(x, y)$ be the linear approximation at $(0,2)$.

$$
\begin{gathered}
\mathrm{L}(x, y)=g(0,2)+g_{x}(0,2)(x-0)+g_{y}(0,2)(y-2) \\
\mathrm{L}(x, y)=2+2 x+(y-2) .
\end{gathered}
$$

- Calculating at (0.1, 1.9):

$$
\mathrm{L}(0.1,1.9)
$$

Problem 26(a) - Exam 1 - Fall 2006

Let $g(x, y)=y e^{x}$. Estimate $g(0.1,1.9)$ using the linear approximation $\mathrm{L}(x, y)$ of $g(x, y)$ at $(x, y)=(0,2)$.

Solution:

- Calculating partial derivatives at $(0,2)$, we obtain:

$$
\begin{array}{cc}
g_{x}(x, y)=y e^{x} & g_{y}(x, y)=e^{x} \\
g_{x}(0,2)=2 & g_{y}(0,2)=1
\end{array}
$$

- Let $\mathrm{L}(x, y)$ be the linear approximation at $(0,2)$.

$$
\begin{gathered}
\mathrm{L}(x, y)=g(0,2)+g_{x}(0,2)(x-0)+g_{y}(0,2)(y-2) \\
\mathrm{L}(x, y)=2+2 x+(y-2) .
\end{gathered}
$$

- Calculating at (0.1, 1.9):

$$
\mathrm{L}(0.1,1.9)=2+2(0.1)+(1.9-2)
$$

Problem 26(a) - Exam 1 - Fall 2006

Let $g(x, y)=y e^{x}$. Estimate $g(0.1,1.9)$ using the linear approximation $\mathrm{L}(x, y)$ of $g(x, y)$ at $(x, y)=(0,2)$.

Solution:

- Calculating partial derivatives at $(0,2)$, we obtain:

$$
\begin{array}{cc}
g_{x}(x, y)=y e^{x} & g_{y}(x, y)=e^{x} \\
g_{x}(0,2)=2 & g_{y}(0,2)=1
\end{array}
$$

- Let $\mathrm{L}(x, y)$ be the linear approximation at $(0,2)$.

$$
\begin{gathered}
\mathrm{L}(x, y)=g(0,2)+g_{x}(0,2)(x-0)+g_{y}(0,2)(y-2) \\
\mathrm{L}(x, y)=2+2 x+(y-2) .
\end{gathered}
$$

- Calculating at (0.1, 1.9):

$$
\mathrm{L}(0.1,1.9)=2+2(0.1)+(1.9-2)=2+.2-.1
$$

Problem 26(a) - Exam 1 - Fall 2006

Let $g(x, y)=y e^{x}$. Estimate $g(0.1,1.9)$ using the linear approximation $\mathrm{L}(x, y)$ of $g(x, y)$ at $(x, y)=(0,2)$.

Solution:

- Calculating partial derivatives at $(0,2)$, we obtain:

$$
\begin{array}{cc}
g_{x}(x, y)=y e^{x} & g_{y}(x, y)=e^{x} \\
g_{x}(0,2)=2 & g_{y}(0,2)=1
\end{array}
$$

- Let $\mathrm{L}(x, y)$ be the linear approximation at $(0,2)$.

$$
\begin{gathered}
\mathbf{L}(x, y)=g(0,2)+g_{x}(0,2)(x-0)+g_{y}(0,2)(y-2) \\
\mathbf{L}(x, y)=2+2 x+(y-2) .
\end{gathered}
$$

- Calculating at (0.1, 1.9):

$$
\mathrm{L}(0.1,1.9)=2+2(0.1)+(1.9-2)=2+.2-.1=2.1
$$

Problem 36-Exam 1
Find an equation for the tangent plane to the graph of $f(x, y)=y \ln x$ at $(1,4,0)$.

Problem 36 - Exam 1

Find an equation for the tangent plane to the graph of $f(x, y)=y \ln x$ at $(1,4,0)$.

Solution:

- Recall that the tangent plane to a surface $z=f(x, y)$ at the point $P=\left(x_{0}, y_{0}, z_{0}\right)$ is:

$$
z-z_{0}=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

Problem 36 - Exam 1

Find an equation for the tangent plane to the graph of $f(x, y)=y \ln x$ at $(1,4,0)$.

Solution:

- Recall that the tangent plane to a surface $z=f(x, y)$ at the point $P=\left(x_{0}, y_{0}, z_{0}\right)$ is:

$$
z-z_{0}=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

- Calculating partial derivatives, we obtain:

$$
\begin{array}{cc}
f_{x}(x, y)=\frac{y}{x} & f_{y}(x, y)=\ln x \\
f_{x}(1,4)=4 & f_{y}(1,4)=\ln 1=0
\end{array}
$$

Problem 36 - Exam 1

Find an equation for the tangent plane to the graph of $f(x, y)=y \ln x$ at $(1,4,0)$.

Solution:

- Recall that the tangent plane to a surface $z=f(x, y)$ at the point $P=\left(x_{0}, y_{0}, z_{0}\right)$ is:

$$
z-z_{0}=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

- Calculating partial derivatives, we obtain:

$$
\begin{array}{cc}
f_{x}(x, y)=\frac{y}{x} & f_{y}(x, y)=\ln x \\
f_{x}(1,4)=4 & f_{y}(1,4)=\ln 1=0
\end{array}
$$

- The equation of the tangent plane is:

$$
z=4(x-1)+0 \cdot(y-4)=4 x-4
$$

Problem 40 - Exam 1

Explain why the limit of $f(x, y)=\left(3 x^{2} y^{2}\right) /\left(2 x^{4}+y^{4}\right)$ does not exist as (x, y) approaches $(0,0)$.

Problem 40 - Exam 1

Explain why the limit of $f(x, y)=\left(3 x^{2} y^{2}\right) /\left(2 x^{4}+y^{4}\right)$ does not exist as (x, y) approaches $(0,0)$.

Solution:

- Along the line $\langle t, t\rangle, t \neq 0, f(x, y)$ has the constant value $\frac{3}{3}=1$.

Problem 40 - Exam 1

Explain why the limit of $f(x, y)=\left(3 x^{2} y^{2}\right) /\left(2 x^{4}+y^{4}\right)$ does not exist as (x, y) approaches $(0,0)$.

Solution:

- Along the line $\langle t, t\rangle, t \neq 0, f(x, y)$ has the constant value $\frac{3}{3}=1$.
- Along the line $\langle 0, t\rangle, t \neq 0, f(x, y)$ has the constant value $\frac{0}{1}=0$.

Problem 40 - Exam 1

Explain why the limit of $f(x, y)=\left(3 x^{2} y^{2}\right) /\left(2 x^{4}+y^{4}\right)$ does not exist as (x, y) approaches $(0,0)$.

Solution:

- Along the line $\langle t, t\rangle, t \neq 0, f(x, y)$ has the constant value $\frac{3}{3}=1$.
- Along the line $\langle 0, t\rangle, t \neq 0, f(x, y)$ has the constant value $\frac{0}{1}=0$.
- Since $f(x, y)$ has 2 different limiting values at $(0,0)$, it does not have a limit at $(0,0)$.

Problem 42(a) - Exam 1
Find all of the first order and second order partial derivatives of the function $f(x, y)=x^{3}-x y^{2}+y$.

Problem 42(a) - Exam 1

Find all of the first order and second order partial derivatives of the function $f(x, y)=x^{3}-x y^{2}+y$.

Solution:

- First calculate the first order partial derivatives:

$$
f_{x}(x, y)=3 x^{2}-y^{2} \quad f_{y}(x, y)=-2 x y+1
$$

Problem 42(a) - Exam 1

Find all of the first order and second order partial derivatives of the function $f(x, y)=x^{3}-x y^{2}+y$.

Solution:

- First calculate the first order partial derivatives:

$$
f_{x}(x, y)=3 x^{2}-y^{2} \quad f_{y}(x, y)=-2 x y+1
$$

- The second order partial derivatives $f_{x x}, f_{x y}, f_{y x}$ and $f_{y y}$ are:

$$
\begin{array}{cc}
f_{x x}(x, y)=6 x & f_{x y}(x, y)=-2 y \\
f_{y x}(x, y)=-2 y & f_{y y}(x, y)=-2 x
\end{array}
$$

Problem 43 - Exam 1

Find the linear approximation $\mathrm{L}(x, y)$ of the function $f(x, y)=x y e^{x}$ at $(x, y)=(1,1)$, and use it to estimate $f(1.1,0.9)$.

Problem 43 - Exam 1

Find the linear approximation $\mathrm{L}(x, y)$ of the function $f(x, y)=x y e^{x}$ at $(x, y)=(1,1)$, and use it to estimate $f(1.1,0.9)$.

Solution:

- Calculating partial derivatives at $(1,1)$, we obtain:

$$
\begin{gathered}
f_{x}(x, y)=y e^{x}+x y e^{x} \quad f_{y}(x, y)=x e^{x} \\
f_{x}(1,1)=2 e \quad f_{y}(1,1)=e .
\end{gathered}
$$

Problem 43 - Exam 1

Find the linear approximation $\mathrm{L}(x, y)$ of the function $f(x, y)=x y e^{x}$ at $(x, y)=(1,1)$, and use it to estimate $f(1.1,0.9)$.

Solution:

- Calculating partial derivatives at $(1,1)$, we obtain:

$$
\begin{gathered}
f_{x}(x, y)=y e^{x}+x y e^{x} \quad f_{y}(x, y)=x e^{x} \\
f_{x}(1,1)=2 e \quad f_{y}(1,1)=e .
\end{gathered}
$$

- Let $\mathbf{L}(x, y)$ be the linear approximation at $(1,1)$.

Problem 43 - Exam 1

Find the linear approximation $\mathrm{L}(x, y)$ of the function $f(x, y)=x y e^{x}$ at $(x, y)=(1,1)$, and use it to estimate $f(1.1,0.9)$.

Solution:

- Calculating partial derivatives at $(1,1)$, we obtain:

$$
\begin{gathered}
f_{x}(x, y)=y e^{x}+x y e^{x} \quad f_{y}(x, y)=x e^{x} \\
f_{x}(1,1)=2 e \quad f_{y}(1,1)=e .
\end{gathered}
$$

- Let $\mathbf{L}(x, y)$ be the linear approximation at $(1,1)$.

$$
\mathrm{L}(x, y)=f(1,1)+f_{x}(1,1)(x-1)+f_{y}(1,1)(y-1)
$$

Problem 43 - Exam 1

Find the linear approximation $\mathrm{L}(x, y)$ of the function $f(x, y)=x y e^{x}$ at $(x, y)=(1,1)$, and use it to estimate $f(1.1,0.9)$.

Solution:

- Calculating partial derivatives at $(1,1)$, we obtain:

$$
\begin{gathered}
f_{x}(x, y)=y e^{x}+x y e^{x} \quad f_{y}(x, y)=x e^{x} \\
f_{x}(1,1)=2 e \quad f_{y}(1,1)=e .
\end{gathered}
$$

- Let $\mathbf{L}(x, y)$ be the linear approximation at $(1,1)$.

$$
\begin{gathered}
\mathrm{L}(x, y)=f(1,1)+f_{x}(1,1)(x-1)+f_{y}(1,1)(y-1) \\
\mathbf{L}(x, y)=e+2 e(x-1)+e(y-1) .
\end{gathered}
$$

Problem 43 - Exam 1

Find the linear approximation $\mathrm{L}(x, y)$ of the function $f(x, y)=x y e^{x}$ at $(x, y)=(1,1)$, and use it to estimate $f(1.1,0.9)$.

Solution:

- Calculating partial derivatives at $(1,1)$, we obtain:

$$
\begin{gathered}
f_{x}(x, y)=y e^{x}+x y e^{x} \quad f_{y}(x, y)=x e^{x} \\
f_{x}(1,1)=2 e \quad f_{y}(1,1)=e .
\end{gathered}
$$

- Let $\mathbf{L}(x, y)$ be the linear approximation at $(1,1)$.

$$
\begin{gathered}
\mathrm{L}(x, y)=f(1,1)+f_{x}(1,1)(x-1)+f_{y}(1,1)(y-1) \\
\mathbf{L}(x, y)=e+2 e(x-1)+e(y-1) .
\end{gathered}
$$

- Calculating at $(1.1,0.9)$, we obtain:

$$
\mathrm{L}(1.1,0.9)
$$

Problem 43 - Exam 1

Find the linear approximation $\mathrm{L}(x, y)$ of the function $f(x, y)=x y e^{x}$ at $(x, y)=(1,1)$, and use it to estimate $f(1.1,0.9)$.

Solution:

- Calculating partial derivatives at $(1,1)$, we obtain:

$$
\begin{gathered}
f_{x}(x, y)=y e^{x}+x y e^{x} \quad f_{y}(x, y)=x e^{x} \\
f_{x}(1,1)=2 e \quad f_{y}(1,1)=e .
\end{gathered}
$$

- Let $\mathbf{L}(x, y)$ be the linear approximation at $(1,1)$.

$$
\begin{gathered}
\mathrm{L}(x, y)=f(1,1)+f_{x}(1,1)(x-1)+f_{y}(1,1)(y-1) \\
\mathbf{L}(x, y)=e+2 e(x-1)+e(y-1) .
\end{gathered}
$$

- Calculating at $(1.1,0.9)$, we obtain:

$$
\mathbf{L}(1.1,0.9)=e+2 e(0.1)+e(-0.1)
$$

Problem 43 - Exam 1

Find the linear approximation $\mathrm{L}(x, y)$ of the function $f(x, y)=x y e^{x}$ at $(x, y)=(1,1)$, and use it to estimate $f(1.1,0.9)$.

Solution:

- Calculating partial derivatives at $(1,1)$, we obtain:

$$
\begin{gathered}
f_{x}(x, y)=y e^{x}+x y e^{x} \quad f_{y}(x, y)=x e^{x} \\
f_{x}(1,1)=2 e \quad f_{y}(1,1)=e .
\end{gathered}
$$

- Let $\mathbf{L}(x, y)$ be the linear approximation at $(1,1)$.

$$
\begin{gathered}
\mathrm{L}(x, y)=f(1,1)+f_{x}(1,1)(x-1)+f_{y}(1,1)(y-1) \\
\mathbf{L}(x, y)=e+2 e(x-1)+e(y-1) .
\end{gathered}
$$

- Calculating at $(1.1,0.9)$, we obtain:

$$
\mathrm{L}(1.1,0.9)=e+2 e(0.1)+e(-0.1)=1.1 e
$$

Problem 1 - Exam 2 - Fall 2008
(1) For the function $f(x, y)=2 x^{2}+x y^{2}$, calculate $f_{x}, f_{y}, f_{x y}, f_{x x}$:

Problem 1 - Exam 2 - Fall 2008

(1) For the function $f(x, y)=2 x^{2}+x y^{2}$, calculate $f_{x}, f_{y}, f_{x y}, f_{x x}$:

- $f_{x}(x, y)=4 x+y^{2}$
- $f_{y}(x, y)=2 x y$
- $f_{x y}(x, y)=2 y$
- $f_{x x}(x, y)=4$

Problem 1 - Exam 2 - Fall 2008

(1) For the function $f(x, y)=2 x^{2}+x y^{2}$, calculate $f_{x}, f_{y}, f_{x y}, f_{x x}$:

- $f_{x}(x, y)=4 x+y^{2}$
- $f_{y}(x, y)=2 x y$
- $f_{x y}(x, y)=2 y$
- $f_{x x}(x, y)=4$
(2) What is the gradient $\nabla f(x, y)$ of f at the point $(1,2)$?

Problem 1 - Exam 2 - Fall 2008

(1) For the function $f(x, y)=2 x^{2}+x y^{2}$, calculate $f_{x}, f_{y}, f_{x y}, f_{x x}$:

- $f_{x}(x, y)=4 x+y^{2}$
- $f_{y}(x, y)=2 x y$
- $f_{x y}(x, y)=2 y$
- $f_{x x}(x, y)=4$
(2) What is the gradient $\nabla f(x, y)$ of f at the point $(1,2)$?
$\nabla f=\left\langle f_{x}, f_{y}\right\rangle=\left\langle 4 x+y^{2}, 2 x y\right\rangle$

Problem 1 - Exam 2 - Fall 2008

(1) For the function $f(x, y)=2 x^{2}+x y^{2}$, calculate $f_{x}, f_{y}, f_{x y}, f_{x x}$:

- $f_{x}(x, y)=4 x+y^{2}$
- $f_{y}(x, y)=2 x y$
- $f_{x y}(x, y)=2 y$
- $f_{x x}(x, y)=4$
(2) What is the gradient $\nabla f(x, y)$ of f at the point $(1,2)$?
$\nabla f=\left\langle f_{x}, f_{y}\right\rangle=\left\langle 4 x+y^{2}, 2 x y\right\rangle \quad \nabla f(1,2)=\langle 8,4\rangle$.

Problem 1 - Exam 2 - Fall 2008

(1) For the function $f(x, y)=2 x^{2}+x y^{2}$, calculate $f_{x}, f_{y}, f_{x y}, f_{x x}$:

- $f_{x}(x, y)=4 x+y^{2}$
- $f_{y}(x, y)=2 x y$
- $f_{x y}(x, y)=2 y$
- $f_{x x}(x, y)=4$
(2) What is the gradient $\nabla f(x, y)$ of f at the point $(1,2)$? $\nabla f=\left\langle f_{x}, f_{y}\right\rangle=\left\langle 4 x+y^{2}, 2 x y\right\rangle \quad \nabla f(1,2)=\langle 8,4\rangle$.
(3) Calculate the directional derivative of f at the point $(1,2)$ in the direction of the vector $\mathbf{v}=\langle 3,4\rangle$?

Problem 1 - Exam 2 - Fall 2008

(1) For the function $f(x, y)=2 x^{2}+x y^{2}$, calculate $f_{x}, f_{y}, f_{x y}, f_{x x}$:

- $f_{x}(x, y)=4 x+y^{2}$
- $f_{y}(x, y)=2 x y$
- $f_{x y}(x, y)=2 y$
- $f_{x x}(x, y)=4$
(2) What is the gradient $\nabla f(x, y)$ of f at the point $(1,2)$? $\nabla f=\left\langle f_{x}, f_{y}\right\rangle=\left\langle 4 x+y^{2}, 2 x y\right\rangle \quad \nabla f(1,2)=\langle 8,4\rangle$.
(3) Calculate the directional derivative of f at the point $(1,2)$ in the direction of the vector $\mathbf{v}=\langle 3,4\rangle$?
- $\mathbf{u}=\frac{v}{|v|}=\frac{1}{5}\langle 3,4\rangle$ is the unit vector in the direction of $\langle 3,4\rangle$.

Problem 1 - Exam 2 - Fall 2008

(1) For the function $f(x, y)=2 x^{2}+x y^{2}$, calculate $f_{x}, f_{y}, f_{x y}, f_{x x}$:

- $f_{x}(x, y)=4 x+y^{2}$
- $f_{y}(x, y)=2 x y$
- $f_{x y}(x, y)=2 y$
- $f_{x x}(x, y)=4$
(2) What is the gradient $\nabla f(x, y)$ of f at the point $(1,2)$?
$\nabla f=\left\langle f_{x}, f_{y}\right\rangle=\left\langle 4 x+y^{2}, 2 x y\right\rangle \quad \nabla f(1,2)=\langle 8,4\rangle$.
(3) Calculate the directional derivative of f at the point $(1,2)$ in the direction of the vector $\mathbf{v}=\langle 3,4\rangle$?
- $\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{1}{5}\langle 3,4\rangle$ is the unit vector in the direction of $\langle 3,4\rangle$.
- Next evaluate

$$
D_{\mathbf{u}} f(1,2)=\nabla f(1,2) \cdot \mathbf{u}
$$

Problem 1 - Exam 2 - Fall 2008

(1) For the function $f(x, y)=2 x^{2}+x y^{2}$, calculate $f_{x}, f_{y}, f_{x y}, f_{x x}$:

- $f_{x}(x, y)=4 x+y^{2}$
- $f_{y}(x, y)=2 x y$
- $f_{x y}(x, y)=2 y$
- $f_{x x}(x, y)=4$
(2) What is the gradient $\nabla f(x, y)$ of f at the point $(1,2)$? $\nabla f=\left\langle f_{x}, f_{y}\right\rangle=\left\langle 4 x+y^{2}, 2 x y\right\rangle \quad \nabla f(1,2)=\langle 8,4\rangle$.
(3) Calculate the directional derivative of f at the point $(1,2)$ in the direction of the vector $\mathbf{v}=\langle 3,4\rangle$?
- $\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{1}{5}\langle 3,4\rangle$ is the unit vector in the direction of $\langle 3,4\rangle$.
- Next evaluate

$$
D_{\mathbf{u}} f(1,2)=\nabla f(1,2) \cdot \mathbf{u}=\langle 8,4\rangle \cdot \frac{1}{5}\langle 3,4\rangle
$$

Problem 1 - Exam 2 - Fall 2008

(1) For the function $f(x, y)=2 x^{2}+x y^{2}$, calculate $f_{x}, f_{y}, f_{x y}, f_{x x}$:

- $f_{x}(x, y)=4 x+y^{2}$
- $f_{y}(x, y)=2 x y$
- $f_{x y}(x, y)=2 y$
- $f_{x x}(x, y)=4$
(2) What is the gradient $\nabla f(x, y)$ of f at the point $(1,2)$? $\nabla f=\left\langle f_{x}, f_{y}\right\rangle=\left\langle 4 x+y^{2}, 2 x y\right\rangle \quad \nabla f(1,2)=\langle 8,4\rangle$.
(3) Calculate the directional derivative of f at the point $(1,2)$ in the direction of the vector $\mathbf{v}=\langle 3,4\rangle$?
- $\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{1}{5}\langle 3,4\rangle$ is the unit vector in the direction of $\langle 3,4\rangle$.
- Next evaluate

$$
D_{\mathbf{u}} f(1,2)=\nabla f(1,2) \cdot \mathbf{u}=\langle 8,4\rangle \cdot \frac{1}{5}\langle 3,4\rangle=\frac{1}{5}(24+16)
$$

Problem 1 - Exam 2 - Fall 2008

(1) For the function $f(x, y)=2 x^{2}+x y^{2}$, calculate $f_{x}, f_{y}, f_{x y}, f_{x x}$:

- $f_{x}(x, y)=4 x+y^{2}$
- $f_{y}(x, y)=2 x y$
- $f_{x y}(x, y)=2 y$
- $f_{x x}(x, y)=4$
(2) What is the gradient $\nabla f(x, y)$ of f at the point $(1,2)$? $\nabla f=\left\langle f_{x}, f_{y}\right\rangle=\left\langle 4 x+y^{2}, 2 x y\right\rangle \quad \nabla f(1,2)=\langle 8,4\rangle$.
(3) Calculate the directional derivative of f at the point $(1,2)$ in the direction of the vector $\mathbf{v}=\langle 3,4\rangle$?
- $\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{1}{5}\langle 3,4\rangle$ is the unit vector in the direction of $\langle 3,4\rangle$.
- Next evaluate

$$
D_{\mathrm{u}} f(1,2)=\nabla f(1,2) \cdot \mathbf{u}=\langle 8,4\rangle \cdot \frac{1}{5}\langle 3,4\rangle=\frac{1}{5}(24+16)=8 .
$$

Problem 1 - Exam 2 - Fall 2008

(1) For the function $f(x, y)=2 x^{2}+x y^{2}$, calculate $f_{x}, f_{y}, f_{x y}, f_{x x}$:

- $f_{x}(x, y)=4 x+y^{2}$
- $f_{y}(x, y)=2 x y$
- $f_{x y}(x, y)=2 y$
- $f_{x x}(x, y)=4$
(2) What is the gradient $\nabla f(x, y)$ of f at the point $(1,2)$?

$$
\nabla f=\left\langle f_{x}, f_{y}\right\rangle=\left\langle 4 x+y^{2}, 2 x y\right\rangle \quad \nabla f(1,2)=\langle 8,4\rangle
$$

(3) Calculate the directional derivative of f at the point $(1,2)$ in the direction of the vector $\mathbf{v}=\langle 3,4\rangle$?

- $\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{1}{5}\langle 3,4\rangle$ is the unit vector in the direction of $\langle 3,4\rangle$.
- Next evaluate

$$
D_{\mathrm{u}} f(1,2)=\nabla f(1,2) \cdot \mathbf{u}=\langle 8,4\rangle \cdot \frac{1}{5}\langle 3,4\rangle=\frac{1}{5}(24+16)=8 .
$$

(9) What is the linearization $\mathbf{L}(x, y)$ of f at $(1,2)$?

Problem 1 - Exam 2 - Fall 2008

(1) For the function $f(x, y)=2 x^{2}+x y^{2}$, calculate $f_{x}, f_{y}, f_{x y}, f_{x x}$:

- $f_{x}(x, y)=4 x+y^{2}$
- $f_{y}(x, y)=2 x y$
- $f_{x y}(x, y)=2 y$
- $f_{x x}(x, y)=4$
(2) What is the gradient $\nabla f(x, y)$ of f at the point $(1,2)$? $\nabla f=\left\langle f_{x}, f_{y}\right\rangle=\left\langle 4 x+y^{2}, 2 x y\right\rangle \quad \nabla f(1,2)=\langle 8,4\rangle$.
(3) Calculate the directional derivative of f at the point $(1,2)$ in the direction of the vector $\mathbf{v}=\langle 3,4\rangle$?
- $\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{1}{5}\langle 3,4\rangle$ is the unit vector in the direction of $\langle 3,4\rangle$.
- Next evaluate

$$
D_{\mathrm{u}} f(1,2)=\nabla f(1,2) \cdot \mathbf{u}=\langle 8,4\rangle \cdot \frac{1}{5}\langle 3,4\rangle=\frac{1}{5}(24+16)=8 .
$$

(9) What is the linearization $\mathbf{L}(x, y)$ of f at $(1,2)$?

$$
\mathrm{L}(x, y)=f(1,2)+f_{x}(1,2)(x-1)+f_{y}(1,2)(y-2)
$$

Problem 1 - Exam 2 - Fall 2008

(1) For the function $f(x, y)=2 x^{2}+x y^{2}$, calculate $f_{x}, f_{y}, f_{x y}, f_{x x}$:

- $f_{x}(x, y)=4 x+y^{2}$
- $f_{y}(x, y)=2 x y$
- $f_{x y}(x, y)=2 y$
- $f_{x x}(x, y)=4$
(2) What is the gradient $\nabla f(x, y)$ of f at the point $(1,2)$?

$$
\nabla f=\left\langle f_{x}, f_{y}\right\rangle=\left\langle 4 x+y^{2}, 2 x y\right\rangle \quad \nabla f(1,2)=\langle 8,4\rangle
$$

(3) Calculate the directional derivative of f at the point $(1,2)$ in the direction of the vector $\mathbf{v}=\langle 3,4\rangle$?

- $\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{1}{5}\langle 3,4\rangle$ is the unit vector in the direction of $\langle 3,4\rangle$.
- Next evaluate

$$
D_{\mathrm{u}} f(1,2)=\nabla f(1,2) \cdot \mathbf{u}=\langle 8,4\rangle \cdot \frac{1}{5}\langle 3,4\rangle=\frac{1}{5}(24+16)=8 .
$$

(9) What is the linearization $\mathbf{L}(x, y)$ of f at $(1,2)$?

$$
\begin{aligned}
\mathrm{L}(x, y) & =f(1,2)+f_{x}(1,2)(x-1)+f_{y}(1,2)(y-2) \\
& =6+8(x-1)+4(x-2)
\end{aligned}
$$

Problem 1 - Exam 2 - Fall 2008

(1) For the function $f(x, y)=2 x^{2}+x y^{2}$, calculate $f_{x}, f_{y}, f_{x y}, f_{x x}$:

- $f_{x}(x, y)=4 x+y^{2}$
- $f_{y}(x, y)=2 x y$
- $f_{x y}(x, y)=2 y$
- $f_{x x}(x, y)=4$
(2) What is the gradient $\nabla f(x, y)$ of f at the point $(1,2)$?

$$
\nabla f=\left\langle f_{x}, f_{y}\right\rangle=\left\langle 4 x+y^{2}, 2 x y\right\rangle \quad \nabla f(1,2)=\langle 8,4\rangle
$$

(3) Calculate the directional derivative of f at the point $(1,2)$ in the direction of the vector $\mathbf{v}=\langle 3,4\rangle$?

- $\mathbf{u}=\frac{\mathbf{v}}{|v|}=\frac{1}{5}\langle 3,4\rangle$ is the unit vector in the direction of $\langle 3,4\rangle$.
- Next evaluate

$$
D_{\mathrm{u}} f(1,2)=\nabla f(1,2) \cdot \mathbf{u}=\langle 8,4\rangle \cdot \frac{1}{5}\langle 3,4\rangle=\frac{1}{5}(24+16)=8 .
$$

(9) What is the linearization $\mathbf{L}(x, y)$ of f at $(1,2)$?

$$
\begin{aligned}
\mathrm{L}(x, y) & =f(1,2)+f_{x}(1,2)(x-1)+f_{y}(1,2)(y-2) \\
& =6+8(x-1)+4(x-2)
\end{aligned}
$$

(6) Use the linearization $\mathrm{L}(x, y)$ in the previous part to estimate $f(0.9,2.1)$.

Problem 1 - Exam 2 - Fall 2008

(1) For the function $f(x, y)=2 x^{2}+x y^{2}$, calculate $f_{x}, f_{y}, f_{x y}, f_{x x}$:

- $f_{x}(x, y)=4 x+y^{2}$
- $f_{y}(x, y)=2 x y$
- $f_{x y}(x, y)=2 y$
- $f_{x x}(x, y)=4$
(2) What is the gradient $\nabla f(x, y)$ of f at the point $(1,2)$?

$$
\nabla f=\left\langle f_{x}, f_{y}\right\rangle=\left\langle 4 x+y^{2}, 2 x y\right\rangle \quad \nabla f(1,2)=\langle 8,4\rangle
$$

(3) Calculate the directional derivative of f at the point $(1,2)$ in the direction of the vector $\mathbf{v}=\langle 3,4\rangle$?

- $\mathbf{u}=\frac{\mathbf{v}}{|v|}=\frac{1}{5}\langle 3,4\rangle$ is the unit vector in the direction of $\langle 3,4\rangle$.
- Next evaluate

$$
D_{\mathrm{u}} f(1,2)=\nabla f(1,2) \cdot \mathbf{u}=\langle 8,4\rangle \cdot \frac{1}{5}\langle 3,4\rangle=\frac{1}{5}(24+16)=8 .
$$

(9) What is the linearization $\mathbf{L}(x, y)$ of f at $(1,2)$?

$$
\begin{aligned}
\mathrm{L}(x, y) & =f(1,2)+f_{x}(1,2)(x-1)+f_{y}(1,2)(y-2) \\
& =6+8(x-1)+4(x-2)
\end{aligned}
$$

(6) Use the linearization $\mathrm{L}(x, y)$ in the previous part to estimate $f(0.9,2.1)$.
$\mathrm{L}(0.9,2.1)$

Problem 1 - Exam 2 - Fall 2008

(1) For the function $f(x, y)=2 x^{2}+x y^{2}$, calculate $f_{x}, f_{y}, f_{x y}, f_{x x}$:

- $f_{x}(x, y)=4 x+y^{2}$
- $f_{y}(x, y)=2 x y$
- $f_{x y}(x, y)=2 y$
- $f_{x x}(x, y)=4$
(2) What is the gradient $\nabla f(x, y)$ of f at the point $(1,2)$?

$$
\nabla f=\left\langle f_{x}, f_{y}\right\rangle=\left\langle 4 x+y^{2}, 2 x y\right\rangle \quad \nabla f(1,2)=\langle 8,4\rangle
$$

(3) Calculate the directional derivative of f at the point $(1,2)$ in the direction of the vector $\mathbf{v}=\langle 3,4\rangle$?

- $\mathbf{u}=\frac{\mathbf{v}}{|v|}=\frac{1}{5}\langle 3,4\rangle$ is the unit vector in the direction of $\langle 3,4\rangle$.
- Next evaluate

$$
D_{\mathrm{u}} f(1,2)=\nabla f(1,2) \cdot \mathbf{u}=\langle 8,4\rangle \cdot \frac{1}{5}\langle 3,4\rangle=\frac{1}{5}(24+16)=8 .
$$

(9) What is the linearization $\mathbf{L}(x, y)$ of f at $(1,2)$?

$$
\begin{aligned}
\mathrm{L}(x, y) & =f(1,2)+f_{x}(1,2)(x-1)+f_{y}(1,2)(y-2) \\
& =6+8(x-1)+4(x-2)
\end{aligned}
$$

(6) Use the linearization $\mathrm{L}(x, y)$ in the previous part to estimate $f(0.9,2.1)$.
$L(0.9,2.1)=6+8(0.9-1)+4(2.1-2)$

Problem 1 - Exam 2 - Fall 2008

(1) For the function $f(x, y)=2 x^{2}+x y^{2}$, calculate $f_{x}, f_{y}, f_{x y}, f_{x x}$:

- $f_{x}(x, y)=4 x+y^{2}$
- $f_{y}(x, y)=2 x y$
- $f_{x y}(x, y)=2 y$
- $f_{x x}(x, y)=4$
(2) What is the gradient $\nabla f(x, y)$ of f at the point $(1,2)$?

$$
\nabla f=\left\langle f_{x}, f_{y}\right\rangle=\left\langle 4 x+y^{2}, 2 x y\right\rangle \quad \nabla f(1,2)=\langle 8,4\rangle
$$

(3) Calculate the directional derivative of f at the point $(1,2)$ in the direction of the vector $\mathbf{v}=\langle 3,4\rangle$?

- $\mathbf{u}=\frac{\mathbf{v}}{|\boldsymbol{v}|}=\frac{1}{5}\langle 3,4\rangle$ is the unit vector in the direction of $\langle 3,4\rangle$.
- Next evaluate

$$
D_{\mathrm{u}} f(1,2)=\nabla f(1,2) \cdot \mathbf{u}=\langle 8,4\rangle \cdot \frac{1}{5}\langle 3,4\rangle=\frac{1}{5}(24+16)=8 .
$$

(9) What is the linearization $\mathbf{L}(x, y)$ of f at $(1,2)$?

$$
\begin{aligned}
\mathrm{L}(x, y) & =f(1,2)+f_{x}(1,2)(x-1)+f_{y}(1,2)(y-2) \\
& =6+8(x-1)+4(x-2)
\end{aligned}
$$

(6) Use the linearization $\mathrm{L}(x, y)$ in the previous part to estimate $f(0.9,2.1)$.
$\mathrm{L}(0.9,2.1)=6+8(0.9-1)+4(2.1-2)=6-.8+.4$

Problem 1 - Exam 2 - Fall 2008

(1) For the function $f(x, y)=2 x^{2}+x y^{2}$, calculate $f_{x}, f_{y}, f_{x y}, f_{x x}$:

- $f_{x}(x, y)=4 x+y^{2}$
- $f_{y}(x, y)=2 x y$
- $f_{x y}(x, y)=2 y$
- $f_{x x}(x, y)=4$
(2) What is the gradient $\nabla f(x, y)$ of f at the point $(1,2)$?

$$
\nabla f=\left\langle f_{x}, f_{y}\right\rangle=\left\langle 4 x+y^{2}, 2 x y\right\rangle \quad \nabla f(1,2)=\langle 8,4\rangle
$$

(3) Calculate the directional derivative of f at the point $(1,2)$ in the direction of the vector $\mathbf{v}=\langle 3,4\rangle$?

- $\mathbf{u}=\frac{\mathbf{v}}{|\boldsymbol{v}|}=\frac{1}{5}\langle 3,4\rangle$ is the unit vector in the direction of $\langle 3,4\rangle$.
- Next evaluate

$$
D_{\mathrm{u}} f(1,2)=\nabla f(1,2) \cdot \mathbf{u}=\langle 8,4\rangle \cdot \frac{1}{5}\langle 3,4\rangle=\frac{1}{5}(24+16)=8 .
$$

(9) What is the linearization $\mathrm{L}(x, y)$ of f at $(1,2)$?

$$
\begin{aligned}
\mathrm{L}(x, y) & =f(1,2)+f_{x}(1,2)(x-1)+f_{y}(1,2)(y-2) \\
& =6+8(x-1)+4(x-2)
\end{aligned}
$$

(6) Use the linearization $\mathrm{L}(x, y)$ in the previous part to estimate $f(0.9,2.1)$.
$\mathrm{L}(0.9,2.1)=6+8(0.9-1)+4(2.1-2)=6-.8+.4=5.6$

Problem 2(a) - Fall 2008

A hiker is walking on a mountain path. The surface of the mountain is modeled by $z=100-4 x^{2}-5 y^{2}$. The positive x-axis points to East direction and the positive y-axis points North. Suppose the hiker is now at the point $P(2,-1,79)$ heading North, is she ascending or descending? Justify your answers.

Problem 2(a) - Fall 2008

A hiker is walking on a mountain path. The surface of the mountain is modeled by $z=100-4 x^{2}-5 y^{2}$. The positive x-axis points to East direction and the positive y-axis points North. Suppose the hiker is now at the point $P(2,-1,79)$ heading North, is she ascending or descending? Justify your answers.

Solution:

- Let $f(x, y)=z=100-4 x^{2}-5 y^{2}$.

Problem 2(a) - Fall 2008

A hiker is walking on a mountain path. The surface of the mountain is modeled by $z=100-4 x^{2}-5 y^{2}$. The positive x-axis points to East direction and the positive y-axis points North. Suppose the hiker is now at the point $P(2,-1,79)$ heading North, is she ascending or descending? Justify your answers.

Solution:

- Let $f(x, y)=z=100-4 x^{2}-5 y^{2}$.
- This is a problem where we need to calculate the sign of the directional derivative $D_{\langle 0,1\rangle} f(2,-1)=\nabla f(2,-1) \cdot\langle 0,1\rangle$, where $\langle 0,1\rangle$ represents North.

Problem 2(a) - Fall 2008

A hiker is walking on a mountain path. The surface of the mountain is modeled by $z=100-4 x^{2}-5 y^{2}$. The positive x-axis points to East direction and the positive y-axis points North. Suppose the hiker is now at the point $P(2,-1,79)$ heading North, is she ascending or descending? Justify your answers.

Solution:

- Let $f(x, y)=z=100-4 x^{2}-5 y^{2}$.
- This is a problem where we need to calculate the sign of the directional derivative $D_{\langle 0,1\rangle} f(2,-1)=\nabla f(2,-1) \cdot\langle 0,1\rangle$, where $\langle 0,1\rangle$ represents North.
- Calculating, we obtain:

$$
\nabla f(x, y)=\langle-8 x,-10 y\rangle \quad \nabla f(2,-1)=\langle-16,10\rangle .
$$

Problem 2(a) - Fall 2008

A hiker is walking on a mountain path. The surface of the mountain is modeled by $z=100-4 x^{2}-5 y^{2}$. The positive x-axis points to East direction and the positive y-axis points North. Suppose the hiker is now at the point $P(2,-1,79)$ heading North, is she ascending or descending? Justify your answers.

Solution:

- Let $f(x, y)=z=100-4 x^{2}-5 y^{2}$.
- This is a problem where we need to calculate the sign of the directional derivative $D_{\langle 0,1\rangle} f(2,-1)=\nabla f(2,-1) \cdot\langle 0,1\rangle$, where $\langle 0,1\rangle$ represents North.
- Calculating, we obtain:

$$
\nabla f(x, y)=\langle-8 x,-10 y\rangle \quad \nabla f(2,-1)=\langle-16,10\rangle
$$

- Hence,

$$
D_{\langle 0,1\rangle} f(2,-1)
$$

Problem 2(a) - Fall 2008

A hiker is walking on a mountain path. The surface of the mountain is modeled by $z=100-4 x^{2}-5 y^{2}$. The positive x-axis points to East direction and the positive y-axis points North. Suppose the hiker is now at the point $P(2,-1,79)$ heading North, is she ascending or descending? Justify your answers.

Solution:

- Let $f(x, y)=z=100-4 x^{2}-5 y^{2}$.
- This is a problem where we need to calculate the sign of the directional derivative $D_{\langle 0,1\rangle} f(2,-1)=\nabla f(2,-1) \cdot\langle 0,1\rangle$, where $\langle 0,1\rangle$ represents North.
- Calculating, we obtain:

$$
\nabla f(x, y)=\langle-8 x,-10 y\rangle \quad \nabla f(2,-1)=\langle-16,10\rangle .
$$

- Hence,

$$
D_{\langle 0,1\rangle} f(2,-1)=\langle-16,10\rangle \cdot\langle 0,1\rangle
$$

Problem 2(a) - Fall 2008

A hiker is walking on a mountain path. The surface of the mountain is modeled by $z=100-4 x^{2}-5 y^{2}$. The positive x-axis points to East direction and the positive y-axis points North. Suppose the hiker is now at the point $P(2,-1,79)$ heading North, is she ascending or descending? Justify your answers.

Solution:

- Let $f(x, y)=z=100-4 x^{2}-5 y^{2}$.
- This is a problem where we need to calculate the sign of the directional derivative $D_{\langle 0,1\rangle} f(2,-1)=\nabla f(2,-1) \cdot\langle 0,1\rangle$, where $\langle 0,1\rangle$ represents North.
- Calculating, we obtain:

$$
\nabla f(x, y)=\langle-8 x,-10 y\rangle \quad \nabla f(2,-1)=\langle-16,10\rangle
$$

- Hence,

$$
D_{\langle 0,1\rangle} f(2,-1)=\langle-16,10\rangle \cdot\langle 0,1\rangle=10>0,
$$

Problem 2(a) - Fall 2008

A hiker is walking on a mountain path. The surface of the mountain is modeled by $z=100-4 x^{2}-5 y^{2}$. The positive x-axis points to East direction and the positive y-axis points North. Suppose the hiker is now at the point $P(2,-1,79)$ heading North, is she ascending or descending? Justify your answers.

Solution:

- Let $f(x, y)=z=100-4 x^{2}-5 y^{2}$.
- This is a problem where we need to calculate the sign of the directional derivative $D_{\langle 0,1\rangle} f(2,-1)=\nabla f(2,-1) \cdot\langle 0,1\rangle$, where $\langle 0,1\rangle$ represents North.
- Calculating, we obtain:

$$
\nabla f(x, y)=\langle-8 x,-10 y\rangle \quad \nabla f(2,-1)=\langle-16,10\rangle .
$$

- Hence,

$$
D_{\langle 0,1\rangle} f(2,-1)=\langle-16,10\rangle \cdot\langle 0,1\rangle=10>0,
$$

which means that she is ascending.

Problem 2(b) - Fall 2008

A hiker is walking on a mountain path. The surface of the mountain is modeled by $z=100-4 x^{2}-5 y^{2}$. The positive x-axis points to East direction and the positive y-axis points North. Justify your answers.
When the hiker is at the point $Q(1,0,96)$, in which direction on the map should she initially head to descend most rapidly?

Problem 2(b) - Fall 2008

A hiker is walking on a mountain path. The surface of the mountain is modeled by $z=100-4 x^{2}-5 y^{2}$. The positive x-axis points to East direction and the positive y-axis points North. Justify your answers.
When the hiker is at the point $Q(1,0,96)$, in which direction on the map should she initially head to descend most rapidly?

Solution:

- Recall that $\nabla f(x, y)=\langle-8 x,-10 y\rangle$.

Problem 2(b) - Fall 2008

A hiker is walking on a mountain path. The surface of the mountain is modeled by $z=100-4 x^{2}-5 y^{2}$. The positive x-axis points to East direction and the positive y-axis points North. Justify your answers.
When the hiker is at the point $Q(1,0,96)$, in which direction on the map should she initially head to descend most rapidly?

Solution:

- Recall that $\nabla f(x, y)=\langle-8 x,-10 y\rangle$.
- The direction of greatest descent is in the direction \mathbf{v} of $-\nabla f$ at the point $(1,0)$ in the $x y$-plane.

Problem 2(b) - Fall 2008

A hiker is walking on a mountain path. The surface of the mountain is modeled by $z=100-4 x^{2}-5 y^{2}$. The positive x-axis points to East direction and the positive y-axis points North. Justify your answers.
When the hiker is at the point $Q(1,0,96)$, in which direction on the map should she initially head to descend most rapidly?

Solution:

- Recall that $\nabla f(x, y)=\langle-8 x,-10 y\rangle$.
- The direction of greatest descent is in the direction \mathbf{v} of $-\nabla f$ at the point $(1,0)$ in the $x y$-plane.
- Thus,

$$
\mathbf{v}=-\nabla f(1,0)
$$

Problem 2(b) - Fall 2008

A hiker is walking on a mountain path. The surface of the mountain is modeled by $z=100-4 x^{2}-5 y^{2}$. The positive x-axis points to East direction and the positive y-axis points North. Justify your answers.
When the hiker is at the point $Q(1,0,96)$, in which direction on the map should she initially head to descend most rapidly?

Solution:

- Recall that $\nabla f(x, y)=\langle-8 x,-10 y\rangle$.
- The direction of greatest descent is in the direction \mathbf{v} of $-\nabla f$ at the point $(1,0)$ in the $x y$-plane.
- Thus,

$$
\mathbf{v}=-\nabla f(1,0)=\langle 8,0\rangle
$$

Problem 2(b) - Fall 2008

A hiker is walking on a mountain path. The surface of the mountain is modeled by $z=100-4 x^{2}-5 y^{2}$. The positive x-axis points to East direction and the positive y-axis points North. Justify your answers.
When the hiker is at the point $Q(1,0,96)$, in which direction on the map should she initially head to descend most rapidly?

Solution:

- Recall that $\nabla f(x, y)=\langle-8 x,-10 y\rangle$.
- The direction of greatest descent is in the direction \mathbf{v} of $-\nabla f$ at the point $(1,0)$ in the $x y$-plane.
- Thus,

$$
\mathbf{v}=-\nabla f(1,0)=\langle 8,0\rangle
$$

which means that she should go East.

Problem 2(c) - Fall 2008

A hiker is walking on a mountain path. The surface of the mountain is modeled by $z=100-4 x^{2}-5 y^{2}$. The positive x-axis points to East direction and the positive y-axis points North. What is her rate of descent when she travels at a speed of 10 meters per minute in the direction of maximal decent from $Q(1,0,96)$? Justify your answers.

Problem 2(c) - Fall 2008

A hiker is walking on a mountain path. The surface of the mountain is modeled by $z=100-4 x^{2}-5 y^{2}$. The positive x-axis points to East direction and the positive y-axis points North. What is her rate of descent when she travels at a speed of 10 meters per minute in the direction of maximal decent from $Q(1,0,96)$? Justify your answers.

Solution:

- By velocity, we mean the velocity of the projection on the $x y$-plane or map (the wording is somewhat ambiguous).

Problem 2(c) - Fall 2008

A hiker is walking on a mountain path. The surface of the mountain is modeled by $z=100-4 x^{2}-5 y^{2}$. The positive x-axis points to East direction and the positive y-axis points North. What is her rate of descent when she travels at a speed of 10 meters per minute in the direction of maximal decent from $Q(1,0,96)$? Justify your answers.

Solution:

- By velocity, we mean the velocity of the projection on the $x y$-plane or map (the wording is somewhat ambiguous).
- By part (b), if she travels at unit speed (in measurements on the map which we don't know) in the direction of $\nabla f(1,0)$ (which is East $=\langle 1,0\rangle$), then her maximal rate of decent is $|\nabla f(1,0)|=8$ (in measurements of the map).

Problem 2(c) - Fall 2008

A hiker is walking on a mountain path. The surface of the mountain is modeled by $z=100-4 x^{2}-5 y^{2}$. The positive x-axis points to East direction and the positive y-axis points North. What is her rate of descent when she travels at a speed of 10 meters per minute in the direction of maximal decent from $Q(1,0,96)$? Justify your answers.

Solution:

- By velocity, we mean the velocity of the projection on the $x y$-plane or map (the wording is somewhat ambiguous).
- By part (b), if she travels at unit speed (in measurements on the map which we don't know) in the direction of $\nabla f(1,0)$ (which is East $=\langle 1,0\rangle$), then her maximal rate of decent is $|\nabla f(1,0)|=8$ (in measurements of the map).
- So, her rate of decent in the direction of greatest decent is $10 \cdot 8$ meters $/$ minute $=80$ meters $/$ minute.

Problem 2(d) - Fall 2008

A hiker is walking on a mountain path. The surface of the mountain is modeled by $z=100-4 x^{2}-5 y^{2}$. The positive x-axis points to East direction and the positive y-axis points North. When the hiker is at the point $Q(1,0,96)$, in which two directions on her map can she initially head to neither ascend nor descend (to keep traveling at the same height)? Justify your answers.

Problem 2(d) - Fall 2008

A hiker is walking on a mountain path. The surface of the mountain is modeled by $z=100-4 x^{2}-5 y^{2}$. The positive x-axis points to East direction and the positive y-axis points North.
When the hiker is at the point $Q(1,0,96)$, in which two directions on her map can she initially head to neither ascend nor descend (to keep traveling at the same height)? Justify your answers.

Solution:

- First find all the possible vectors $\mathbf{v}=\langle x, y\rangle$ which are orthogonal to $\nabla f(1,0)=\langle-8,0\rangle$:

Problem 2(d) - Fall 2008

A hiker is walking on a mountain path. The surface of the mountain is modeled by $z=100-4 x^{2}-5 y^{2}$. The positive x-axis points to East direction and the positive y-axis points North.
When the hiker is at the point $Q(1,0,96)$, in which two directions on her map can she initially head to neither ascend nor descend (to keep traveling at the same height)? Justify your answers.

Solution:

- First find all the possible vectors $\mathbf{v}=\langle x, y\rangle$ which are orthogonal to $\nabla f(1,0)=\langle-8,0\rangle$:

$$
\langle-8,0\rangle \cdot\langle x, y\rangle=-8 x+0=0
$$

Problem 2(d) - Fall 2008

A hiker is walking on a mountain path. The surface of the mountain is modeled by $z=100-4 x^{2}-5 y^{2}$. The positive x-axis points to East direction and the positive y-axis points North.
When the hiker is at the point $Q(1,0,96)$, in which two directions on her map can she initially head to neither ascend nor descend (to keep traveling at the same height)? Justify your answers.

Solution:

- First find all the possible vectors $\mathbf{v}=\langle x, y\rangle$ which are orthogonal to $\nabla f(1,0)=\langle-8,0\rangle$:

$$
\langle-8,0\rangle \cdot\langle x, y\rangle=-8 x+0=0 \Longrightarrow x=0
$$

Problem 2(d) - Fall 2008

A hiker is walking on a mountain path. The surface of the mountain is modeled by $z=100-4 x^{2}-5 y^{2}$. The positive x-axis points to East direction and the positive y-axis points North. When the hiker is at the point $Q(1,0,96)$, in which two directions on her map can she initially head to neither ascend nor descend (to keep traveling at the same height)? Justify your answers.

Solution:

- First find all the possible vectors $\mathbf{v}=\langle x, y\rangle$ which are orthogonal to $\nabla f(1,0)=\langle-8,0\rangle$:

$$
\langle-8,0\rangle \cdot\langle x, y\rangle=-8 x+0=0 \Longrightarrow x=0
$$

- Therefore, at the point $Q(1,0,96)$ and in the map directions of the vectors $\pm\langle 0,1\rangle$, she is neither ascending or descending.

Problem 2(d) - Fall 2008

A hiker is walking on a mountain path. The surface of the mountain is modeled by $z=100-4 x^{2}-5 y^{2}$. The positive x-axis points to East direction and the positive y-axis points North. When the hiker is at the point $Q(1,0,96)$, in which two directions on her map can she initially head to neither ascend nor descend (to keep traveling at the same height)? Justify your answers.

Solution:

- First find all the possible vectors $\mathbf{v}=\langle x, y\rangle$ which are orthogonal to $\nabla f(1,0)=\langle-8,0\rangle$:

$$
\langle-8,0\rangle \cdot\langle x, y\rangle=-8 x+0=0 \Longrightarrow x=0
$$

- Therefore, at the point $Q(1,0,96)$ and in the map directions of the vectors $\pm\langle 0,1\rangle$, she is neither ascending or descending. These directions are North and South.

Problem 3(a) - Fall 2008

Let $f(x, y)$ be a differentiable function with the following values of the partial derivatives $f_{x}(x, y)$ and $f_{y}(x, y)$ at certain points (x, y)

x	y	$f_{x}(x, y)$	$f_{y}(x, y)$
1	1	-2	4
-1	2	3	-1
1	2	-1	3

(You are given more values than you will need for this problem.) Suppose that x and y are functions of variable $t: x=t^{3} ; y=t^{2}+1$, so that we may regard f as a function of t. Compute the derivative of f with respect to t when $t=1$.

Problem 3(a) - Fall 2008

Let $f(x, y)$ be a differentiable function with the following values of the partial derivatives $f_{x}(x, y)$ and $f_{y}(x, y)$ at certain points (x, y)

x	y	$f_{x}(x, y)$	$f_{y}(x, y)$
1	1	-2	4
-1	2	3	-1
1	2	-1	3

(You are given more values than you will need for this problem.) Suppose that x and y are functions of variable $t: x=t^{3} ; \quad y=t^{2}+1$, so that we may regard f as a function of t. Compute the derivative of f with respect to t when $t=1$.

Solution:

- By the Chain Rule we have:

$$
f^{\prime}(t)=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}
$$

Problem 3(a) - Fall 2008

Let $f(x, y)$ be a differentiable function with the following values of the partial derivatives $f_{x}(x, y)$ and $f_{y}(x, y)$ at certain points (x, y)

x	y	$f_{x}(x, y)$	$f_{y}(x, y)$
1	1	-2	4
-1	2	3	-1
1	2	-1	3

(You are given more values than you will need for this problem.) Suppose that x and y are functions of variable $t: x=t^{3} ; \quad y=t^{2}+1$, so that we may regard f as a function of t. Compute the derivative of f with respect to t when $t=1$.

Solution:

- By the Chain Rule we have:

$$
f^{\prime}(t)=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}=\frac{\partial f}{\partial x} \cdot 3 t^{2}+\frac{\partial f}{\partial y} \cdot 2 t .
$$

Problem 3(a) - Fall 2008

Let $f(x, y)$ be a differentiable function with the following values of the partial derivatives $f_{x}(x, y)$ and $f_{y}(x, y)$ at certain points (x, y)

x	y	$f_{x}(x, y)$	$f_{y}(x, y)$
1	1	-2	4
-1	2	3	-1
1	2	-1	3

(You are given more values than you will need for this problem.) Suppose that x and y are functions of variable $t: x=t^{3} ; \quad y=t^{2}+1$, so that we may regard f as a function of t. Compute the derivative of f with respect to t when $t=1$.

Solution:

- By the Chain Rule we have:

$$
f^{\prime}(t)=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}=\frac{\partial f}{\partial x} \cdot 3 t^{2}+\frac{\partial f}{\partial y} \cdot 2 t .
$$

- Note that when $t=1$, then $x=1$ and $y=2$

Problem 3(a) - Fall 2008

Let $f(x, y)$ be a differentiable function with the following values of the partial derivatives $f_{x}(x, y)$ and $f_{y}(x, y)$ at certain points (x, y)

x	y	$f_{x}(x, y)$	$f_{y}(x, y)$
1	1	-2	4
-1	2	3	-1
1	2	-1	3

(You are given more values than you will need for this problem.) Suppose that x and y are functions of variable $t: x=t^{3} ; \quad y=t^{2}+1$, so that we may regard f as a function of t. Compute the derivative of f with respect to t when $t=1$.

Solution:

- By the Chain Rule we have:

$$
f^{\prime}(t)=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}=\frac{\partial f}{\partial x} \cdot 3 t^{2}+\frac{\partial f}{\partial y} \cdot 2 t .
$$

- Note that when $t=1$, then $x=1$ and $y=2$ and that $\frac{d x}{d t}=3 t^{2}$ and $\frac{d y}{d t}=2 t$

Problem 3(a) - Fall 2008

Let $f(x, y)$ be a differentiable function with the following values of the partial derivatives $f_{x}(x, y)$ and $f_{y}(x, y)$ at certain points (x, y)

x	y	$f_{x}(x, y)$	$f_{y}(x, y)$
1	1	-2	4
-1	2	3	-1
1	2	-1	3

(You are given more values than you will need for this problem.) Suppose that x and y are functions of variable $t: x=t^{3} ; \quad y=t^{2}+1$, so that we may regard f as a function of t. Compute the derivative of f with respect to t when $t=1$.

Solution:

- By the Chain Rule we have:

$$
f^{\prime}(t)=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}=\frac{\partial f}{\partial x} \cdot 3 t^{2}+\frac{\partial f}{\partial y} \cdot 2 t .
$$

- Note that when $t=1$, then $x=1$ and $y=2$ and that $\frac{d x}{d t}=3 t^{2}$ and $\frac{d y}{d t}=2 t \Longrightarrow \frac{d x}{d t}(1)=3$ and $\frac{d y}{d t}(1)=2$.

Problem 3(a) - Fall 2008

Let $f(x, y)$ be a differentiable function with the following values of the partial derivatives $f_{x}(x, y)$ and $f_{y}(x, y)$ at certain points (x, y)

x	y	$f_{x}(x, y)$	$f_{y}(x, y)$
1	1	-2	4
-1	2	3	-1
1	2	-1	3

(You are given more values than you will need for this problem.) Suppose that x and y are functions of variable $t: x=t^{3} ; \quad y=t^{2}+1$, so that we may regard f as a function of t. Compute the derivative of f with respect to t when $t=1$.

Solution:

- By the Chain Rule we have:

$$
f^{\prime}(t)=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}=\frac{\partial f}{\partial x} \cdot 3 t^{2}+\frac{\partial f}{\partial y} \cdot 2 t .
$$

- Note that when $t=1$, then $x=1$ and $y=2$ and that $\frac{d x}{d t}=3 t^{2}$ and

$$
\frac{d y}{d t}=2 t \Longrightarrow \frac{d x}{d t}(1)=3 \text { and } \frac{d y}{d t}(1)=2 .
$$

- Plug in the values in the table into the Chain Rule at $t=1$:

Problem 3(a) - Fall 2008

Let $f(x, y)$ be a differentiable function with the following values of the partial derivatives $f_{x}(x, y)$ and $f_{y}(x, y)$ at certain points (x, y)

x	y	$f_{x}(x, y)$	$f_{y}(x, y)$
1	1	-2	4
-1	2	3	-1
1	2	-1	3

(You are given more values than you will need for this problem.) Suppose that x and y are functions of variable $t: x=t^{3} ; \quad y=t^{2}+1$, so that we may regard f as a function of t. Compute the derivative of f with respect to t when $t=1$.

Solution:

- By the Chain Rule we have:

$$
f^{\prime}(t)=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}=\frac{\partial f}{\partial x} \cdot 3 t^{2}+\frac{\partial f}{\partial y} \cdot 2 t .
$$

- Note that when $t=1$, then $x=1$ and $y=2$ and that $\frac{d x}{d t}=3 t^{2}$ and

$$
\frac{d y}{d t}=2 t \Longrightarrow \frac{d x}{d t}(1)=3 \text { and } \frac{d y}{d t}(1)=2 .
$$

- Plug in the values in the table into the Chain Rule at $t=1$:

$$
f^{\prime}(1)=\frac{\partial f}{\partial x}(1,2) \cdot 3+\frac{\partial f}{\partial y}(1,2) \cdot 2
$$

Problem 3(a) - Fall 2008

Let $f(x, y)$ be a differentiable function with the following values of the partial derivatives $f_{x}(x, y)$ and $f_{y}(x, y)$ at certain points (x, y)

x	y	$f_{x}(x, y)$	$f_{y}(x, y)$
1	1	-2	4
-1	2	3	-1
1	2	-1	3

(You are given more values than you will need for this problem.) Suppose that x and y are functions of variable $t: x=t^{3} ; \quad y=t^{2}+1$, so that we may regard f as a function of t. Compute the derivative of f with respect to t when $t=1$.

Solution:

- By the Chain Rule we have:

$$
f^{\prime}(t)=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}=\frac{\partial f}{\partial x} \cdot 3 t^{2}+\frac{\partial f}{\partial y} \cdot 2 t .
$$

- Note that when $t=1$, then $x=1$ and $y=2$ and that $\frac{d x}{d t}=3 t^{2}$ and

$$
\frac{d y}{d t}=2 t \Longrightarrow \frac{d x}{d t}(1)=3 \text { and } \frac{d y}{d t}(1)=2 .
$$

- Plug in the values in the table into the Chain Rule at $t=1$:

$$
f^{\prime}(1)=\frac{\partial f}{\partial x}(1,2) \cdot 3+\frac{\partial f}{\partial y}(1,2) \cdot 2=(-1) \cdot 3+3 \cdot 2
$$

Problem 3(a) - Fall 2008

Let $f(x, y)$ be a differentiable function with the following values of the partial derivatives $f_{x}(x, y)$ and $f_{y}(x, y)$ at certain points (x, y)

x	y	$f_{x}(x, y)$	$f_{y}(x, y)$
1	1	-2	4
-1	2	3	-1
1	2	-1	3

(You are given more values than you will need for this problem.) Suppose that x and y are functions of variable $t: x=t^{3} ; \quad y=t^{2}+1$, so that we may regard f as a function of t. Compute the derivative of f with respect to t when $t=1$.

Solution:

- By the Chain Rule we have:

$$
f^{\prime}(t)=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}=\frac{\partial f}{\partial x} \cdot 3 t^{2}+\frac{\partial f}{\partial y} \cdot 2 t .
$$

- Note that when $t=1$, then $x=1$ and $y=2$ and that $\frac{d x}{d t}=3 t^{2}$ and

$$
\frac{d y}{d t}=2 t \Longrightarrow \frac{d x}{d t}(1)=3 \text { and } \frac{d y}{d t}(1)=2 .
$$

- Plug in the values in the table into the Chain Rule at $t=1$:

$$
f^{\prime}(1)=\frac{\partial f}{\partial x}(1,2) \cdot 3+\frac{\partial f}{\partial y}(1,2) \cdot 2=(-1) \cdot 3+3 \cdot 2=3 .
$$

Problem 3(b) - Fall 2008

Use the Chain Rule to find $\frac{\partial z}{\partial v}$ when $u=1$ and $v=1$, where

$$
z=x^{3} y^{2}+y^{3} x ; \quad x=u^{2}+v^{2}, y=u-v^{2} .
$$

Problem 3(b) - Fall 2008

Use the Chain Rule to find $\frac{\partial z}{\partial v}$ when $u=1$ and $v=1$, where

$$
z=x^{3} y^{2}+y^{3} x ; \quad x=u^{2}+v^{2}, y=u-v^{2}
$$

Solution:

- By the Chain Rule we have:

$$
\frac{\partial z}{\partial v}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial v}
$$

Problem 3(b) - Fall 2008

Use the Chain Rule to find $\frac{\partial z}{\partial v}$ when $u=1$ and $v=1$, where

$$
z=x^{3} y^{2}+y^{3} x ; \quad x=u^{2}+v^{2}, y=u-v^{2}
$$

Solution:

- By the Chain Rule we have:

$$
\begin{gathered}
\frac{\partial z}{\partial v}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial v} \\
=\left(3 x^{2} y^{2}+y^{3}\right)(2 v)+\left(2 x^{3} y+3 y^{2} x\right)(-2 v)
\end{gathered}
$$

Problem 3(b) - Fall 2008

Use the Chain Rule to find $\frac{\partial z}{\partial v}$ when $u=1$ and $v=1$, where

$$
z=x^{3} y^{2}+y^{3} x ; \quad x=u^{2}+v^{2}, y=u-v^{2}
$$

Solution:

- By the Chain Rule we have:

$$
\begin{gathered}
\frac{\partial z}{\partial v}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial v} \\
=\left(3 x^{2} y^{2}+y^{3}\right)(2 v)+\left(2 x^{3} y+3 y^{2} x\right)(-2 v) .
\end{gathered}
$$

Problem 3(b) - Fall 2008

Use the Chain Rule to find $\frac{\partial z}{\partial v}$ when $u=1$ and $v=1$, where

$$
z=x^{3} y^{2}+y^{3} x ; \quad x=u^{2}+v^{2}, y=u-v^{2}
$$

Solution:

- By the Chain Rule we have:

$$
\begin{gathered}
\frac{\partial z}{\partial v}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial v} \\
=\left(3 x^{2} y^{2}+y^{3}\right)(2 v)+\left(2 x^{3} y+3 y^{2} x\right)(-2 v) .
\end{gathered}
$$

- When $u=1$ and $v=1$, then $x=1^{2}+1^{2}=2$ and $y=1-1^{2}=0$.

Problem 3(b) - Fall 2008

Use the Chain Rule to find $\frac{\partial z}{\partial v}$ when $u=1$ and $v=1$, where

$$
z=x^{3} y^{2}+y^{3} x ; \quad x=u^{2}+v^{2}, y=u-v^{2}
$$

Solution:

- By the Chain Rule we have:

$$
\begin{gathered}
\frac{\partial z}{\partial v}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial v} \\
=\left(3 x^{2} y^{2}+y^{3}\right)(2 v)+\left(2 x^{3} y+3 y^{2} x\right)(-2 v) .
\end{gathered}
$$

- When $u=1$ and $v=1$, then $x=1^{2}+1^{2}=2$ and $y=1-1^{2}=0$.
- So for $u=1$ and $v=1$, we get:

Problem 3(b) - Fall 2008

Use the Chain Rule to find $\frac{\partial z}{\partial v}$ when $u=1$ and $v=1$, where

$$
z=x^{3} y^{2}+y^{3} x ; \quad x=u^{2}+v^{2}, y=u-v^{2} .
$$

Solution:

- By the Chain Rule we have:

$$
\begin{gathered}
\frac{\partial z}{\partial v}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial v} \\
=\left(3 x^{2} y^{2}+y^{3}\right)(2 v)+\left(2 x^{3} y+3 y^{2} x\right)(-2 v) .
\end{gathered}
$$

- When $u=1$ and $v=1$, then $x=1^{2}+1^{2}=2$ and $y=1-1^{2}=0$.
- So for $u=1$ and $v=1$, we get:

$$
\frac{\partial z}{\partial v}=0
$$

Problem 4 - Fall 2008

Consider the surface $x^{2}+y^{2}-2 z^{2}=0$ and the point $P(1,1,1)$ which lies on the surface.
(i) Find the equation of the tangent plane to the surface at P.
(ii) Find the equation of the normal line to the surface at P.

Problem 4 - Fall 2008

Consider the surface $x^{2}+y^{2}-2 z^{2}=0$ and the point $P(1,1,1)$ which lies on the surface.
(i) Find the equation of the tangent plane to the surface at P.
(ii) Find the equation of the normal line to the surface at P.

Solution:

- Recall that the gradient of $\mathbf{F}(x, y, z)=x^{2}+y^{2}-2 z^{2}$ is normal \mathbf{n} to the surface.

Problem 4 - Fall 2008

Consider the surface $x^{2}+y^{2}-2 z^{2}=0$ and the point $P(1,1,1)$ which lies on the surface.
(i) Find the equation of the tangent plane to the surface at P.
(ii) Find the equation of the normal line to the surface at P.

Solution:

- Recall that the gradient of $\mathbf{F}(x, y, z)=x^{2}+y^{2}-2 z^{2}$ is normal \mathbf{n} to the surface.
- Calculating, we obtain:

Problem 4 - Fall 2008

Consider the surface $x^{2}+y^{2}-2 z^{2}=0$ and the point $P(1,1,1)$ which lies on the surface.
(i) Find the equation of the tangent plane to the surface at P.
(ii) Find the equation of the normal line to the surface at P.

Solution:

- Recall that the gradient of $\mathbf{F}(x, y, z)=x^{2}+y^{2}-2 z^{2}$ is normal \mathbf{n} to the surface.
- Calculating, we obtain:

$$
\begin{gathered}
\nabla \mathbf{F}(x, y, z)=\langle 2 x, 2 y,-4 z\rangle \\
\mathbf{n}=\nabla \mathbf{F}(1,1,1)=\langle 2,2,-4\rangle
\end{gathered}
$$

Problem 4 - Fall 2008

Consider the surface $x^{2}+y^{2}-2 z^{2}=0$ and the point $P(1,1,1)$ which lies on the surface.
(i) Find the equation of the tangent plane to the surface at P.
(ii) Find the equation of the normal line to the surface at P.

Solution:

- Recall that the gradient of $\mathbf{F}(x, y, z)=x^{2}+y^{2}-2 z^{2}$ is normal \mathbf{n} to the surface.
- Calculating, we obtain:

$$
\begin{gathered}
\nabla \mathbf{F}(x, y, z)=\langle 2 x, 2 y,-4 z\rangle \\
\mathbf{n}=\nabla \mathbf{F}(1,1,1)=\langle 2,2,-4\rangle
\end{gathered}
$$

- The equation of the tangent plane is:

Problem 4 - Fall 2008

Consider the surface $x^{2}+y^{2}-2 z^{2}=0$ and the point $P(1,1,1)$ which lies on the surface.
(i) Find the equation of the tangent plane to the surface at P.
(ii) Find the equation of the normal line to the surface at P.

Solution:

- Recall that the gradient of $\mathbf{F}(x, y, z)=x^{2}+y^{2}-2 z^{2}$ is normal \mathbf{n} to the surface.
- Calculating, we obtain:

$$
\begin{gathered}
\nabla \mathbf{F}(x, y, z)=\langle 2 x, 2 y,-4 z\rangle \\
\mathbf{n}=\nabla \mathbf{F}(1,1,1)=\langle 2,2,-4\rangle
\end{gathered}
$$

- The equation of the tangent plane is:

$$
\langle 2,2,-4\rangle \cdot\langle x-1, y-1, z-1\rangle=2(x-1)+2(y-1)-4(z-1)=0 .
$$

Problem 4 - Fall 2008

Consider the surface $x^{2}+y^{2}-2 z^{2}=0$ and the point $P(1,1,1)$ which lies on the surface.
(i) Find the equation of the tangent plane to the surface at P.
(ii) Find the equation of the normal line to the surface at P.

Solution:

- Recall that the gradient of $\mathbf{F}(x, y, z)=x^{2}+y^{2}-2 z^{2}$ is normal \mathbf{n} to the surface.
- Calculating, we obtain:

$$
\begin{gathered}
\nabla \mathbf{F}(x, y, z)=\langle 2 x, 2 y,-4 z\rangle \\
\mathbf{n}=\nabla \mathbf{F}(1,1,1)=\langle 2,2,-4\rangle .
\end{gathered}
$$

- The equation of the tangent plane is:

$$
\langle 2,2,-4\rangle \cdot\langle x-1, y-1, z-1\rangle=2(x-1)+2(y-1)-4(z-1)=0 .
$$

- The vector equation of the normal line is:

Problem 4 - Fall 2008

Consider the surface $x^{2}+y^{2}-2 z^{2}=0$ and the point $P(1,1,1)$ which lies on the surface.
(i) Find the equation of the tangent plane to the surface at P.
(ii) Find the equation of the normal line to the surface at P.

Solution:

- Recall that the gradient of $\mathbf{F}(x, y, z)=x^{2}+y^{2}-2 z^{2}$ is normal \mathbf{n} to the surface.
- Calculating, we obtain:

$$
\begin{gathered}
\nabla \mathbf{F}(x, y, z)=\langle 2 x, 2 y,-4 z\rangle \\
\mathbf{n}=\nabla \mathbf{F}(1,1,1)=\langle 2,2,-4\rangle
\end{gathered}
$$

- The equation of the tangent plane is:

$$
\langle 2,2,-4\rangle \cdot\langle x-1, y-1, z-1\rangle=2(x-1)+2(y-1)-4(z-1)=0 .
$$

- The vector equation of the normal line is:

$$
\mathrm{L}(t)=\langle 1,1,1\rangle+t\langle 2,2,-4\rangle
$$

Problem 4 - Fall 2008

Consider the surface $x^{2}+y^{2}-2 z^{2}=0$ and the point $P(1,1,1)$ which lies on the surface.
(i) Find the equation of the tangent plane to the surface at P.
(ii) Find the equation of the normal line to the surface at P.

Solution:

- Recall that the gradient of $\mathbf{F}(x, y, z)=x^{2}+y^{2}-2 z^{2}$ is normal \mathbf{n} to the surface.
- Calculating, we obtain:

$$
\begin{gathered}
\nabla \mathbf{F}(x, y, z)=\langle 2 x, 2 y,-4 z\rangle \\
\mathbf{n}=\nabla \mathbf{F}(1,1,1)=\langle 2,2,-4\rangle
\end{gathered}
$$

- The equation of the tangent plane is:

$$
\langle 2,2,-4\rangle \cdot\langle x-1, y-1, z-1\rangle=2(x-1)+2(y-1)-4(z-1)=0 .
$$

- The vector equation of the normal line is:

$$
\mathrm{L}(t)=\langle 1,1,1\rangle+t\langle 2,2,-4\rangle=\langle 1+2 t, 1+2 t, 1-4 t\rangle .
$$

Problem 5-Fall 2008

Let $\quad f(x, y)=2 x^{3}+x y^{2}+6 x^{2}+y^{2}$.
Find and classify (as local maxima, local minima or saddle points) all critical points of f.

Problem 5-Fall 2008

Let $\quad f(x, y)=2 x^{3}+x y^{2}+6 x^{2}+y^{2}$.
Find and classify (as local maxima, local minima or saddle points) all critical points of f.

Solution:

- First calculate $\nabla f(x, y)$ and set to $\langle 0,0\rangle$:

$$
\nabla f(x, y)=\left\langle 6 x^{2}+y^{2}+12 x, 2 x y+2 y\right\rangle=\langle 0,0\rangle .
$$

Problem 5-Fall 2008

Let $\quad f(x, y)=2 x^{3}+x y^{2}+6 x^{2}+y^{2}$.
Find and classify (as local maxima, local minima or saddle points) all critical points of f.

Solution:

- First calculate $\nabla f(x, y)$ and set to $\langle 0,0\rangle$:

$$
\nabla f(x, y)=\left\langle 6 x^{2}+y^{2}+12 x, 2 x y+2 y\right\rangle=\langle 0,0\rangle
$$

- This gives the following two equations:

Problem 5-Fall 2008

Let $\quad f(x, y)=2 x^{3}+x y^{2}+6 x^{2}+y^{2}$.
Find and classify (as local maxima, local minima or saddle points) all critical points of f.

Solution:

- First calculate $\nabla f(x, y)$ and set to $\langle 0,0\rangle$:

$$
\nabla f(x, y)=\left\langle 6 x^{2}+y^{2}+12 x, 2 x y+2 y\right\rangle=\langle 0,0\rangle
$$

- This gives the following two equations:

$$
6 x^{2}+y^{2}+12 x=0
$$

$$
2 x y+2 y=y(2 x+2)=0
$$

Problem 5-Fall 2008

Let $\quad f(x, y)=2 x^{3}+x y^{2}+6 x^{2}+y^{2}$.
Find and classify (as local maxima, local minima or saddle points) all critical points of f.

Solution:

- First calculate $\nabla f(x, y)$ and set to $\langle 0,0\rangle$:

$$
\nabla f(x, y)=\left\langle 6 x^{2}+y^{2}+12 x, 2 x y+2 y\right\rangle=\langle 0,0\rangle .
$$

- This gives the following two equations:

$$
6 x^{2}+y^{2}+12 x=0
$$

$$
2 x y+2 y=y(2 x+2)=0 \Longrightarrow y=0 \text { or } x=-1
$$

Problem 5-Fall 2008

Let $\quad f(x, y)=2 x^{3}+x y^{2}+6 x^{2}+y^{2}$.
Find and classify (as local maxima, local minima or saddle points) all critical points of f.

Solution:

- First calculate $\nabla f(x, y)$ and set to $\langle 0,0\rangle$:

$$
\nabla f(x, y)=\left\langle 6 x^{2}+y^{2}+12 x, 2 x y+2 y\right\rangle=\langle 0,0\rangle
$$

- This gives the following two equations:

$$
6 x^{2}+y^{2}+12 x=0
$$

$$
2 x y+2 y=y(2 x+2)=0 \Longrightarrow y=0 \text { or } x=-1
$$

- If $x=-1$, then the first equation gives:

$$
6+y^{2}-12=y^{2}-6=0
$$

Problem 5-Fall 2008

Let $\quad f(x, y)=2 x^{3}+x y^{2}+6 x^{2}+y^{2}$.
Find and classify (as local maxima, local minima or saddle points) all critical points of f.

Solution:

- First calculate $\nabla f(x, y)$ and set to $\langle 0,0\rangle$:

$$
\nabla f(x, y)=\left\langle 6 x^{2}+y^{2}+12 x, 2 x y+2 y\right\rangle=\langle 0,0\rangle
$$

- This gives the following two equations:

$$
\begin{gathered}
6 x^{2}+y^{2}+12 x=0 \\
2 x y+2 y=y(2 x+2)=0 \Longrightarrow y=0 \text { or } x=-1
\end{gathered}
$$

- If $x=-1$, then the first equation gives:

$$
6+y^{2}-12=y^{2}-6=0 \Longrightarrow y=\sqrt{6} \text { or } y=-\sqrt{6}
$$

Problem 5-Fall 2008

Let $\quad f(x, y)=2 x^{3}+x y^{2}+6 x^{2}+y^{2}$.
Find and classify (as local maxima, local minima or saddle points) all critical points of f.

Solution:

- First calculate $\nabla f(x, y)$ and set to $\langle 0,0\rangle$:

$$
\nabla f(x, y)=\left\langle 6 x^{2}+y^{2}+12 x, 2 x y+2 y\right\rangle=\langle 0,0\rangle
$$

- This gives the following two equations:

$$
\begin{gathered}
6 x^{2}+y^{2}+12 x=0 \\
2 x y+2 y=y(2 x+2)=0 \Longrightarrow y=0 \text { or } x=-1
\end{gathered}
$$

- If $x=-1$, then the first equation gives:

$$
6+y^{2}-12=y^{2}-6=0 \Longrightarrow y=\sqrt{6} \text { or } y=-\sqrt{6}
$$

- If $y=0$, then the first equation gives $x=0$ or $x=-2$.

Problem 5-Fall 2008

Let $\quad f(x, y)=2 x^{3}+x y^{2}+6 x^{2}+y^{2}$.
Find and classify (as local maxima, local minima or saddle points) all critical points of f.

Solution:

- First calculate $\nabla f(x, y)$ and set to $\langle 0,0\rangle$:

$$
\nabla f(x, y)=\left\langle 6 x^{2}+y^{2}+12 x, 2 x y+2 y\right\rangle=\langle 0,0\rangle
$$

- This gives the following two equations:

$$
\begin{gathered}
6 x^{2}+y^{2}+12 x=0 \\
2 x y+2 y=y(2 x+2)=0 \Longrightarrow y=0 \text { or } x=-1
\end{gathered}
$$

- If $x=-1$, then the first equation gives:

$$
6+y^{2}-12=y^{2}-6=0 \Longrightarrow y=\sqrt{6} \text { or } y=-\sqrt{6}
$$

- If $y=0$, then the first equation gives $x=0$ or $x=-2$.
- The set of critical points is:

$$
\{(0,0),(-2,0),(-1, \sqrt{6}),(-1,-\sqrt{6})\} .
$$

Problem 5 - Fall 2008
Let $\quad f(x, y)=2 x^{3}+x y^{2}+6 x^{2}+y^{2}$.
Find and classify (as local maxima, local minima or saddle points) all critical points of f.

Solution: Continuation of problem 5.

- Recall that $\{(0,0),(-2,0),(-1, \sqrt{6}),(-1,-\sqrt{6})\}$ is the set of critical points.

Problem 5-Fall 2008

Let $\quad f(x, y)=2 x^{3}+x y^{2}+6 x^{2}+y^{2}$.
Find and classify (as local maxima, local minima or saddle points) all critical points of f.

Solution: Continuation of problem 5.

- Recall that $\{(0,0),(-2,0),(-1, \sqrt{6}),(-1,-\sqrt{6})\}$ is the set of critical points.
- Since we will apply the Second Derivative Test, we first write down the second derivative matrix:

$$
\mathbf{D}=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|=\left|\begin{array}{cc}
12 x+12 & 2 y \\
2 y & 2 x+2
\end{array}\right|
$$

Problem 5-Fall 2008

Let $\quad f(x, y)=2 x^{3}+x y^{2}+6 x^{2}+y^{2}$.
Find and classify (as local maxima, local minima or saddle points) all critical points of f.

Solution: Continuation of problem 5.

- Recall that $\{(0,0),(-2,0),(-1, \sqrt{6}),(-1,-\sqrt{6})\}$ is the set of critical points.
- Since we will apply the Second Derivative Test, we first write down the second derivative matrix:

$$
\mathbf{D}=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|=\left|\begin{array}{cc}
12 x+12 & 2 y \\
2 y & 2 x+2
\end{array}\right|
$$

- Since $D(0,0)=12 \cdot 2=24>0$ and $f_{x x}(0)=12<0$,

Problem 5-Fall 2008

Let $\quad f(x, y)=2 x^{3}+x y^{2}+6 x^{2}+y^{2}$.
Find and classify (as local maxima, local minima or saddle points) all critical points of f.

Solution: Continuation of problem 5.

- Recall that $\{(0,0),(-2,0),(-1, \sqrt{6}),(-1,-\sqrt{6})\}$ is the set of critical points.
- Since we will apply the Second Derivative Test, we first write down the second derivative matrix:

$$
\mathbf{D}=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|=\left|\begin{array}{cc}
12 x+12 & 2 y \\
2 y & 2 x+2
\end{array}\right|
$$

- Since $D(0,0)=12 \cdot 2=24>0$ and $f_{x x}(0)=12<0$, then $(0,0)$ is a local minimum.

Problem 5-Fall 2008

Let $\quad f(x, y)=2 x^{3}+x y^{2}+6 x^{2}+y^{2}$.
Find and classify (as local maxima, local minima or saddle points) all critical points of f.

Solution: Continuation of problem 5.

- Recall that $\{(0,0),(-2,0),(-1, \sqrt{6}),(-1,-\sqrt{6})\}$ is the set of critical points.
- Since we will apply the Second Derivative Test, we first write down the second derivative matrix:

$$
\mathbf{D}=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|=\left|\begin{array}{cc}
12 x+12 & 2 y \\
2 y & 2 x+2
\end{array}\right|
$$

- Since $D(0,0)=12 \cdot 2=24>0$ and $f_{x x}(0)=12<0$, then $(0,0)$ is a local minimum.
- Since $D(-2,0)=24>0$ and $f_{x x}(-2,0)=-12>0$,

Problem 5-Fall 2008

Let $\quad f(x, y)=2 x^{3}+x y^{2}+6 x^{2}+y^{2}$.
Find and classify (as local maxima, local minima or saddle points) all critical points of f.

Solution: Continuation of problem 5.

- Recall that $\{(0,0),(-2,0),(-1, \sqrt{6}),(-1,-\sqrt{6})\}$ is the set of critical points.
- Since we will apply the Second Derivative Test, we first write down the second derivative matrix:

$$
\mathbf{D}=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|=\left|\begin{array}{cc}
12 x+12 & 2 y \\
2 y & 2 x+2
\end{array}\right|
$$

- Since $D(0,0)=12 \cdot 2=24>0$ and $f_{x x}(0)=12<0$, then $(0,0)$ is a local minimum.
- Since $D(-2,0)=24>0$ and $f_{x x}(-2,0)=-12>0$, then $(-2,0)$ is a local maximum.

Problem 5-Fall 2008

Let $\quad f(x, y)=2 x^{3}+x y^{2}+6 x^{2}+y^{2}$.
Find and classify (as local maxima, local minima or saddle points) all critical points of f.

Solution: Continuation of problem 5.

- Recall that $\{(0,0),(-2,0),(-1, \sqrt{6}),(-1,-\sqrt{6})\}$ is the set of critical points.
- Since we will apply the Second Derivative Test, we first write down the second derivative matrix:

$$
\mathbf{D}=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|=\left|\begin{array}{cc}
12 x+12 & 2 y \\
2 y & 2 x+2
\end{array}\right|
$$

- Since $D(0,0)=12 \cdot 2=24>0$ and $f_{x x}(0)=12<0$, then $(0,0)$ is a local minimum.
- Since $D(-2,0)=24>0$ and $f_{x x}(-2,0)=-12>0$, then $(-2,0)$ is a local maximum.
- Since $D(-1, \sqrt{6})<0$, then $(-1, \sqrt{6})$ is a saddle point.

Problem 5-Fall 2008

Let $\quad f(x, y)=2 x^{3}+x y^{2}+6 x^{2}+y^{2}$.
Find and classify (as local maxima, local minima or saddle points) all critical points of f.

Solution: Continuation of problem 5.

- Recall that $\{(0,0),(-2,0),(-1, \sqrt{6}),(-1,-\sqrt{6})\}$ is the set of critical points.
- Since we will apply the Second Derivative Test, we first write down the second derivative matrix:

$$
\mathbf{D}=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|=\left|\begin{array}{cc}
12 x+12 & 2 y \\
2 y & 2 x+2
\end{array}\right|
$$

- Since $D(0,0)=12 \cdot 2=24>0$ and $f_{x x}(0)=12<0$, then $(0,0)$ is a local minimum.
- Since $D(-2,0)=24>0$ and $f_{x x}(-2,0)=-12>0$, then $(-2,0)$ is a local maximum.
- Since $D(-1, \sqrt{6})<0$, then $(-1, \sqrt{6})$ is a saddle point.
- Since $D(-1,-\sqrt{6})<0$, then $(-1,-\sqrt{6})$ is a saddle point. \square

Problem 6 - Fall 2008

A flat circular plate has the shape of the region $x^{2}+y^{2} \leq 4$. The plate (including the boundary $x^{2}+y^{2}=4$) is heated so that the temperature at any point (x, y) on the plate is given by $\mathrm{T}(x, y)=x^{2}+y^{2}-2 x$. Find the temperatures at the hottest and the coldest points on the plate, including the boundary $x^{2}+y^{2}=4$.

Problem 6 - Fall 2008

A flat circular plate has the shape of the region $x^{2}+y^{2} \leq 4$. The plate (including the boundary $x^{2}+y^{2}=4$) is heated so that the temperature at any point (x, y) on the plate is given by $\mathrm{T}(x, y)=x^{2}+y^{2}-2 x$. Find the temperatures at the hottest and the coldest points on the plate, including the boundary $x^{2}+y^{2}=4$.

Solution:

- We first find the critical points.

Problem 6 - Fall 2008

A flat circular plate has the shape of the region $x^{2}+y^{2} \leq 4$. The plate (including the boundary $x^{2}+y^{2}=4$) is heated so that the temperature at any point (x, y) on the plate is given by $\mathrm{T}(x, y)=x^{2}+y^{2}-2 x$. Find the temperatures at the hottest and the coldest points on the plate, including the boundary $x^{2}+y^{2}=4$.

Solution:

- We first find the critical points.

$$
\nabla \mathbf{T}=\langle 2 x-2,2 y\rangle=0 \Longrightarrow x=1 \text { and } y=0
$$

Problem 6 - Fall 2008

A flat circular plate has the shape of the region $x^{2}+y^{2} \leq 4$. The plate (including the boundary $x^{2}+y^{2}=4$) is heated so that the temperature at any point (x, y) on the plate is given by $\mathrm{T}(x, y)=x^{2}+y^{2}-2 x$. Find the temperatures at the hottest and the coldest points on the plate, including the boundary $x^{2}+y^{2}=4$.

Solution:

- We first find the critical points.

$$
\nabla \mathbf{T}=\langle 2 x-2,2 y\rangle=0 \Longrightarrow x=1 \text { and } y=0
$$

- Next use Lagrange Multipliers to study max and \min of f on the boundary circle $g(x, y)=x^{2}+y^{2}=4$:

Problem 6 - Fall 2008

A flat circular plate has the shape of the region $x^{2}+y^{2} \leq 4$. The plate (including the boundary $x^{2}+y^{2}=4$) is heated so that the temperature at any point (x, y) on the plate is given by $\mathrm{T}(x, y)=x^{2}+y^{2}-2 x$. Find the temperatures at the hottest and the coldest points on the plate, including the boundary $x^{2}+y^{2}=4$.

Solution:

- We first find the critical points.

$$
\nabla \mathbf{T}=\langle 2 x-2,2 y\rangle=0 \Longrightarrow x=1 \text { and } y=0
$$

- Next use Lagrange Multipliers to study max and \min of f on the boundary circle $g(x, y)=x^{2}+y^{2}=4$:

$$
\nabla \mathbf{T}=\langle 2 x-2,2 y\rangle=\lambda \nabla g=\lambda\langle 2 x, 2 y\rangle .
$$

Problem 6 - Fall 2008

A flat circular plate has the shape of the region $x^{2}+y^{2} \leq 4$. The plate (including the boundary $x^{2}+y^{2}=4$) is heated so that the temperature at any point (x, y) on the plate is given by $\mathrm{T}(x, y)=x^{2}+y^{2}-2 x$. Find the temperatures at the hottest and the coldest points on the plate, including the boundary $x^{2}+y^{2}=4$.

Solution:

- We first find the critical points.

$$
\nabla \mathbf{T}=\langle 2 x-2,2 y\rangle=0 \Longrightarrow x=1 \text { and } y=0
$$

- Next use Lagrange Multipliers to study max and \min of f on the boundary circle $g(x, y)=x^{2}+y^{2}=4$: $\nabla \mathbf{T}=\langle 2 x-2,2 y\rangle=\lambda \nabla g=\lambda\langle 2 x, 2 y\rangle$.
- $2 y=\lambda 2 y \Longrightarrow y=0$ or $\lambda=1$.

Problem 6 - Fall 2008

A flat circular plate has the shape of the region $x^{2}+y^{2} \leq 4$. The plate (including the boundary $x^{2}+y^{2}=4$) is heated so that the temperature at any point (x, y) on the plate is given by $\mathrm{T}(x, y)=x^{2}+y^{2}-2 x$. Find the temperatures at the hottest and the coldest points on the plate, including the boundary $x^{2}+y^{2}=4$.

Solution:

- We first find the critical points.

$$
\nabla \mathbf{T}=\langle 2 x-2,2 y\rangle=0 \Longrightarrow x=1 \text { and } y=0
$$

- Next use Lagrange Multipliers to study max and \min of f on the boundary circle $g(x, y)=x^{2}+y^{2}=4$: $\nabla \mathbf{T}=\langle 2 x-2,2 y\rangle=\lambda \nabla g=\lambda\langle 2 x, 2 y\rangle$.
- $2 y=\lambda 2 y \Longrightarrow y=0$ or $\lambda=1$.
- $y=0 \Longrightarrow x= \pm 2$.

Problem 6 - Fall 2008

A flat circular plate has the shape of the region $x^{2}+y^{2} \leq 4$. The plate (including the boundary $x^{2}+y^{2}=4$) is heated so that the temperature at any point (x, y) on the plate is given by $\mathrm{T}(x, y)=x^{2}+y^{2}-2 x$. Find the temperatures at the hottest and the coldest points on the plate, including the boundary $x^{2}+y^{2}=4$.

Solution:

- We first find the critical points.

$$
\nabla \mathbf{T}=\langle 2 x-2,2 y\rangle=0 \Longrightarrow x=1 \text { and } y=0
$$

- Next use Lagrange Multipliers to study max and \min of f on the boundary circle $g(x, y)=x^{2}+y^{2}=4$: $\nabla \mathbf{T}=\langle 2 x-2,2 y\rangle=\lambda \nabla g=\lambda\langle 2 x, 2 y\rangle$.
- $2 y=\lambda 2 y \Longrightarrow y=0$ or $\lambda=1$.
- $y=0 \Longrightarrow x= \pm 2$.
- $\lambda=1 \Longrightarrow 2 x-2=2 x$, which is impossible.

Problem 6 - Fall 2008

A flat circular plate has the shape of the region $x^{2}+y^{2} \leq 4$. The plate (including the boundary $x^{2}+y^{2}=4$) is heated so that the temperature at any point (x, y) on the plate is given by $\mathrm{T}(x, y)=x^{2}+y^{2}-2 x$. Find the temperatures at the hottest and the coldest points on the plate, including the boundary $x^{2}+y^{2}=4$.

Solution:

- We first find the critical points.

$$
\nabla \mathbf{T}=\langle 2 x-2,2 y\rangle=0 \Longrightarrow x=1 \text { and } y=0
$$

- Next use Lagrange Multipliers to study max and \min of f on the boundary circle $g(x, y)=x^{2}+y^{2}=4$: $\nabla \mathbf{T}=\langle 2 x-2,2 y\rangle=\lambda \nabla g=\lambda\langle 2 x, 2 y\rangle$.
- $2 y=\lambda 2 y \Longrightarrow y=0$ or $\lambda=1$.
- $y=0 \Longrightarrow x= \pm 2$.
- $\lambda=1 \Longrightarrow 2 x-2=2 x$, which is impossible.
- Now check the value of T at 3 points:

$$
\mathbf{T}(1,0)=-1, \quad \mathbf{T}(2,0)=0, \quad \mathbf{T}(-2,0)=8 .
$$

Problem 6 - Fall 2008

A flat circular plate has the shape of the region $x^{2}+y^{2} \leq 4$. The plate (including the boundary $x^{2}+y^{2}=4$) is heated so that the temperature at any point (x, y) on the plate is given by $\mathrm{T}(x, y)=x^{2}+y^{2}-2 x$. Find the temperatures at the hottest and the coldest points on the plate, including the boundary $x^{2}+y^{2}=4$.

Solution:

- We first find the critical points.

$$
\nabla \mathbf{T}=\langle 2 x-2,2 y\rangle=0 \Longrightarrow x=1 \text { and } y=0
$$

- Next use Lagrange Multipliers to study max and \min of f on the boundary circle $g(x, y)=x^{2}+y^{2}=4$: $\nabla \mathbf{T}=\langle 2 x-2,2 y\rangle=\lambda \nabla g=\lambda\langle 2 x, 2 y\rangle$.
- $2 y=\lambda 2 y \Longrightarrow y=0$ or $\lambda=1$.
- $y=0 \Longrightarrow x= \pm 2$.
- $\lambda=1 \Longrightarrow 2 x-2=2 x$, which is impossible.
- Now check the value of T at 3 points:

$$
\mathrm{T}(1,0)=-1, \quad \mathrm{~T}(2,0)=0, \quad \mathrm{~T}(-2,0)=8 .
$$

- Maximum temperature is 8 and the minimum temperature is -1 .

Problem 7(a) - Spring 2008

Consider the equation $x^{2}+y^{2} / 9+z^{2} / 4=1$. Identify this quadric (i.e. quadratic surface), and graph the portion of the surface in the region $x \geq 0, y \geq 0$, and $z \geq 0$. Your graph should include tick marks along the three positive coordinate axes, and must clearly show where the surface intersects any of the three positive coordinate axes.

Solution:

This is an ellipsoid. A problem of this type will not be on this midterm.

Problem 7(b) - Spring 2008

Consider the equation $x^{2}+y^{2} / 9+z^{2} / 4=1$. Calculate z_{x} and z_{y} at an arbitrary point (x, y, z) on the surface (wherever possible).

Problem 7(b) - Spring 2008

Consider the equation $x^{2}+y^{2} / 9+z^{2} / 4=1$. Calculate z_{x} and z_{y} at an arbitrary point (x, y, z) on the surface (wherever possible).

Solution:

- Recall the following formulas of implicit differentiation of

$$
\mathbf{F}(x, y, z)=x^{2}+\frac{y^{2}}{9}+\frac{z^{2}}{4}-1=0
$$

Problem 7(b) - Spring 2008

Consider the equation $x^{2}+y^{2} / 9+z^{2} / 4=1$. Calculate z_{x} and z_{y} at an arbitrary point (x, y, z) on the surface (wherever possible).

Solution:

- Recall the following formulas of implicit differentiation of

$$
\begin{aligned}
& \mathbf{F}(x, y, z)=x^{2}+\frac{y^{2}}{9}+\frac{z^{2}}{4}-1=0: \\
& \frac{\partial z}{\partial x}=\frac{-\frac{\partial \mathbf{F}}{\partial x}}{\frac{\partial F}{\partial z}} \quad \frac{\partial z}{\partial y}=\frac{-\frac{\partial \mathbf{F}}{\partial y}}{\frac{\partial F}{\partial z}} .
\end{aligned}
$$

Problem 7(b) - Spring 2008

Consider the equation $x^{2}+y^{2} / 9+z^{2} / 4=1$. Calculate z_{x} and z_{y} at an arbitrary point (x, y, z) on the surface (wherever possible).

Solution:

- Recall the following formulas of implicit differentiation of

$$
\begin{aligned}
& \mathbf{F}(x, y, z)=x^{2}+\frac{y^{2}}{9}+\frac{z^{2}}{4}-1=0: \\
& \frac{\partial z}{\partial x}=\frac{-\frac{\partial \mathbf{F}}{\partial x}}{\frac{\partial \mathbf{F}}{\partial z}} \quad \frac{\partial z}{\partial y}=\frac{-\frac{\partial \mathbf{F}}{\partial y}}{\frac{\partial \mathbf{F}}{\partial z}} .
\end{aligned}
$$

- Plugging in the following values,

$$
\frac{\partial \mathbf{F}}{\partial x}=2 x \quad \frac{\partial \mathbf{F}}{\partial y}=\frac{2}{9} y \quad \frac{\partial \mathbf{F}}{\partial z}=\frac{1}{2} z
$$

Problem 7(b) - Spring 2008

Consider the equation $x^{2}+y^{2} / 9+z^{2} / 4=1$. Calculate z_{x} and z_{y} at an arbitrary point (x, y, z) on the surface (wherever possible).

Solution:

- Recall the following formulas of implicit differentiation of

$$
\begin{aligned}
& \mathbf{F}(x, y, z)=x^{2}+\frac{y^{2}}{9}+\frac{z^{2}}{4}-1=0: \\
& \frac{\partial z}{\partial x}=\frac{-\frac{\partial \mathbf{F}}{\partial x}}{\frac{\partial \mathbf{F}}{\partial z}} \quad \frac{\partial z}{\partial y}=\frac{-\frac{\partial \mathbf{F}}{\partial y}}{\frac{\partial \mathbf{F}}{\partial z}} .
\end{aligned}
$$

- Plugging in the following values,

$$
\frac{\partial \mathbf{F}}{\partial x}=2 x \quad \frac{\partial \mathbf{F}}{\partial y}=\frac{2}{9} y \quad \frac{\partial \mathbf{F}}{\partial z}=\frac{1}{2} z
$$

yields

$$
z_{x}=\frac{-2 x}{\frac{1}{2} z}
$$

Problem 7(b) - Spring 2008

Consider the equation $x^{2}+y^{2} / 9+z^{2} / 4=1$. Calculate z_{x} and z_{y} at an arbitrary point (x, y, z) on the surface (wherever possible).

Solution:

- Recall the following formulas of implicit differentiation of

$$
\begin{aligned}
& \mathbf{F}(x, y, z)=x^{2}+\frac{y^{2}}{9}+\frac{z^{2}}{4}-1=0: \\
& \frac{\partial z}{\partial x}=\frac{-\frac{\partial \mathbf{F}}{\partial x}}{\frac{\partial \mathbf{F}}{\partial z}} \quad \frac{\partial z}{\partial y}=\frac{-\frac{\partial \mathbf{F}}{\partial y}}{\frac{\partial \mathbf{F}}{\partial z}} .
\end{aligned}
$$

- Plugging in the following values,

$$
\frac{\partial \mathbf{F}}{\partial x}=2 x \quad \frac{\partial \mathbf{F}}{\partial y}=\frac{2}{9} y \quad \frac{\partial \mathbf{F}}{\partial z}=\frac{1}{2} z
$$

yields

$$
z_{x}=\frac{-2 x}{\frac{1}{2} z}=-4 \cdot \frac{x}{z}
$$

Problem 7(b) - Spring 2008

Consider the equation $x^{2}+y^{2} / 9+z^{2} / 4=1$. Calculate z_{x} and z_{y} at an arbitrary point (x, y, z) on the surface (wherever possible).

Solution:

- Recall the following formulas of implicit differentiation of

$$
\begin{aligned}
& \mathbf{F}(x, y, z)=x^{2}+\frac{y^{2}}{9}+\frac{z^{2}}{4}-1=0: \\
& \frac{\partial z}{\partial x}=\frac{-\frac{\partial \mathbf{F}}{\partial x}}{\frac{\partial \mathbf{F}}{\partial z}} \quad \frac{\partial z}{\partial y}=\frac{-\frac{\partial \mathbf{F}}{\partial y}}{\frac{\partial \mathbf{F}}{\partial z}} .
\end{aligned}
$$

- Plugging in the following values,

$$
\frac{\partial \mathbf{F}}{\partial x}=2 x \quad \frac{\partial \mathbf{F}}{\partial y}=\frac{2}{9} y \quad \frac{\partial \mathbf{F}}{\partial z}=\frac{1}{2} z
$$

yields

$$
z_{x}=\frac{-2 x}{\frac{1}{2} z}=-4 \cdot \frac{x}{z} \quad z_{y}=\frac{-\frac{2}{9} y}{\frac{1}{2} z}
$$

Problem 7(b) - Spring 2008

Consider the equation $x^{2}+y^{2} / 9+z^{2} / 4=1$. Calculate z_{x} and z_{y} at an arbitrary point (x, y, z) on the surface (wherever possible).

Solution:

- Recall the following formulas of implicit differentiation of

$$
\begin{aligned}
& \mathbf{F}(x, y, z)=x^{2}+\frac{y^{2}}{9}+\frac{z^{2}}{4}-1=0: \\
& \frac{\partial z}{\partial x}=\frac{-\frac{\partial \mathbf{F}}{\partial x}}{\frac{\partial \mathbf{F}}{\partial z}} \quad \frac{\partial z}{\partial y}=\frac{-\frac{\partial \mathbf{F}}{\partial y}}{\frac{\partial \mathbf{F}}{\partial z}} .
\end{aligned}
$$

- Plugging in the following values,

$$
\frac{\partial \mathbf{F}}{\partial x}=2 x \quad \frac{\partial \mathbf{F}}{\partial y}=\frac{2}{9} y \quad \frac{\partial \mathbf{F}}{\partial z}=\frac{1}{2} z
$$

yields

$$
z_{x}=\frac{-2 x}{\frac{1}{2} z}=-4 \cdot \frac{x}{z} \quad z_{y}=\frac{-\frac{2}{9} y}{\frac{1}{2} z}=-\frac{4}{9} \cdot \frac{y}{z}
$$

Problem 7(b) - Spring 2008

Consider the equation $x^{2}+y^{2} / 9+z^{2} / 4=1$. Calculate z_{x} and z_{y} at an arbitrary point (x, y, z) on the surface (wherever possible).

Solution:

- Recall the following formulas of implicit differentiation of

$$
\begin{aligned}
& \mathbf{F}(x, y, z)=x^{2}+\frac{y^{2}}{9}+\frac{z^{2}}{4}-1=0: \\
& \frac{\partial z}{\partial x}=\frac{-\frac{\partial \mathbf{F}}{\partial x}}{\frac{\partial \mathbf{F}}{\partial z}} \quad \frac{\partial z}{\partial y}=\frac{-\frac{\partial \mathbf{F}}{\partial y}}{\frac{\partial \mathbf{F}}{\partial z}} .
\end{aligned}
$$

- Plugging in the following values,

$$
\frac{\partial \mathbf{F}}{\partial x}=2 x \quad \frac{\partial \mathbf{F}}{\partial y}=\frac{2}{9} y \quad \frac{\partial \mathbf{F}}{\partial z}=\frac{1}{2} z
$$

yields

$$
z_{x}=\frac{-2 x}{\frac{1}{2} z}=-4 \cdot \frac{x}{z} \quad z_{y}=\frac{-\frac{2}{9} y}{\frac{1}{2} z}=-\frac{4}{9} \cdot \frac{y}{z}
$$

which make sense when $z \neq 0$.

Problem 7(c) - Spring 2008

Consider the equation $x^{2}+y^{2} / 9+z^{2} / 4=1$.
Determine the equation of the tangent plane to the surface at the point $\left(\frac{1}{\sqrt{2}}, \frac{3}{2}, 1\right)$.

Problem 7(c) - Spring 2008

Consider the equation $x^{2}+y^{2} / 9+z^{2} / 4=1$.
Determine the equation of the tangent plane to the surface at the point $\left(\frac{1}{\sqrt{2}}, \frac{3}{2}, 1\right)$.

Solution:

- For $\mathbf{F}(x, y, z)=x^{2}+\frac{y^{2}}{9}+\frac{z^{2}}{4}=1$, the simplest way of finding the normal vector \mathbf{n} is to use $\mathbf{n}=\nabla \mathbf{F}\left(\frac{1}{\sqrt{2}}, \frac{3}{2}, 1\right)$:

Problem 7(c) - Spring 2008

Consider the equation $x^{2}+y^{2} / 9+z^{2} / 4=1$.
Determine the equation of the tangent plane to the surface at the point $\left(\frac{1}{\sqrt{2}}, \frac{3}{2}, 1\right)$.

Solution:

- For $\mathbf{F}(x, y, z)=x^{2}+\frac{y^{2}}{9}+\frac{z^{2}}{4}=1$, the simplest way of finding the normal vector \mathbf{n} is to use $\mathbf{n}=\nabla \mathbf{F}\left(\frac{1}{\sqrt{2}}, \frac{3}{2}, 1\right)$:

$$
\nabla \mathbf{F}(x, y, z)=\left\langle 2 x, \frac{2}{9} y, \frac{1}{2} z\right\rangle
$$

Problem 7(c) - Spring 2008

Consider the equation $x^{2}+y^{2} / 9+z^{2} / 4=1$.
Determine the equation of the tangent plane to the surface at the point $\left(\frac{1}{\sqrt{2}}, \frac{3}{2}, 1\right)$.

Solution:

- For $\mathbf{F}(x, y, z)=x^{2}+\frac{y^{2}}{9}+\frac{z^{2}}{4}=1$, the simplest way of finding the normal vector \mathbf{n} is to use $\mathbf{n}=\nabla \mathbf{F}\left(\frac{1}{\sqrt{2}}, \frac{3}{2}, 1\right)$:

$$
\begin{gathered}
\nabla \mathbf{F}(x, y, z)=\left\langle 2 x, \frac{2}{9} y, \frac{1}{2} z\right\rangle \\
\mathbf{n}=\nabla \mathbf{F}\left(\frac{1}{\sqrt{2}}, \frac{3}{2}, 1\right)=\left\langle\frac{2}{\sqrt{2}}, \frac{6}{18}, \frac{1}{2}\right\rangle=\left\langle\sqrt{2}, \frac{1}{3}, \frac{1}{2}\right\rangle .
\end{gathered}
$$

Problem 7(c) - Spring 2008

Consider the equation $x^{2}+y^{2} / 9+z^{2} / 4=1$.
Determine the equation of the tangent plane to the surface at the point $\left(\frac{1}{\sqrt{2}}, \frac{3}{2}, 1\right)$.

Solution:

- For $\mathbf{F}(x, y, z)=x^{2}+\frac{y^{2}}{9}+\frac{z^{2}}{4}=1$, the simplest way of finding the normal vector \mathbf{n} is to use $\mathbf{n}=\nabla \mathbf{F}\left(\frac{1}{\sqrt{2}}, \frac{3}{2}, 1\right)$:

$$
\begin{gathered}
\nabla \mathbf{F}(x, y, z)=\left\langle 2 x, \frac{2}{9} y, \frac{1}{2} z\right\rangle \\
\mathbf{n}=\nabla \mathbf{F}\left(\frac{1}{\sqrt{2}}, \frac{3}{2}, 1\right)=\left\langle\frac{2}{\sqrt{2}}, \frac{6}{18}, \frac{1}{2}\right\rangle=\left\langle\sqrt{2}, \frac{1}{3}, \frac{1}{2}\right\rangle .
\end{gathered}
$$

- The equation of the tangent plane is:

$$
0=\nabla \mathbf{F}\left(\frac{1}{\sqrt{2}}, \frac{3}{2}, 1\right) \cdot\left\langle x-\frac{1}{\sqrt{2}}, y-\frac{3}{2}, z-1\right\rangle
$$

Problem 7(c) - Spring 2008

Consider the equation $x^{2}+y^{2} / 9+z^{2} / 4=1$.
Determine the equation of the tangent plane to the surface at the point $\left(\frac{1}{\sqrt{2}}, \frac{3}{2}, 1\right)$.

Solution:

- For $\mathbf{F}(x, y, z)=x^{2}+\frac{y^{2}}{9}+\frac{z^{2}}{4}=1$, the simplest way of finding the normal vector \mathbf{n} is to use $\mathbf{n}=\nabla \mathbf{F}\left(\frac{1}{\sqrt{2}}, \frac{3}{2}, 1\right)$:

$$
\begin{gathered}
\nabla \mathbf{F}(x, y, z)=\left\langle 2 x, \frac{2}{9} y, \frac{1}{2} z\right\rangle \\
\mathbf{n}=\nabla \mathbf{F}\left(\frac{1}{\sqrt{2}}, \frac{3}{2}, 1\right)=\left\langle\frac{2}{\sqrt{2}}, \frac{6}{18}, \frac{1}{2}\right\rangle=\left\langle\sqrt{2}, \frac{1}{3}, \frac{1}{2}\right\rangle .
\end{gathered}
$$

- The equation of the tangent plane is:

$$
\begin{aligned}
0 & =\nabla \mathbf{F}\left(\frac{1}{\sqrt{2}}, \frac{3}{2}, 1\right) \cdot\left\langle x-\frac{1}{\sqrt{2}}, y-\frac{3}{2}, z-1\right\rangle \\
& =\left\langle\sqrt{2}, \frac{1}{3}, \frac{1}{2}\right\rangle \cdot\left\langle x-\frac{1}{\sqrt{2}}, y-\frac{3}{2}, z-1\right\rangle
\end{aligned}
$$

Problem 7(c) - Spring 2008

Consider the equation $x^{2}+y^{2} / 9+z^{2} / 4=1$.
Determine the equation of the tangent plane to the surface at the point $\left(\frac{1}{\sqrt{2}}, \frac{3}{2}, 1\right)$.

Solution:

- For $\mathbf{F}(x, y, z)=x^{2}+\frac{y^{2}}{9}+\frac{z^{2}}{4}=1$, the simplest way of finding the normal vector \mathbf{n} is to use $\mathbf{n}=\nabla \mathbf{F}\left(\frac{1}{\sqrt{2}}, \frac{3}{2}, 1\right)$:

$$
\begin{gathered}
\nabla \mathbf{F}(x, y, z)=\left\langle 2 x, \frac{2}{9} y, \frac{1}{2} z\right\rangle \\
\mathbf{n}=\nabla \mathbf{F}\left(\frac{1}{\sqrt{2}}, \frac{3}{2}, 1\right)=\left\langle\frac{2}{\sqrt{2}}, \frac{6}{18}, \frac{1}{2}\right\rangle=\left\langle\sqrt{2}, \frac{1}{3}, \frac{1}{2}\right\rangle .
\end{gathered}
$$

- The equation of the tangent plane is:

$$
\begin{aligned}
0 & =\nabla \mathbf{F}\left(\frac{1}{\sqrt{2}}, \frac{3}{2}, 1\right) \cdot\left\langle x-\frac{1}{\sqrt{2}}, y-\frac{3}{2}, z-1\right\rangle \\
& =\left\langle\sqrt{2}, \frac{1}{3}, \frac{1}{2}\right\rangle \cdot\left\langle x-\frac{1}{\sqrt{2}}, y-\frac{3}{2}, z-1\right\rangle \\
= & \sqrt{2}\left(x-\frac{1}{\sqrt{2}}\right)+\frac{1}{3}\left(y-\frac{3}{2}\right)+\frac{1}{2}(z-1)=0 .
\end{aligned}
$$

Problem 8(a) - Spring 2008

Given the function $f(x, y)=x^{2} y+y e^{x y}$.
Find the linearization $\mathrm{L}(x, y)$ of f at the point $(0,5)$ and use it to approximate the value of f at the point (.1,4.9). (An unsupported numerical approximation to $f(.1,4.9)$ will not receive credit.)

Problem 8(a) - Spring 2008

Given the function $f(x, y)=x^{2} y+y e^{x y}$.
Find the linearization $\mathrm{L}(x, y)$ of f at the point $(0,5)$ and use it to approximate the value of f at the point (.1,4.9). (An unsupported numerical approximation to $f(.1,4.9)$ will not receive credit.)

Solution:

- Calculating partial derivatives at $(0,5)$, we obtain:

$$
\begin{gathered}
f_{x}(x, y)=2 x y+y^{2} e^{x y} \quad f_{y}(x, y)=x^{2}+e^{x y}+x y e^{x} y \\
f_{x}(0,5)=25 \\
f_{y}(0,5)=1 .
\end{gathered}
$$

Problem 8(a) - Spring 2008

Given the function $f(x, y)=x^{2} y+y e^{x y}$.
Find the linearization $\mathrm{L}(x, y)$ of f at the point $(0,5)$ and use it to approximate the value of f at the point (.1,4.9). (An unsupported numerical approximation to $f(.1,4.9)$ will not receive credit.)

Solution:

- Calculating partial derivatives at $(0,5)$, we obtain:

$$
\begin{gathered}
f_{x}(x, y)=2 x y+y^{2} e^{x y} \quad f_{y}(x, y)=x^{2}+e^{x y}+x y e^{x} y \\
f_{x}(0,5)=25 \quad f_{y}(0,5)=1 .
\end{gathered}
$$

- Let $\mathbf{L}(x, y)$ be the linear approximation at $(0,5)$.

Problem 8(a) - Spring 2008

Given the function $f(x, y)=x^{2} y+y e^{x y}$.
Find the linearization $\mathrm{L}(x, y)$ of f at the point $(0,5)$ and use it to approximate the value of f at the point (.1,4.9). (An unsupported numerical approximation to $f(.1,4.9)$ will not receive credit.)

Solution:

- Calculating partial derivatives at $(0,5)$, we obtain:

$$
\begin{gathered}
f_{x}(x, y)=2 x y+y^{2} e^{x y} \quad f_{y}(x, y)=x^{2}+e^{x y}+x y e^{x} y \\
f_{x}(0,5)=25 \quad f_{y}(0,5)=1 .
\end{gathered}
$$

- Let $\mathbf{L}(x, y)$ be the linear approximation at $(0,5)$.

$$
\mathrm{L}(x, y)=f(0,5)+f_{x}(0,5)(x-0)+f_{y}(0,5)(y-5)
$$

Problem 8(a) - Spring 2008

Given the function $f(x, y)=x^{2} y+y e^{x y}$.
Find the linearization $\mathrm{L}(x, y)$ of f at the point $(0,5)$ and use it to approximate the value of f at the point (.1,4.9). (An unsupported numerical approximation to $f(.1,4.9)$ will not receive credit.)

Solution:

- Calculating partial derivatives at $(0,5)$, we obtain:

$$
\begin{gathered}
f_{x}(x, y)=2 x y+y^{2} e^{x y} \quad f_{y}(x, y)=x^{2}+e^{x y}+x y e^{x} y \\
f_{x}(0,5)=25 \\
f_{y}(0,5)=1 .
\end{gathered}
$$

- Let $\mathrm{L}(x, y)$ be the linear approximation at $(0,5)$.

$$
\begin{gathered}
\mathbf{L}(x, y)=f(0,5)+f_{x}(0,5)(x-0)+f_{y}(0,5)(y-5) \\
\mathbf{L}(x, y)=5+25 x+(y-5) .
\end{gathered}
$$

Problem 8(a) - Spring 2008

Given the function $f(x, y)=x^{2} y+y e^{x y}$.
Find the linearization $\mathrm{L}(x, y)$ of f at the point $(0,5)$ and use it to approximate the value of f at the point (.1,4.9). (An unsupported numerical approximation to $f(.1,4.9)$ will not receive credit.)

Solution:

- Calculating partial derivatives at $(0,5)$, we obtain:

$$
\begin{gathered}
f_{x}(x, y)=2 x y+y^{2} e^{x y} \quad f_{y}(x, y)=x^{2}+e^{x y}+x y e^{x} y \\
f_{x}(0,5)=25 \\
f_{y}(0,5)=1 .
\end{gathered}
$$

- Let $\mathrm{L}(x, y)$ be the linear approximation at $(0,5)$.

$$
\begin{gathered}
\mathbf{L}(x, y)=f(0,5)+f_{x}(0,5)(x-0)+f_{y}(0,5)(y-5) \\
\mathbf{L}(x, y)=5+25 x+(y-5) .
\end{gathered}
$$

- Calculating at (.1, 4.9):

$$
\mathrm{L}(.1,4.9)
$$

Problem 8(a) - Spring 2008

Given the function $f(x, y)=x^{2} y+y e^{x y}$.
Find the linearization $\mathrm{L}(x, y)$ of f at the point $(0,5)$ and use it to approximate the value of f at the point (.1,4.9). (An unsupported numerical approximation to $f(.1,4.9)$ will not receive credit.)

Solution:

- Calculating partial derivatives at $(0,5)$, we obtain:

$$
\begin{gathered}
f_{x}(x, y)=2 x y+y^{2} e^{x y} \quad f_{y}(x, y)=x^{2}+e^{x y}+x y e^{x} y \\
f_{x}(0,5)=25 \quad f_{y}(0,5)=1 .
\end{gathered}
$$

- Let $\mathrm{L}(x, y)$ be the linear approximation at $(0,5)$.

$$
\begin{gathered}
\mathbf{L}(x, y)=f(0,5)+f_{x}(0,5)(x-0)+f_{y}(0,5)(y-5) \\
\mathbf{L}(x, y)=5+25 x+(y-5) .
\end{gathered}
$$

- Calculating at (.1, 4.9):

$$
\mathrm{L}(.1,4.9)=5+25(0.1)+(4.9-5)
$$

Problem 8(a) - Spring 2008

Given the function $f(x, y)=x^{2} y+y e^{x y}$.
Find the linearization $\mathrm{L}(x, y)$ of f at the point $(0,5)$ and use it to approximate the value of f at the point (.1,4.9). (An unsupported numerical approximation to $f(.1,4.9)$ will not receive credit.)

Solution:

- Calculating partial derivatives at $(0,5)$, we obtain:

$$
\begin{gathered}
f_{x}(x, y)=2 x y+y^{2} e^{x y} \quad f_{y}(x, y)=x^{2}+e^{x y}+x y e^{x} y \\
f_{x}(0,5)=25 \quad f_{y}(0,5)=1 .
\end{gathered}
$$

- Let $\mathrm{L}(x, y)$ be the linear approximation at $(0,5)$.

$$
\begin{gathered}
\mathbf{L}(x, y)=f(0,5)+f_{x}(0,5)(x-0)+f_{y}(0,5)(y-5) \\
\mathbf{L}(x, y)=5+25 x+(y-5) .
\end{gathered}
$$

- Calculating at (.1, 4.9):

$$
\mathrm{L}(.1,4.9)=5+25(0.1)+(4.9-5)=7.4
$$

Problem 8(b) - Spring 2008

Given the function $f(x, y)=x^{2} y+y e^{x y}$.
Suppose that $x(r, \theta)=r \cos \theta$ and $y(r, \theta)=r \sin \theta$. Calculate f_{θ} at $r=5$ and $\theta=\frac{\pi}{2}$.

Problem 8(b) - Spring 2008

Given the function $f(x, y)=x^{2} y+y e^{x y}$.
Suppose that $x(r, \theta)=r \cos \theta$ and $y(r, \theta)=r \sin \theta$. Calculate f_{θ} at $r=5$ and $\theta=\frac{\pi}{2}$.

Solution:

- The Chain Rule gives

$$
\frac{\partial f}{\partial \theta}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial \theta}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial \theta}
$$

Problem 8(b) - Spring 2008

Given the function $f(x, y)=x^{2} y+y e^{x y}$.
Suppose that $x(r, \theta)=r \cos \theta$ and $y(r, \theta)=r \sin \theta$. Calculate f_{θ} at $r=5$ and $\theta=\frac{\pi}{2}$.

Solution:

- The Chain Rule gives

$$
\begin{gathered}
\frac{\partial f}{\partial \theta}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial \theta}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial \theta} \\
=\left(2 x y+y^{2} e^{x y}\right)(-r \sin \theta)+\left(x^{2}+e^{x y}+x y e^{x y}\right)(r \cos \theta) .
\end{gathered}
$$

Problem 8(b) - Spring 2008

Given the function $f(x, y)=x^{2} y+y e^{x y}$.
Suppose that $x(r, \theta)=r \cos \theta$ and $y(r, \theta)=r \sin \theta$. Calculate f_{θ} at $r=5$ and $\theta=\frac{\pi}{2}$.

Solution:

- The Chain Rule gives

$$
\begin{gathered}
\frac{\partial f}{\partial \theta}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial \theta}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial \theta} \\
=\left(2 x y+y^{2} e^{x y}\right)(-r \sin \theta)+\left(x^{2}+e^{x y}+x y e^{x y}\right)(r \cos \theta) .
\end{gathered}
$$

- When $r=5$ and $\theta=\frac{\pi}{2}$, then $x=0$ and $y=5$.

Problem 8(b) - Spring 2008

Given the function $f(x, y)=x^{2} y+y e^{x y}$.
Suppose that $x(r, \theta)=r \cos \theta$ and $y(r, \theta)=r \sin \theta$. Calculate f_{θ} at $r=5$ and $\theta=\frac{\pi}{2}$.

Solution:

- The Chain Rule gives

$$
\begin{gathered}
\frac{\partial f}{\partial \theta}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial \theta}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial \theta} \\
=\left(2 x y+y^{2} e^{x y}\right)(-r \sin \theta)+\left(x^{2}+e^{x y}+x y e^{x y}\right)(r \cos \theta) .
\end{gathered}
$$

- When $r=5$ and $\theta=\frac{\pi}{2}$, then $x=0$ and $y=5$.
- Thus,

$$
\frac{\partial f}{\partial \theta}
$$

Problem 8(b) - Spring 2008

Given the function $f(x, y)=x^{2} y+y e^{x y}$.
Suppose that $x(r, \theta)=r \cos \theta$ and $y(r, \theta)=r \sin \theta$. Calculate f_{θ} at $r=5$ and $\theta=\frac{\pi}{2}$.

Solution:

- The Chain Rule gives

$$
\begin{gathered}
\frac{\partial f}{\partial \theta}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial \theta}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial \theta} \\
=\left(2 x y+y^{2} e^{x y}\right)(-r \sin \theta)+\left(x^{2}+e^{x y}+x y e^{x y}\right)(r \cos \theta) .
\end{gathered}
$$

- When $r=5$ and $\theta=\frac{\pi}{2}$, then $x=0$ and $y=5$.
- Thus,

$$
\frac{\partial f}{\partial \theta}=\left(0+25 e^{0}\right)(-5)+0
$$

Problem 8(b) - Spring 2008

Given the function $f(x, y)=x^{2} y+y e^{x y}$.
Suppose that $x(r, \theta)=r \cos \theta$ and $y(r, \theta)=r \sin \theta$. Calculate f_{θ} at $r=5$ and $\theta=\frac{\pi}{2}$.

Solution:

- The Chain Rule gives

$$
\begin{gathered}
\frac{\partial f}{\partial \theta}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial \theta}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial \theta} \\
=\left(2 x y+y^{2} e^{x y}\right)(-r \sin \theta)+\left(x^{2}+e^{x y}+x y e^{x y}\right)(r \cos \theta) .
\end{gathered}
$$

- When $r=5$ and $\theta=\frac{\pi}{2}$, then $x=0$ and $y=5$.
- Thus,

$$
\frac{\partial f}{\partial \theta}=\left(0+25 e^{0}\right)(-5)+0=-125
$$

Problem 8(c) - Spring 2008

Given the function $f(x, y)=x^{2} y+y e^{x y}$.
Suppose a particle travels along a path $(x(t), y(t))$, and that $\mathbf{F}(t)=f(x(t), y(t))$ where $f(x, y)$ is the function defined above. Calculate $\mathbf{F}^{\prime}(3)$, assuming that at time $t=3$ the particle's position is $(x(3), y(3))=(0,5)$ and its velocity is $\left(x^{\prime}(3), y^{\prime}(3)\right)=(3,-2)$.

Problem 8(c) - Spring 2008

Given the function $f(x, y)=x^{2} y+y e^{x y}$.
Suppose a particle travels along a path $(x(t), y(t))$, and that $\mathbf{F}(t)=f(x(t), y(t))$ where $f(x, y)$ is the function defined above.
Calculate $\mathbf{F}^{\prime}(3)$, assuming that at time $t=3$ the particle's position is $(x(3), y(3))=(0,5)$ and its velocity is $\left(x^{\prime}(3), y^{\prime}(3)\right)=(3,-2)$.

Solution:

- The Chain Rule gives

$$
\frac{d \mathbf{F}}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}
$$

Problem 8(c) - Spring 2008

Given the function $f(x, y)=x^{2} y+y e^{x y}$.
Suppose a particle travels along a path $(x(t), y(t))$, and that $\mathbf{F}(t)=f(x(t), y(t))$ where $f(x, y)$ is the function defined above.
Calculate $\mathbf{F}^{\prime}(3)$, assuming that at time $t=3$ the particle's position is $(x(3), y(3))=(0,5)$ and its velocity is $\left(x^{\prime}(3), y^{\prime}(3)\right)=(3,-2)$.

Solution:

- The Chain Rule gives

$$
\frac{d \mathbf{F}}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}=\left(2 x y+y^{2} e^{x y}\right) \frac{d x}{d t}+\left(x^{2}+e^{x y}+x y e^{x y}\right) \frac{d y}{d t} .
$$

Problem 8(c) - Spring 2008

Given the function $f(x, y)=x^{2} y+y e^{x y}$.
Suppose a particle travels along a path $(x(t), y(t))$, and that $\mathbf{F}(t)=f(x(t), y(t))$ where $f(x, y)$ is the function defined above.
Calculate $\mathbf{F}^{\prime}(3)$, assuming that at time $t=3$ the particle's position is $(x(3), y(3))=(0,5)$ and its velocity is $\left(x^{\prime}(3), y^{\prime}(3)\right)=(3,-2)$.

Solution:

- The Chain Rule gives

$$
\frac{d \mathbf{F}}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}=\left(2 x y+y^{2} e^{x y}\right) \frac{d x}{d t}+\left(x^{2}+e^{x y}+x y e^{x y}\right) \frac{d y}{d t} .
$$

- Plugging in values, we obtain: $F^{\prime}(3)$

Problem 8(c) - Spring 2008

Given the function $f(x, y)=x^{2} y+y e^{x y}$.
Suppose a particle travels along a path $(x(t), y(t))$, and that $\mathbf{F}(t)=f(x(t), y(t))$ where $f(x, y)$ is the function defined above.
Calculate $\mathbf{F}^{\prime}(3)$, assuming that at time $t=3$ the particle's position is $(x(3), y(3))=(0,5)$ and its velocity is $\left(x^{\prime}(3), y^{\prime}(3)\right)=(3,-2)$.

Solution:

- The Chain Rule gives

$$
\frac{d \mathbf{F}}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}=\left(2 x y+y^{2} e^{x y}\right) \frac{d x}{d t}+\left(x^{2}+e^{x y}+x y e^{x y}\right) \frac{d y}{d t} .
$$

- Plugging in values, we obtain:

$$
\mathbf{F}^{\prime}(3)=\left(0+5^{2} e^{0}\right)(3)+\left(0+e^{0}+0\right)(-2)
$$

Problem 8(c) - Spring 2008

Given the function $f(x, y)=x^{2} y+y e^{x y}$.
Suppose a particle travels along a path $(x(t), y(t))$, and that $\mathbf{F}(t)=f(x(t), y(t))$ where $f(x, y)$ is the function defined above.
Calculate $\mathbf{F}^{\prime}(3)$, assuming that at time $t=3$ the particle's position is $(x(3), y(3))=(0,5)$ and its velocity is $\left(x^{\prime}(3), y^{\prime}(3)\right)=(3,-2)$.

Solution:

- The Chain Rule gives

$$
\frac{d \mathbf{F}}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}=\left(2 x y+y^{2} e^{x y}\right) \frac{d x}{d t}+\left(x^{2}+e^{x y}+x y e^{x y}\right) \frac{d y}{d t} .
$$

- Plugging in values, we obtain:

$$
\mathbf{F}^{\prime}(3)=\left(0+5^{2} e^{0}\right)(3)+\left(0+e^{0}+0\right)(-2)=75+(-2)
$$

Problem 8(c) - Spring 2008

Given the function $f(x, y)=x^{2} y+y e^{x y}$.
Suppose a particle travels along a path $(x(t), y(t))$, and that $\mathbf{F}(t)=f(x(t), y(t))$ where $f(x, y)$ is the function defined above.
Calculate $\mathbf{F}^{\prime}(3)$, assuming that at time $t=3$ the particle's position is $(x(3), y(3))=(0,5)$ and its velocity is $\left(x^{\prime}(3), y^{\prime}(3)\right)=(3,-2)$.

Solution:

- The Chain Rule gives

$$
\frac{d \mathbf{F}}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}=\left(2 x y+y^{2} e^{x y}\right) \frac{d x}{d t}+\left(x^{2}+e^{x y}+x y e^{x y}\right) \frac{d y}{d t} .
$$

- Plugging in values, we obtain:

$$
\mathbf{F}^{\prime}(3)=\left(0+5^{2} e^{0}\right)(3)+\left(0+e^{0}+0\right)(-2)=75+(-2)=73 .
$$

Problem 9(a) - Spring 2008

Consider the function $f(x, y)=2 \sqrt{x^{2}+4 y}$.
Find the directional derivative of $f(x, y)$ at $P=(-2,3)$ in the direction starting from P pointing towards $Q=(0,4)$.

Problem 9(a) - Spring 2008

Consider the function $f(x, y)=2 \sqrt{x^{2}+4 y}$.
Find the directional derivative of $f(x, y)$ at $P=(-2,3)$ in the direction starting from P pointing towards $Q=(0,4)$.

Solution:

- First calculate partial derivatives of $f(x, y)=2\left(x^{2}+4 y\right)^{\frac{1}{2}}$:

$$
f_{x}=\frac{2 x}{\sqrt{x^{2}+4 y}} \quad f_{y}=\frac{4}{\sqrt{x^{2}+4 y}} .
$$

Problem 9(a) - Spring 2008

Consider the function $f(x, y)=2 \sqrt{x^{2}+4 y}$.
Find the directional derivative of $f(x, y)$ at $P=(-2,3)$ in the direction starting from P pointing towards $Q=(0,4)$.

Solution:

- First calculate partial derivatives of $f(x, y)=2\left(x^{2}+4 y\right)^{\frac{1}{2}}$:

$$
f_{x}=\frac{2 x}{\sqrt{x^{2}+4 y}} \quad f_{y}=\frac{4}{\sqrt{x^{2}+4 y}} .
$$

- So,

$$
\nabla f(-2,3)=\left\langle\frac{-4}{\sqrt{16}}, \frac{4}{\sqrt{16}}\right\rangle
$$

Problem 9(a) - Spring 2008

Consider the function $f(x, y)=2 \sqrt{x^{2}+4 y}$.
Find the directional derivative of $f(x, y)$ at $P=(-2,3)$ in the direction starting from P pointing towards $Q=(0,4)$.

Solution:

- First calculate partial derivatives of $f(x, y)=2\left(x^{2}+4 y\right)^{\frac{1}{2}}$:

$$
f_{x}=\frac{2 x}{\sqrt{x^{2}+4 y}} \quad f_{y}=\frac{4}{\sqrt{x^{2}+4 y}} .
$$

- So,

$$
\nabla f(-2,3)=\left\langle\frac{-4}{\sqrt{16}}, \frac{4}{\sqrt{16}}\right\rangle=\langle-1,1\rangle
$$

Problem 9(a) - Spring 2008

Consider the function $f(x, y)=2 \sqrt{x^{2}+4 y}$.
Find the directional derivative of $f(x, y)$ at $P=(-2,3)$ in the direction starting from P pointing towards $Q=(0,4)$.

Solution:

- First calculate partial derivatives of $f(x, y)=2\left(x^{2}+4 y\right)^{\frac{1}{2}}$:

$$
f_{x}=\frac{2 x}{\sqrt{x^{2}+4 y}} \quad f_{y}=\frac{4}{\sqrt{x^{2}+4 y}}
$$

- So,

$$
\nabla f(-2,3)=\left\langle\frac{-4}{\sqrt{16}}, \frac{4}{\sqrt{16}}\right\rangle=\langle-1,1\rangle
$$

- The unit vector \mathbf{u} in the direction $\overrightarrow{P Q}=\langle 2,1\rangle$ is $\mathbf{u}=\frac{1}{\sqrt{5}}\langle 2,1\rangle$.

Problem 9(a) - Spring 2008

Consider the function $f(x, y)=2 \sqrt{x^{2}+4 y}$.
Find the directional derivative of $f(x, y)$ at $P=(-2,3)$ in the direction starting from P pointing towards $Q=(0,4)$.

Solution:

- First calculate partial derivatives of $f(x, y)=2\left(x^{2}+4 y\right)^{\frac{1}{2}}$:

$$
f_{x}=\frac{2 x}{\sqrt{x^{2}+4 y}} \quad f_{y}=\frac{4}{\sqrt{x^{2}+4 y}}
$$

- So,

$$
\nabla f(-2,3)=\left\langle\frac{-4}{\sqrt{16}}, \frac{4}{\sqrt{16}}\right\rangle=\langle-1,1\rangle
$$

- The unit vector \mathbf{u} in the direction $\overrightarrow{P Q}=\langle 2,1\rangle$ is $\mathbf{u}=\frac{1}{\sqrt{5}}\langle 2,1\rangle$.
- $D_{\mathbf{u}} f(-2,3)=\nabla f(-2,3) \cdot \mathbf{u}$

Problem 9(a) - Spring 2008

Consider the function $f(x, y)=2 \sqrt{x^{2}+4 y}$.
Find the directional derivative of $f(x, y)$ at $P=(-2,3)$ in the direction starting from P pointing towards $Q=(0,4)$.

Solution:

- First calculate partial derivatives of $f(x, y)=2\left(x^{2}+4 y\right)^{\frac{1}{2}}$:

$$
f_{x}=\frac{2 x}{\sqrt{x^{2}+4 y}} \quad f_{y}=\frac{4}{\sqrt{x^{2}+4 y}}
$$

- So,

$$
\nabla f(-2,3)=\left\langle\frac{-4}{\sqrt{16}}, \frac{4}{\sqrt{16}}\right\rangle=\langle-1,1\rangle
$$

- The unit vector \mathbf{u} in the direction $\overrightarrow{P Q}=\langle 2,1\rangle$ is $\mathbf{u}=\frac{1}{\sqrt{5}}\langle 2,1\rangle$.
- $D_{\mathbf{u}} f(-2,3)=\nabla f(-2,3) \cdot \mathbf{u}=\langle-1,1\rangle \cdot \frac{1}{\sqrt{5}}\langle 2,1\rangle$

Problem 9(a) - Spring 2008

Consider the function $f(x, y)=2 \sqrt{x^{2}+4 y}$.
Find the directional derivative of $f(x, y)$ at $P=(-2,3)$ in the direction starting from P pointing towards $Q=(0,4)$.

Solution:

- First calculate partial derivatives of $f(x, y)=2\left(x^{2}+4 y\right)^{\frac{1}{2}}$:

$$
f_{x}=\frac{2 x}{\sqrt{x^{2}+4 y}} \quad f_{y}=\frac{4}{\sqrt{x^{2}+4 y}}
$$

- So,

$$
\nabla f(-2,3)=\left\langle\frac{-4}{\sqrt{16}}, \frac{4}{\sqrt{16}}\right\rangle=\langle-1,1\rangle
$$

- The unit vector \mathbf{u} in the direction $\overrightarrow{P Q}=\langle 2,1\rangle$ is $\mathbf{u}=\frac{1}{\sqrt{5}}\langle 2,1\rangle$.
- $D_{\mathbf{u}} f(-2,3)=\nabla f(-2,3) \cdot \mathbf{u}=\langle-1,1\rangle \cdot \frac{1}{\sqrt{5}}\langle 2,1\rangle=-\frac{1}{\sqrt{5}}$.

Problem 9(b) - Spring 2008
Consider the function $f(x, y)=2 \sqrt{x^{2}+4 y}$.
Find all unit vectors \mathbf{u} for which the directional derivative
$D_{\mathrm{u}} f(-2,3)=0$.

Problem 9(b) - Spring 2008

Consider the function $f(x, y)=2 \sqrt{x^{2}+4 y}$.
Find all unit vectors \mathbf{u} for which the directional derivative
$D_{\mathrm{u}} f(-2,3)=0$.

Solution:

- First find all the possible non-unit vectors $\mathbf{v}=\langle x, y\rangle$ which are orthogonal to $\nabla f(-2,3)=\langle-1,1\rangle$:

Problem 9(b) - Spring 2008

Consider the function $f(x, y)=2 \sqrt{x^{2}+4 y}$.
Find all unit vectors \mathbf{u} for which the directional derivative
$D_{\mathrm{u}} f(-2,3)=0$.

Solution:

- First find all the possible non-unit vectors $\mathbf{v}=\langle x, y\rangle$ which are orthogonal to $\nabla f(-2,3)=\langle-1,1\rangle$:

$$
\langle-1,1\rangle \cdot\langle x, y\rangle=-x+y=0
$$

Problem 9(b) - Spring 2008

Consider the function $f(x, y)=2 \sqrt{x^{2}+4 y}$.
Find all unit vectors \mathbf{u} for which the directional derivative
$D_{\mathrm{u}} f(-2,3)=0$.

Solution:

- First find all the possible non-unit vectors $\mathbf{v}=\langle x, y\rangle$ which are orthogonal to $\nabla f(-2,3)=\langle-1,1\rangle$:

$$
\langle-1,1\rangle \cdot\langle x, y\rangle=-x+y=0 \Longrightarrow x=y
$$

Problem 9(b) - Spring 2008

Consider the function $f(x, y)=2 \sqrt{x^{2}+4 y}$.
Find all unit vectors \mathbf{u} for which the directional derivative
$D_{\mathrm{u}} f(-2,3)=0$.

Solution:

- First find all the possible non-unit vectors $\mathbf{v}=\langle x, y\rangle$ which are orthogonal to $\nabla f(-2,3)=\langle-1,1\rangle$:

$$
\langle-1,1\rangle \cdot\langle x, y\rangle=-x+y=0 \Longrightarrow x=y
$$

- Therefore, $\mathbf{v}=\langle x, x\rangle$ works for any $x \neq 0$.

Problem 9(b) - Spring 2008

Consider the function $f(x, y)=2 \sqrt{x^{2}+4 y}$.
Find all unit vectors \mathbf{u} for which the directional derivative
$D_{\mathrm{u}} f(-2,3)=0$.

Solution:

- First find all the possible non-unit vectors $\mathbf{v}=\langle x, y\rangle$ which are orthogonal to $\nabla f(-2,3)=\langle-1,1\rangle$:

$$
\langle-1,1\rangle \cdot\langle x, y\rangle=-x+y=0 \Longrightarrow x=y .
$$

- Therefore, $\mathbf{v}=\langle x, x\rangle$ works for any $x \neq 0$.
- The set of unit vectors $\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}$ such that $D_{\mathbf{u}} f(-2,3)=\nabla f(-2,3) \cdot \mathbf{u}=0$ consists of 2 vectors:

Problem 9(b) - Spring 2008

Consider the function $f(x, y)=2 \sqrt{x^{2}+4 y}$.
Find all unit vectors \mathbf{u} for which the directional derivative
$D_{\mathrm{u}} f(-2,3)=0$.

Solution:

- First find all the possible non-unit vectors $\mathbf{v}=\langle x, y\rangle$ which are orthogonal to $\nabla f(-2,3)=\langle-1,1\rangle$:

$$
\langle-1,1\rangle \cdot\langle x, y\rangle=-x+y=0 \Longrightarrow x=y .
$$

- Therefore, $\mathbf{v}=\langle x, x\rangle$ works for any $x \neq 0$.
- The set of unit vectors $\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}$ such that $D_{\mathrm{u}} f(-2,3)=\nabla f(-2,3) \cdot \mathbf{u}=0$ consists of 2 vectors:

$$
\left\{\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle,\left\langle-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right\rangle\right\} .
$$

Problem 9(c) - Spring 2008

Consider the function $f(x, y)=2 \sqrt{x^{2}+4 y}$.
Is there a unit vector \mathbf{u} for which the directional derivative $D_{\mathrm{u}} f(-2,3)=4$? Either find the appropriate \mathbf{u} or explain why not.

Problem 9(c) - Spring 2008

Consider the function $f(x, y)=2 \sqrt{x^{2}+4 y}$.
Is there a unit vector \mathbf{u} for which the directional derivative $D_{\mathrm{u}} f(-2,3)=4$? Either find the appropriate \mathbf{u} or explain why not.

Solution:

- First recall that:

$$
\nabla f=\left\langle\frac{2 x}{\sqrt{x^{2}+4 y}}, \frac{4}{\sqrt{x^{2}+4 y}}\right\rangle \quad \nabla f(-2,3)=\langle-1,1\rangle .
$$

Problem 9(c) - Spring 2008

Consider the function $f(x, y)=2 \sqrt{x^{2}+4 y}$.
Is there a unit vector \mathbf{u} for which the directional derivative $D_{\mathrm{u}} f(-2,3)=4$? Either find the appropriate \mathbf{u} or explain why not.

Solution:

- First recall that:

$$
\nabla f=\left\langle\frac{2 x}{\sqrt{x^{2}+4 y}}, \frac{4}{\sqrt{x^{2}+4 y}}\right\rangle \quad \nabla f(-2,3)=\langle-1,1\rangle .
$$

- This question is equivalent to asking whether there is a unit vector $\mathbf{u}=\langle x, y\rangle$ such that

$$
D_{\mathbf{u}} f(-2,3)=\nabla f(-2,3) \cdot \mathbf{u}
$$

Problem 9(c) - Spring 2008

Consider the function $f(x, y)=2 \sqrt{x^{2}+4 y}$.
Is there a unit vector \mathbf{u} for which the directional derivative $D_{\mathrm{u}} f(-2,3)=4$? Either find the appropriate \mathbf{u} or explain why not.

Solution:

- First recall that:

$$
\nabla f=\left\langle\frac{2 x}{\sqrt{x^{2}+4 y}}, \frac{4}{\sqrt{x^{2}+4 y}}\right\rangle \quad \nabla f(-2,3)=\langle-1,1\rangle .
$$

- This question is equivalent to asking whether there is a unit vector $\mathbf{u}=\langle x, y\rangle$ such that

$$
D_{\mathbf{u}} f(-2,3)=\nabla f(-2,3) \cdot \mathbf{u}=\langle-1,1\rangle \cdot \mathbf{u}
$$

Problem 9(c) - Spring 2008

Consider the function $f(x, y)=2 \sqrt{x^{2}+4 y}$.
Is there a unit vector \mathbf{u} for which the directional derivative $D_{\mathrm{u}} f(-2,3)=4$? Either find the appropriate \mathbf{u} or explain why not.

Solution:

- First recall that:

$$
\nabla f=\left\langle\frac{2 x}{\sqrt{x^{2}+4 y}}, \frac{4}{\sqrt{x^{2}+4 y}}\right\rangle \quad \nabla f(-2,3)=\langle-1,1\rangle .
$$

- This question is equivalent to asking whether there is a unit vector $\mathbf{u}=\langle x, y\rangle$ such that

$$
D_{\mathbf{u}} f(-2,3)=\nabla f(-2,3) \cdot \mathbf{u}=\langle-1,1\rangle \cdot \mathbf{u}=4 .
$$

Problem 9(c) - Spring 2008

Consider the function $f(x, y)=2 \sqrt{x^{2}+4 y}$.
Is there a unit vector \mathbf{u} for which the directional derivative $D_{\mathrm{u}} f(-2,3)=4$? Either find the appropriate \mathbf{u} or explain why not.

Solution:

- First recall that:

$$
\nabla f=\left\langle\frac{2 x}{\sqrt{x^{2}+4 y}}, \frac{4}{\sqrt{x^{2}+4 y}}\right\rangle \quad \nabla f(-2,3)=\langle-1,1\rangle .
$$

- This question is equivalent to asking whether there is a unit vector $\mathbf{u}=\langle x, y\rangle$ such that

$$
D_{\mathbf{u}} f(-2,3)=\nabla f(-2,3) \cdot \mathbf{u}=\langle-1,1\rangle \cdot \mathbf{u}=4 .
$$

- If such \mathbf{u} exists, then

$$
4=|\langle-1,1\rangle \cdot \mathbf{u}|
$$

Problem 9(c) - Spring 2008

Consider the function $f(x, y)=2 \sqrt{x^{2}+4 y}$.
Is there a unit vector \mathbf{u} for which the directional derivative $D_{\mathrm{u}} f(-2,3)=4$? Either find the appropriate \mathbf{u} or explain why not.

Solution:

- First recall that:

$$
\nabla f=\left\langle\frac{2 x}{\sqrt{x^{2}+4 y}}, \frac{4}{\sqrt{x^{2}+4 y}}\right\rangle \quad \nabla f(-2,3)=\langle-1,1\rangle .
$$

- This question is equivalent to asking whether there is a unit vector $\mathbf{u}=\langle x, y\rangle$ such that

$$
D_{\mathbf{u}} f(-2,3)=\nabla f(-2,3) \cdot \mathbf{u}=\langle-1,1\rangle \cdot \mathbf{u}=4 .
$$

- If such \mathbf{u} exists, then

$$
4=|\langle-1,1\rangle \cdot \mathbf{u}|=|\langle-1,1\rangle| \cdot|\mathbf{u}||\cos \theta|
$$

Problem 9(c) - Spring 2008

Consider the function $f(x, y)=2 \sqrt{x^{2}+4 y}$.
Is there a unit vector \mathbf{u} for which the directional derivative $D_{\mathrm{u}} f(-2,3)=4$? Either find the appropriate \mathbf{u} or explain why not.

Solution:

- First recall that:

$$
\nabla f=\left\langle\frac{2 x}{\sqrt{x^{2}+4 y}}, \frac{4}{\sqrt{x^{2}+4 y}}\right\rangle \quad \nabla f(-2,3)=\langle-1,1\rangle .
$$

- This question is equivalent to asking whether there is a unit vector $\mathbf{u}=\langle x, y\rangle$ such that

$$
D_{\mathbf{u}} f(-2,3)=\nabla f(-2,3) \cdot \mathbf{u}=\langle-1,1\rangle \cdot \mathbf{u}=4 .
$$

- If such \mathbf{u} exists, then

$$
4=|\langle-1,1\rangle \cdot \mathbf{u}|=|\langle-1,1\rangle| \cdot|\mathbf{u}||\cos \theta|=\sqrt{2}|\cos \theta|
$$

Problem 9(c) - Spring 2008

Consider the function $f(x, y)=2 \sqrt{x^{2}+4 y}$.
Is there a unit vector \mathbf{u} for which the directional derivative $D_{\mathrm{u}} f(-2,3)=4$? Either find the appropriate \mathbf{u} or explain why not.

Solution:

- First recall that:

$$
\nabla f=\left\langle\frac{2 x}{\sqrt{x^{2}+4 y}}, \frac{4}{\sqrt{x^{2}+4 y}}\right\rangle \quad \nabla f(-2,3)=\langle-1,1\rangle .
$$

- This question is equivalent to asking whether there is a unit vector $\mathbf{u}=\langle x, y\rangle$ such that

$$
D_{\mathbf{u}} f(-2,3)=\nabla f(-2,3) \cdot \mathbf{u}=\langle-1,1\rangle \cdot \mathbf{u}=4 .
$$

- If such \mathbf{u} exists, then

$$
4=|\langle-1,1\rangle \cdot \mathbf{u}|=|\langle-1,1\rangle| \cdot|\mathbf{u}||\cos \theta|=\sqrt{2}|\cos \theta| \leq \sqrt{2}
$$

Problem 9(c) - Spring 2008

Consider the function $f(x, y)=2 \sqrt{x^{2}+4 y}$.
Is there a unit vector \mathbf{u} for which the directional derivative $D_{\mathrm{u}} f(-2,3)=4$? Either find the appropriate \mathbf{u} or explain why not.

Solution:

- First recall that:

$$
\nabla f=\left\langle\frac{2 x}{\sqrt{x^{2}+4 y}}, \frac{4}{\sqrt{x^{2}+4 y}}\right\rangle \quad \nabla f(-2,3)=\langle-1,1\rangle .
$$

- This question is equivalent to asking whether there is a unit vector $\mathbf{u}=\langle x, y\rangle$ such that

$$
D_{\mathbf{u}} f(-2,3)=\nabla f(-2,3) \cdot \mathbf{u}=\langle-1,1\rangle \cdot \mathbf{u}=4 .
$$

- If such \mathbf{u} exists, then

$$
4=|\langle-1,1\rangle \cdot \mathbf{u}|=|\langle-1,1\rangle| \cdot|\mathbf{u}||\cos \theta|=\sqrt{2}|\cos \theta| \leq \sqrt{2}
$$

- Therefore, no such unit vector u exists.

Problem 10(a) - Spring 2008
Let $f(x, y)=\frac{2}{3} x^{3}+\frac{1}{3} y^{3}-x y$.
Find all critical points of $f(x, y)$.

Problem 10(a) - Spring 2008
Let $f(x, y)=\frac{2}{3} x^{3}+\frac{1}{3} y^{3}-x y$.
Find all critical points of $f(x, y)$.

Solution:

- First calculate $\nabla f(x, y)$ and set equal to $\langle 0,0\rangle$:

Problem 10(a) - Spring 2008
Let $f(x, y)=\frac{2}{3} x^{3}+\frac{1}{3} y^{3}-x y$.
Find all critical points of $f(x, y)$.

Solution:

- First calculate $\nabla f(x, y)$ and set equal to $\langle 0,0\rangle$:

$$
\nabla f(x, y)=\left\langle 2 x^{2}-y, y^{2}-x\right\rangle=\langle 0,0\rangle
$$

Problem 10(a) - Spring 2008

Let $f(x, y)=\frac{2}{3} x^{3}+\frac{1}{3} y^{3}-x y$.
Find all critical points of $f(x, y)$.

Solution:

- First calculate $\nabla f(x, y)$ and set equal to $\langle 0,0\rangle$:

$$
\nabla f(x, y)=\left\langle 2 x^{2}-y, y^{2}-x\right\rangle=\langle 0,0\rangle
$$

- The first coordinate equation $2 x^{2}-y=0$ implies $y=2 x^{2}$.

Problem 10(a) - Spring 2008

Let $f(x, y)=\frac{2}{3} x^{3}+\frac{1}{3} y^{3}-x y$.
Find all critical points of $f(x, y)$.

Solution:

- First calculate $\nabla f(x, y)$ and set equal to $\langle 0,0\rangle$:

$$
\nabla f(x, y)=\left\langle 2 x^{2}-y, y^{2}-x\right\rangle=\langle 0,0\rangle
$$

- The first coordinate equation $2 x^{2}-y=0$ implies $y=2 x^{2}$.
- Plugging $y=2 x^{2}$ into the second coordinate equation gives

$$
4 x^{4}-x=x\left(4 x^{3}-1\right)=0
$$

Problem 10(a) - Spring 2008

Let $f(x, y)=\frac{2}{3} x^{3}+\frac{1}{3} y^{3}-x y$.
Find all critical points of $f(x, y)$.

Solution:

- First calculate $\nabla f(x, y)$ and set equal to $\langle 0,0\rangle$:

$$
\nabla f(x, y)=\left\langle 2 x^{2}-y, y^{2}-x\right\rangle=\langle 0,0\rangle
$$

- The first coordinate equation $2 x^{2}-y=0$ implies $y=2 x^{2}$.
- Plugging $y=2 x^{2}$ into the second coordinate equation gives $4 x^{4}-x=x\left(4 x^{3}-1\right)=0 \Longrightarrow x=0$ or $x=4^{-\frac{1}{3}}$.

Problem 10(a) - Spring 2008

Let $f(x, y)=\frac{2}{3} x^{3}+\frac{1}{3} y^{3}-x y$.
Find all critical points of $f(x, y)$.

Solution:

- First calculate $\nabla f(x, y)$ and set equal to $\langle 0,0\rangle$:

$$
\nabla f(x, y)=\left\langle 2 x^{2}-y, y^{2}-x\right\rangle=\langle 0,0\rangle
$$

- The first coordinate equation $2 x^{2}-y=0$ implies $y=2 x^{2}$.
- Plugging $y=2 x^{2}$ into the second coordinate equation gives $4 x^{4}-x=x\left(4 x^{3}-1\right)=0 \Longrightarrow x=0$ or $x=4^{-\frac{1}{3}}$.
- Hence, $(x=0$ and $y=0)$ or $\left(x=4^{-\frac{1}{3}}\right.$ and $\left.y=2 \cdot 4^{-\frac{2}{3}}\right)$.

Problem 10(a) - Spring 2008

Let $f(x, y)=\frac{2}{3} x^{3}+\frac{1}{3} y^{3}-x y$.
Find all critical points of $f(x, y)$.

Solution:

- First calculate $\nabla f(x, y)$ and set equal to $\langle 0,0\rangle$:

$$
\nabla f(x, y)=\left\langle 2 x^{2}-y, y^{2}-x\right\rangle=\langle 0,0\rangle
$$

- The first coordinate equation $2 x^{2}-y=0$ implies $y=2 x^{2}$.
- Plugging $y=2 x^{2}$ into the second coordinate equation gives $4 x^{4}-x=x\left(4 x^{3}-1\right)=0 \Longrightarrow x=0$ or $x=4^{-\frac{1}{3}}$.
- Hence, $(x=0$ and $y=0)$ or $\left(x=4^{-\frac{1}{3}}\right.$ and $\left.y=2 \cdot 4^{-\frac{2}{3}}\right)$.
- This gives a set of two critical points:

$$
\left\{(0,0),\left(4^{-\frac{1}{3}}, 2 \cdot 4^{-\frac{2}{3}}\right)\right\}
$$

Problem 10(b) - Spring 2008
Let $f(x, y)=\frac{2}{3} x^{3}+\frac{1}{3} y^{3}-x y$.
Classify each critical point as a relative maximum, relative (local) minimum or saddle; you do not need to calculate the function at these points, but your answer must be justified.

Problem 10(b) - Spring 2008
Let $f(x, y)=\frac{2}{3} x^{3}+\frac{1}{3} y^{3}-x y$.
Classify each critical point as a relative maximum, relative (local) minimum or saddle; you do not need to calculate the function at these points, but your answer must be justified.

Solution:

- By part (a) $\nabla f=\left\langle 2 x^{2}-y, y^{2}-x\right\rangle$ and the set of critical points is $\left\{(0,0),\left(4^{-\frac{1}{3}}, 2 \cdot 4^{-\frac{2}{3}}\right)\right\}$.

Problem 10(b) - Spring 2008
Let $f(x, y)=\frac{2}{3} x^{3}+\frac{1}{3} y^{3}-x y$.
Classify each critical point as a relative maximum, relative (local) minimum or saddle; you do not need to calculate the function at these points, but your answer must be justified.

Solution:

- By part (a) $\nabla f=\left\langle 2 x^{2}-y, y^{2}-x\right\rangle$ and the set of critical points is $\left\{(0,0),\left(4^{-\frac{1}{3}}, 2 \cdot 4^{-\frac{2}{3}}\right)\right\}$.
- Now write down the Hessian:

$$
D=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|
$$

Problem 10(b) - Spring 2008
Let $f(x, y)=\frac{2}{3} x^{3}+\frac{1}{3} y^{3}-x y$.
Classify each critical point as a relative maximum, relative (local) minimum or saddle; you do not need to calculate the function at these points, but your answer must be justified.

Solution:

- By part (a) $\nabla f=\left\langle 2 x^{2}-y, y^{2}-x\right\rangle$ and the set of critical points is $\left\{(0,0),\left(4^{-\frac{1}{3}}, 2 \cdot 4^{-\frac{2}{3}}\right)\right\}$.
- Now write down the Hessian:

$$
D=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|=\left|\begin{array}{cc}
4 x & -1 \\
-1 & 2 y
\end{array}\right|
$$

Problem 10(b) - Spring 2008
Let $f(x, y)=\frac{2}{3} x^{3}+\frac{1}{3} y^{3}-x y$.
Classify each critical point as a relative maximum, relative (local) minimum or saddle; you do not need to calculate the function at these points, but your answer must be justified.

Solution:

- By part (a) $\nabla f=\left\langle 2 x^{2}-y, y^{2}-x\right\rangle$ and the set of critical points is $\left\{(0,0),\left(4^{-\frac{1}{3}}, 2 \cdot 4^{-\frac{2}{3}}\right)\right\}$.
- Now write down the Hessian:

$$
D=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|=\left|\begin{array}{cc}
4 x & -1 \\
-1 & 2 y
\end{array}\right|=8 x y-1
$$

Problem 10(b) - Spring 2008
Let $f(x, y)=\frac{2}{3} x^{3}+\frac{1}{3} y^{3}-x y$.
Classify each critical point as a relative maximum, relative (local) minimum or saddle; you do not need to calculate the function at these points, but your answer must be justified.

Solution:

- By part (a) $\nabla f=\left\langle 2 x^{2}-y, y^{2}-x\right\rangle$ and the set of critical points is $\left\{(0,0),\left(4^{-\frac{1}{3}}, 2 \cdot 4^{-\frac{2}{3}}\right)\right\}$.
- Now write down the Hessian:

$$
D=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|=\left|\begin{array}{cc}
4 x & -1 \\
-1 & 2 y
\end{array}\right|=8 x y-1
$$

- Next apply the Second Derivative Test.

Problem 10(b) - Spring 2008
Let $f(x, y)=\frac{2}{3} x^{3}+\frac{1}{3} y^{3}-x y$.
Classify each critical point as a relative maximum, relative (local) minimum or saddle; you do not need to calculate the function at these points, but your answer must be justified.

Solution:

- By part (a) $\nabla f=\left\langle 2 x^{2}-y, y^{2}-x\right\rangle$ and the set of critical points is $\left\{(0,0),\left(4^{-\frac{1}{3}}, 2 \cdot 4^{-\frac{2}{3}}\right)\right\}$.
- Now write down the Hessian:

$$
D=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|=\left|\begin{array}{cc}
4 x & -1 \\
-1 & 2 y
\end{array}\right|=8 x y-1
$$

- Next apply the Second Derivative Test.
- Since $D(0,0)=-1<0$, then $(0,0)$ is a saddle point.

Problem 10(b) - Spring 2008
Let $f(x, y)=\frac{2}{3} x^{3}+\frac{1}{3} y^{3}-x y$.
Classify each critical point as a relative maximum, relative (local) minimum or saddle; you do not need to calculate the function at these points, but your answer must be justified.

Solution:

- By part (a) $\nabla f=\left\langle 2 x^{2}-y, y^{2}-x\right\rangle$ and the set of critical points is $\left\{(0,0),\left(4^{-\frac{1}{3}}, 2 \cdot 4^{-\frac{2}{3}}\right)\right\}$.
- Now write down the Hessian:

$$
D=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|=\left|\begin{array}{cc}
4 x & -1 \\
-1 & 2 y
\end{array}\right|=8 x y-1
$$

- Next apply the Second Derivative Test.
- Since $D(0,0)=-1<0$, then $(0,0)$ is a saddle point.
- Since $D\left(4^{-\frac{1}{3}}, 2 \cdot 4^{-\frac{2}{3}}\right)=4-1>0$ and
$f_{x x}\left(4^{-\frac{1}{3}}, 2 \cdot 4^{-\frac{2}{3}}\right)=4 \cdot 4^{-\frac{1}{3}}=4^{\frac{2}{3}}>0$,

Problem 10(b) - Spring 2008
Let $f(x, y)=\frac{2}{3} x^{3}+\frac{1}{3} y^{3}-x y$.
Classify each critical point as a relative maximum, relative (local) minimum or saddle; you do not need to calculate the function at these points, but your answer must be justified.

Solution:

- By part (a) $\nabla f=\left\langle 2 x^{2}-y, y^{2}-x\right\rangle$ and the set of critical points is $\left\{(0,0),\left(4^{-\frac{1}{3}}, 2 \cdot 4^{-\frac{2}{3}}\right)\right\}$.
- Now write down the Hessian:

$$
D=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|=\left|\begin{array}{cc}
4 x & -1 \\
-1 & 2 y
\end{array}\right|=8 x y-1
$$

- Next apply the Second Derivative Test.
- Since $D(0,0)=-1<0$, then $(0,0)$ is a saddle point.
- Since $D\left(4^{-\frac{1}{3}}, 2 \cdot 4^{-\frac{2}{3}}\right)=4-1>0$ and $f_{x x}\left(4^{-\frac{1}{3}}, 2 \cdot 4^{-\frac{2}{3}}\right)=4 \cdot 4^{-\frac{1}{3}}=4^{\frac{2}{3}}>0$, then $\left(4^{-\frac{1}{3}}, 2 \cdot 4^{-\frac{2}{3}}\right)$ is a local minimum.

Problem 11-Spring 2008

Use the method of Lagrange multipliers to determine all points (x, y) where the function $f(x, y)=2 x^{2}+4 y^{2}+16$ has an extreme value (either a maximum or a minimum) subject to the constraint $\frac{1}{4} x^{2}+y^{2}=4$.

Problem 11 - Spring 2008

Use the method of Lagrange multipliers to determine all points (x, y) where the function $f(x, y)=2 x^{2}+4 y^{2}+16$ has an extreme value (either a maximum or a minimum) subject to the constraint $\frac{1}{4} x^{2}+y^{2}=4$.

Solution:

- Set $g(x, y)=\frac{1}{4} x^{2}+y^{2}$.

Problem 11 - Spring 2008

Use the method of Lagrange multipliers to determine all points (x, y) where the function $f(x, y)=2 x^{2}+4 y^{2}+16$ has an extreme value (either a maximum or a minimum) subject to the constraint $\frac{1}{4} x^{2}+y^{2}=4$.

Solution:

- Set $g(x, y)=\frac{1}{4} x^{2}+y^{2}$.
- Set $\nabla f=\langle 4 x, 8 y\rangle=\lambda \nabla g=\lambda\left\langle\frac{1}{2} x, 2 y\right\rangle$ and solve:

$$
8 y=2 \lambda y
$$

Problem 11 - Spring 2008

Use the method of Lagrange multipliers to determine all points (x, y) where the function $f(x, y)=2 x^{2}+4 y^{2}+16$ has an extreme value (either a maximum or a minimum) subject to the constraint $\frac{1}{4} x^{2}+y^{2}=4$.

Solution:

- Set $g(x, y)=\frac{1}{4} x^{2}+y^{2}$.
- Set $\nabla f=\langle 4 x, 8 y\rangle=\lambda \nabla g=\lambda\left\langle\frac{1}{2} x, 2 y\right\rangle$ and solve:

$$
8 y=2 \lambda y \Longrightarrow \lambda=4 \text { or } y=0 .
$$

Problem 11 - Spring 2008

Use the method of Lagrange multipliers to determine all points (x, y) where the function $f(x, y)=2 x^{2}+4 y^{2}+16$ has an extreme value (either a maximum or a minimum) subject to the constraint $\frac{1}{4} x^{2}+y^{2}=4$.

Solution:

- Set $g(x, y)=\frac{1}{4} x^{2}+y^{2}$.
- Set $\nabla f=\langle 4 x, 8 y\rangle=\lambda \nabla g=\lambda\left\langle\frac{1}{2} x, 2 y\right\rangle$ and solve:

$$
\begin{aligned}
& 8 y=2 \lambda y \Longrightarrow \lambda=4 \text { or } y=0 . \\
& 4 x=\frac{1}{2} \lambda x
\end{aligned}
$$

Problem 11 - Spring 2008

Use the method of Lagrange multipliers to determine all points (x, y) where the function $f(x, y)=2 x^{2}+4 y^{2}+16$ has an extreme value (either a maximum or a minimum) subject to the constraint $\frac{1}{4} x^{2}+y^{2}=4$.

Solution:

- Set $g(x, y)=\frac{1}{4} x^{2}+y^{2}$.
- Set $\nabla f=\langle 4 x, 8 y\rangle=\lambda \nabla g=\lambda\left\langle\frac{1}{2} x, 2 y\right\rangle$ and solve:

$$
\begin{aligned}
& 8 y=2 \lambda y \Longrightarrow \lambda=4 \text { or } y=0 . \\
& 4 x=\frac{1}{2} \lambda x \Longrightarrow \lambda=8 \text { or } x=0 .
\end{aligned}
$$

Problem 11 - Spring 2008

Use the method of Lagrange multipliers to determine all points (x, y) where the function $f(x, y)=2 x^{2}+4 y^{2}+16$ has an extreme value (either a maximum or a minimum) subject to the constraint $\frac{1}{4} x^{2}+y^{2}=4$.

Solution:

- Set $g(x, y)=\frac{1}{4} x^{2}+y^{2}$.
- Set $\nabla f=\langle 4 x, 8 y\rangle=\lambda \nabla g=\lambda\left\langle\frac{1}{2} x, 2 y\right\rangle$ and solve:

$$
\begin{aligned}
& 8 y=2 \lambda y \Longrightarrow \lambda=4 \text { or } y=0 . \\
& 4 x=\frac{1}{2} \lambda x \Longrightarrow \lambda=8 \text { or } x=0 .
\end{aligned}
$$

- Since λ cannot simultaneously be 4 and 8 , then x or y is zero.

Problem 11 - Spring 2008

Use the method of Lagrange multipliers to determine all points (x, y) where the function $f(x, y)=2 x^{2}+4 y^{2}+16$ has an extreme value (either a maximum or a minimum) subject to the constraint $\frac{1}{4} x^{2}+y^{2}=4$.

Solution:

- Set $g(x, y)=\frac{1}{4} x^{2}+y^{2}$.
- Set $\nabla f=\langle 4 x, 8 y\rangle=\lambda \nabla g=\lambda\left\langle\frac{1}{2} x, 2 y\right\rangle$ and solve:

$$
\begin{aligned}
& 8 y=2 \lambda y \Longrightarrow \lambda=4 \text { or } y=0 . \\
& 4 x=\frac{1}{2} \lambda x \Longrightarrow \lambda=8 \text { or } x=0 .
\end{aligned}
$$

- Since λ cannot simultaneously be 4 and 8 , then x or y is zero.
- From the constraint $\frac{1}{4} x^{2}+y^{2}=4$,

Problem 11 - Spring 2008

Use the method of Lagrange multipliers to determine all points (x, y) where the function $f(x, y)=2 x^{2}+4 y^{2}+16$ has an extreme value (either a maximum or a minimum) subject to the constraint $\frac{1}{4} x^{2}+y^{2}=4$.

Solution:

- Set $g(x, y)=\frac{1}{4} x^{2}+y^{2}$.
- Set $\nabla f=\langle 4 x, 8 y\rangle=\lambda \nabla g=\lambda\left\langle\frac{1}{2} x, 2 y\right\rangle$ and solve:

$$
\begin{aligned}
& 8 y=2 \lambda y \Longrightarrow \lambda=4 \text { or } y=0 \\
& 4 x=\frac{1}{2} \lambda x \Longrightarrow \lambda=8 \text { or } x=0 .
\end{aligned}
$$

- Since λ cannot simultaneously be 4 and 8 , then x or y is zero.
- From the constraint $\frac{1}{4} x^{2}+y^{2}=4, x=0 \Longrightarrow y= \pm 2$

Problem 11 - Spring 2008

Use the method of Lagrange multipliers to determine all points (x, y) where the function $f(x, y)=2 x^{2}+4 y^{2}+16$ has an extreme value (either a maximum or a minimum) subject to the constraint $\frac{1}{4} x^{2}+y^{2}=4$.

Solution:

- Set $g(x, y)=\frac{1}{4} x^{2}+y^{2}$.
- Set $\nabla f=\langle 4 x, 8 y\rangle=\lambda \nabla g=\lambda\left\langle\frac{1}{2} x, 2 y\right\rangle$ and solve:

$$
\begin{aligned}
& 8 y=2 \lambda y \Longrightarrow \lambda=4 \text { or } y=0 . \\
& 4 x=\frac{1}{2} \lambda x \Longrightarrow \lambda=8 \text { or } x=0 .
\end{aligned}
$$

- Since λ cannot simultaneously be 4 and 8 , then x or y is zero.
- From the constraint $\frac{1}{4} x^{2}+y^{2}=4, x=0 \Longrightarrow y= \pm 2$ and $y=0 \Longrightarrow x= \pm 4$.

Problem 11-Spring 2008

Use the method of Lagrange multipliers to determine all points (x, y) where the function $f(x, y)=2 x^{2}+4 y^{2}+16$ has an extreme value (either a maximum or a minimum) subject to the constraint $\frac{1}{4} x^{2}+y^{2}=4$.

Solution:

- Set $g(x, y)=\frac{1}{4} x^{2}+y^{2}$.
- Set $\nabla f=\langle 4 x, 8 y\rangle=\lambda \nabla g=\lambda\left\langle\frac{1}{2} x, 2 y\right\rangle$ and solve:

$$
\begin{aligned}
& 8 y=2 \lambda y \Longrightarrow \lambda=4 \text { or } y=0 . \\
& 4 x=\frac{1}{2} \lambda x \Longrightarrow \lambda=8 \text { or } x=0 .
\end{aligned}
$$

- Since λ cannot simultaneously be 4 and 8 , then x or y is zero.
- From the constraint $\frac{1}{4} x^{2}+y^{2}=4, x=0 \Longrightarrow y= \pm 2$ and

$$
y=0 \Longrightarrow x= \pm 4 .
$$

- We need to check the values of f at the points $(0, \pm 2),(\pm 4,0)$:

Problem 11 - Spring 2008

Use the method of Lagrange multipliers to determine all points (x, y) where the function $f(x, y)=2 x^{2}+4 y^{2}+16$ has an extreme value (either a maximum or a minimum) subject to the constraint $\frac{1}{4} x^{2}+y^{2}=4$.

Solution:

- Set $g(x, y)=\frac{1}{4} x^{2}+y^{2}$.
- Set $\nabla f=\langle 4 x, 8 y\rangle=\lambda \nabla g=\lambda\left\langle\frac{1}{2} x, 2 y\right\rangle$ and solve:

$$
\begin{aligned}
& 8 y=2 \lambda y \Longrightarrow \lambda=4 \text { or } y=0 . \\
& 4 x=\frac{1}{2} \lambda x \Longrightarrow \lambda=8 \text { or } x=0 .
\end{aligned}
$$

- Since λ cannot simultaneously be 4 and 8 , then x or y is zero.
- From the constraint $\frac{1}{4} x^{2}+y^{2}=4, x=0 \Longrightarrow y= \pm 2$ and

$$
y=0 \Longrightarrow x= \pm 4 .
$$

- We need to check the values of f at the points $(0, \pm 2),(\pm 4,0)$:

$$
f(0, \pm 2)=32 \quad f(\pm 4,0)=48
$$

Problem 11 - Spring 2008

Use the method of Lagrange multipliers to determine all points (x, y) where the function $f(x, y)=2 x^{2}+4 y^{2}+16$ has an extreme value (either a maximum or a minimum) subject to the constraint $\frac{1}{4} x^{2}+y^{2}=4$.

Solution:

- Set $g(x, y)=\frac{1}{4} x^{2}+y^{2}$.
- Set $\nabla f=\langle 4 x, 8 y\rangle=\lambda \nabla g=\lambda\left\langle\frac{1}{2} x, 2 y\right\rangle$ and solve:

$$
\begin{aligned}
& 8 y=2 \lambda y \Longrightarrow \lambda=4 \text { or } y=0 . \\
& 4 x=\frac{1}{2} \lambda x \Longrightarrow \lambda=8 \text { or } x=0 .
\end{aligned}
$$

- Since λ cannot simultaneously be 4 and 8 , then x or y is zero.
- From the constraint $\frac{1}{4} x^{2}+y^{2}=4, x=0 \Longrightarrow y= \pm 2$ and $y=0 \Longrightarrow x= \pm 4$.
- We need to check the values of f at the points $(0, \pm 2),(\pm 4,0)$:

$$
f(0, \pm 2)=32 \quad f(\pm 4,0)=48
$$

- Hence, $f(x, y)$ has its minimum value of 32 at the points $(0, \pm 2)$ and its maximum value of 48 at the points $(\pm 4,0)$.

Problem 12 - Fall 2007

Find the x and y coordinates of all critical points of the function

$$
f(x, y)=2 x^{3}-6 x^{2}+x y^{2}+y^{2}
$$

and use the Second Derivative Test to classify them as local minima, local maxima or saddle points.

Problem 12 - Fall 2007

Find the x and y coordinates of all critical points of the function

$$
f(x, y)=2 x^{3}-6 x^{2}+x y^{2}+y^{2}
$$

and use the Second Derivative Test to classify them as local minima, local maxima or saddle points.

Solution:

- First calculate $\nabla f(x, y)$ and set equal to $(0,0)$:

Problem 12 - Fall 2007

Find the x and y coordinates of all critical points of the function

$$
f(x, y)=2 x^{3}-6 x^{2}+x y^{2}+y^{2}
$$

and use the Second Derivative Test to classify them as local minima, local maxima or saddle points.

Solution:

- First calculate $\nabla f(x, y)$ and set equal to $(0,0)$:

$$
\nabla f(x, y)=\left\langle 6 x^{2}-12 x+y^{2}, 2 x y+2 y\right\rangle=\langle 0,0\rangle .
$$

Problem 12 - Fall 2007

Find the x and y coordinates of all critical points of the function

$$
f(x, y)=2 x^{3}-6 x^{2}+x y^{2}+y^{2}
$$

and use the Second Derivative Test to classify them as local minima, local maxima or saddle points.

Solution:

- First calculate $\nabla f(x, y)$ and set equal to $(0,0)$:

$$
\begin{aligned}
& \quad \nabla f(x, y)=\left\langle 6 x^{2}-12 x+y^{2}, 2 x y+2 y\right\rangle=\langle 0,0\rangle . \\
& \Longrightarrow 2 y(x+1)=0
\end{aligned}
$$

Problem 12 - Fall 2007

Find the x and y coordinates of all critical points of the function

$$
f(x, y)=2 x^{3}-6 x^{2}+x y^{2}+y^{2}
$$

and use the Second Derivative Test to classify them as local minima, local maxima or saddle points.

Solution:

- First calculate $\nabla f(x, y)$ and set equal to $(0,0)$:

$$
\begin{aligned}
& \nabla f(x, y)=\left\langle 6 x^{2}-12 x+y^{2}, 2 x y+2 y\right\rangle=\langle 0,0\rangle . \\
& \Longrightarrow 2 y(x+1)=0 \text { and so } y=0 \text { or } x=-1 .
\end{aligned}
$$

Problem 12 - Fall 2007

Find the x and y coordinates of all critical points of the function

$$
f(x, y)=2 x^{3}-6 x^{2}+x y^{2}+y^{2}
$$

and use the Second Derivative Test to classify them as local minima, local maxima or saddle points.

Solution:

- First calculate $\nabla f(x, y)$ and set equal to $(0,0)$:

$$
\nabla f(x, y)=\left\langle 6 x^{2}-12 x+y^{2}, 2 x y+2 y\right\rangle=\langle 0,0\rangle .
$$

$\Longrightarrow 2 y(x+1)=0$ and so $y=0$ or $x=-1$.

- Suppose $y=0$. Then $6 x^{2}-12 x=6 x(x-2)=0$ and $x=0$ or $x=2$.

Problem 12 - Fall 2007

Find the x and y coordinates of all critical points of the function

$$
f(x, y)=2 x^{3}-6 x^{2}+x y^{2}+y^{2}
$$

and use the Second Derivative Test to classify them as local minima, local maxima or saddle points.

Solution:

- First calculate $\nabla f(x, y)$ and set equal to $(0,0)$:

$$
\nabla f(x, y)=\left\langle 6 x^{2}-12 x+y^{2}, 2 x y+2 y\right\rangle=\langle 0,0\rangle .
$$

$\Longrightarrow 2 y(x+1)=0$ and so $y=0$ or $x=-1$.

- Suppose $y=0$. Then $6 x^{2}-12 x=6 x(x-2)=0$ and $x=0$ or $x=2$.
- Suppose $x=-1$. Then $6+12+y^{2}=0$, which is impossible.

Problem 12 - Fall 2007

Find the x and y coordinates of all critical points of the function

$$
f(x, y)=2 x^{3}-6 x^{2}+x y^{2}+y^{2}
$$

and use the Second Derivative Test to classify them as local minima, local maxima or saddle points.

Solution:

- First calculate $\nabla f(x, y)$ and set equal to $(0,0)$:

$$
\nabla f(x, y)=\left\langle 6 x^{2}-12 x+y^{2}, 2 x y+2 y\right\rangle=\langle 0,0\rangle .
$$

$\Longrightarrow 2 y(x+1)=0$ and so $y=0$ or $x=-1$.

- Suppose $y=0$. Then $6 x^{2}-12 x=6 x(x-2)=0$ and $x=0$ or $x=2$.
- Suppose $x=-1$. Then $6+12+y^{2}=0$, which is impossible.
- The set of critical points is $\{(0,0),(2,0)\}$.

Problem 12 - Fall 2007

Find the x and y coordinates of all critical points of the function

$$
f(x, y)=2 x^{3}-6 x^{2}+x y^{2}+y^{2}
$$

and use the Second Derivative Test to classify them as local minima, local maxima or saddle points.

Solution:

- First calculate $\nabla f(x, y)$ and set equal to $(0,0)$:

$$
\nabla f(x, y)=\left\langle 6 x^{2}-12 x+y^{2}, 2 x y+2 y\right\rangle=\langle 0,0\rangle .
$$

$\Longrightarrow 2 y(x+1)=0$ and so $y=0$ or $x=-1$.

- Suppose $y=0$. Then $6 x^{2}-12 x=6 x(x-2)=0$ and $x=0$ or $x=2$.
- Suppose $x=-1$. Then $6+12+y^{2}=0$, which is impossible.
- The set of critical points is $\{(0,0),(2,0)\}$.
- Next calculate:

$$
D=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|
$$

Problem 12 - Fall 2007

Find the x and y coordinates of all critical points of the function

$$
f(x, y)=2 x^{3}-6 x^{2}+x y^{2}+y^{2}
$$

and use the Second Derivative Test to classify them as local minima, local maxima or saddle points.

Solution:

- First calculate $\nabla f(x, y)$ and set equal to $(0,0)$:

$$
\nabla f(x, y)=\left\langle 6 x^{2}-12 x+y^{2}, 2 x y+2 y\right\rangle=\langle 0,0\rangle .
$$

$\Longrightarrow 2 y(x+1)=0$ and so $y=0$ or $x=-1$.

- Suppose $y=0$. Then $6 x^{2}-12 x=6 x(x-2)=0$ and $x=0$ or $x=2$.
- Suppose $x=-1$. Then $6+12+y^{2}=0$, which is impossible.
- The set of critical points is $\{(0,0),(2,0)\}$.
- Next calculate:

$$
D=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|=\left|\begin{array}{cc}
12 x-12 & 2 y \\
2 y & 2 x+2
\end{array}\right|
$$

Problem 12 - Fall 2007

Find the x and y coordinates of all critical points of the function

$$
f(x, y)=2 x^{3}-6 x^{2}+x y^{2}+y^{2}
$$

and use the Second Derivative Test to classify them as local minima, local maxima or saddle points.

Solution:

- First calculate $\nabla f(x, y)$ and set equal to $(0,0)$:

$$
\nabla f(x, y)=\left\langle 6 x^{2}-12 x+y^{2}, 2 x y+2 y\right\rangle=\langle 0,0\rangle .
$$

$\Longrightarrow 2 y(x+1)=0$ and so $y=0$ or $x=-1$.

- Suppose $y=0$. Then $6 x^{2}-12 x=6 x(x-2)=0$ and $x=0$ or $x=2$.
- Suppose $x=-1$. Then $6+12+y^{2}=0$, which is impossible.
- The set of critical points is $\{(0,0),(2,0)\}$.
- Next calculate:

$$
D=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|=\left|\begin{array}{cc}
12 x-12 & 2 y \\
2 y & 2 x+2
\end{array}\right|=24 x^{2}-24-4 y^{2} .
$$

Problem 12-Fall 2007

Find the x and y coordinates of all critical points of the function

$$
f(x, y)=2 x^{3}-6 x^{2}+x y^{2}+y^{2}
$$

and use the Second Derivative Test to classify them as local minima, local maxima or saddle points.

Solution:

- First calculate $\nabla f(x, y)$ and set equal to $(0,0)$:

$$
\nabla f(x, y)=\left\langle 6 x^{2}-12 x+y^{2}, 2 x y+2 y\right\rangle=\langle 0,0\rangle .
$$

$\Longrightarrow 2 y(x+1)=0$ and so $y=0$ or $x=-1$.

- Suppose $y=0$. Then $6 x^{2}-12 x=6 x(x-2)=0$ and $x=0$ or $x=2$.
- Suppose $x=-1$. Then $6+12+y^{2}=0$, which is impossible.
- The set of critical points is $\{(0,0),(2,0)\}$.
- Next calculate:

$$
D=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|=\left|\begin{array}{cc}
12 x-12 & 2 y \\
2 y & 2 x+2
\end{array}\right|=24 x^{2}-24-4 y^{2} .
$$

- $D(0,0)=-24<0$ and so $(0,0)$ is a saddle point.

Problem 12-Fall 2007

Find the x and y coordinates of all critical points of the function

$$
f(x, y)=2 x^{3}-6 x^{2}+x y^{2}+y^{2}
$$

and use the Second Derivative Test to classify them as local minima, local maxima or saddle points.

Solution:

- First calculate $\nabla f(x, y)$ and set equal to $(0,0)$:

$$
\nabla f(x, y)=\left\langle 6 x^{2}-12 x+y^{2}, 2 x y+2 y\right\rangle=\langle 0,0\rangle .
$$

$\Longrightarrow 2 y(x+1)=0$ and so $y=0$ or $x=-1$.

- Suppose $y=0$. Then $6 x^{2}-12 x=6 x(x-2)=0$ and $x=0$ or $x=2$.
- Suppose $x=-1$. Then $6+12+y^{2}=0$, which is impossible.
- The set of critical points is $\{(0,0),(2,0)\}$.
- Next calculate:

$$
D=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|=\left|\begin{array}{cc}
12 x-12 & 2 y \\
2 y & 2 x+2
\end{array}\right|=24 x^{2}-24-4 y^{2}
$$

- $D(0,0)=-24<0$ and so $(0,0)$ is a saddle point.
- $D(2,0)=96-24=72>0$ and $f_{x x}(2,0)=12>0$,

Problem 12-Fall 2007

Find the x and y coordinates of all critical points of the function

$$
f(x, y)=2 x^{3}-6 x^{2}+x y^{2}+y^{2}
$$

and use the Second Derivative Test to classify them as local minima, local maxima or saddle points.

Solution:

- First calculate $\nabla f(x, y)$ and set equal to $(0,0)$:

$$
\nabla f(x, y)=\left\langle 6 x^{2}-12 x+y^{2}, 2 x y+2 y\right\rangle=\langle 0,0\rangle .
$$

$\Longrightarrow 2 y(x+1)=0$ and so $y=0$ or $x=-1$.

- Suppose $y=0$. Then $6 x^{2}-12 x=6 x(x-2)=0$ and $x=0$ or $x=2$.
- Suppose $x=-1$. Then $6+12+y^{2}=0$, which is impossible.
- The set of critical points is $\{(0,0),(2,0)\}$.
- Next calculate:

$$
D=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|=\left|\begin{array}{cc}
12 x-12 & 2 y \\
2 y & 2 x+2
\end{array}\right|=24 x^{2}-24-4 y^{2} .
$$

- $D(0,0)=-24<0$ and so $(0,0)$ is a saddle point.
- $D(2,0)=96-24=72>0$ and $f_{x x}(2,0)=12>0$, so $(2,0)$ is a local minimum.

Problem 13(a) - Fall 2007

A hiker is walking on a mountain path. The surface of the mountain is modeled by $z=1-4 x^{2}-3 y^{2}$. The positive x-axis points to East direction and the positive y-axis points North. Suppose the hiker is now at the point $P\left(\frac{1}{4},-\frac{1}{2}, 0\right)$ heading North, is she ascending or descending? Justify your answers.

Problem 13(a) - Fall 2007

A hiker is walking on a mountain path. The surface of the mountain is modeled by $z=1-4 x^{2}-3 y^{2}$. The positive x-axis points to East direction and the positive y-axis points North. Suppose the hiker is now at the point $P\left(\frac{1}{4},-\frac{1}{2}, 0\right)$ heading North, is she ascending or descending? Justify your answers.

Solution:

- Let $f(x, y)=z=1-4 x^{2}-3 y^{2}$.

Problem 13(a) - Fall 2007

A hiker is walking on a mountain path. The surface of the mountain is modeled by $z=1-4 x^{2}-3 y^{2}$. The positive x-axis points to East direction and the positive y-axis points North. Suppose the hiker is now at the point $P\left(\frac{1}{4},-\frac{1}{2}, 0\right)$ heading North, is she ascending or descending? Justify your answers.

Solution:

- Let $f(x, y)=z=1-4 x^{2}-3 y^{2}$.
- This is a problem where we need to calculate the sign of the directional derivative $D_{\langle 0,1\rangle} f\left(\frac{1}{4},-\frac{1}{2}\right)=\nabla f\left(\frac{1}{4},-\frac{1}{2}\right) \cdot\langle 0,1\rangle$, where $\langle 0,1\rangle$ represents North.

Problem 13(a) - Fall 2007

A hiker is walking on a mountain path. The surface of the mountain is modeled by $z=1-4 x^{2}-3 y^{2}$. The positive x-axis points to East direction and the positive y-axis points North. Suppose the hiker is now at the point $P\left(\frac{1}{4},-\frac{1}{2}, 0\right)$ heading North, is she ascending or descending? Justify your answers.

Solution:

- Let $f(x, y)=z=1-4 x^{2}-3 y^{2}$.
- This is a problem where we need to calculate the sign of the directional derivative $D_{\langle 0,1\rangle} f\left(\frac{1}{4},-\frac{1}{2}\right)=\nabla f\left(\frac{1}{4},-\frac{1}{2}\right) \cdot\langle 0,1\rangle$, where $\langle 0,1\rangle$ represents North.
- Calculating, we obtain:

$$
\nabla f(x, y)=\langle-8 x,-6 y\rangle \quad \nabla f\left(\frac{1}{4},-\frac{1}{2}\right)=\langle-2,3\rangle .
$$

Problem 13(a) - Fall 2007

A hiker is walking on a mountain path. The surface of the mountain is modeled by $z=1-4 x^{2}-3 y^{2}$. The positive x-axis points to East direction and the positive y-axis points North. Suppose the hiker is now at the point $P\left(\frac{1}{4},-\frac{1}{2}, 0\right)$ heading North, is she ascending or descending? Justify your answers.

Solution:

- Let $f(x, y)=z=1-4 x^{2}-3 y^{2}$.
- This is a problem where we need to calculate the sign of the directional derivative $D_{\langle 0,1\rangle} f\left(\frac{1}{4},-\frac{1}{2}\right)=\nabla f\left(\frac{1}{4},-\frac{1}{2}\right) \cdot\langle 0,1\rangle$, where $\langle 0,1\rangle$ represents North.
- Calculating, we obtain:

$$
\nabla f(x, y)=\langle-8 x,-6 y\rangle \quad \nabla f\left(\frac{1}{4},-\frac{1}{2}\right)=\langle-2,3\rangle .
$$

- Hence,

$$
D_{\langle 0,1\rangle} f\left(\frac{1}{4},-\frac{1}{2}\right)
$$

Problem 13(a) - Fall 2007

A hiker is walking on a mountain path. The surface of the mountain is modeled by $z=1-4 x^{2}-3 y^{2}$. The positive x-axis points to East direction and the positive y-axis points North. Suppose the hiker is now at the point $P\left(\frac{1}{4},-\frac{1}{2}, 0\right)$ heading North, is she ascending or descending? Justify your answers.

Solution:

- Let $f(x, y)=z=1-4 x^{2}-3 y^{2}$.
- This is a problem where we need to calculate the sign of the directional derivative $D_{\langle 0,1\rangle} f\left(\frac{1}{4},-\frac{1}{2}\right)=\nabla f\left(\frac{1}{4},-\frac{1}{2}\right) \cdot\langle 0,1\rangle$, where $\langle 0,1\rangle$ represents North.
- Calculating, we obtain:

$$
\nabla f(x, y)=\langle-8 x,-6 y\rangle \quad \nabla f\left(\frac{1}{4},-\frac{1}{2}\right)=\langle-2,3\rangle
$$

- Hence,

$$
D_{\langle 0,1\rangle} f\left(\frac{1}{4},-\frac{1}{2}\right)=\langle-2,3\rangle \cdot\langle 0,1\rangle
$$

Problem 13(a) - Fall 2007

A hiker is walking on a mountain path. The surface of the mountain is modeled by $z=1-4 x^{2}-3 y^{2}$. The positive x-axis points to East direction and the positive y-axis points North. Suppose the hiker is now at the point $P\left(\frac{1}{4},-\frac{1}{2}, 0\right)$ heading North, is she ascending or descending? Justify your answers.

Solution:

- Let $f(x, y)=z=1-4 x^{2}-3 y^{2}$.
- This is a problem where we need to calculate the sign of the directional derivative $D_{\langle 0,1\rangle} f\left(\frac{1}{4},-\frac{1}{2}\right)=\nabla f\left(\frac{1}{4},-\frac{1}{2}\right) \cdot\langle 0,1\rangle$, where $\langle 0,1\rangle$ represents North.
- Calculating, we obtain:

$$
\nabla f(x, y)=\langle-8 x,-6 y\rangle \quad \nabla f\left(\frac{1}{4},-\frac{1}{2}\right)=\langle-2,3\rangle
$$

- Hence,

$$
D_{\langle 0,1\rangle} f\left(\frac{1}{4},-\frac{1}{2}\right)=\langle-2,3\rangle \cdot\langle 0,1\rangle=3>0,
$$

Problem 13(a) - Fall 2007

A hiker is walking on a mountain path. The surface of the mountain is modeled by $z=1-4 x^{2}-3 y^{2}$. The positive x-axis points to East direction and the positive y-axis points North. Suppose the hiker is now at the point $P\left(\frac{1}{4},-\frac{1}{2}, 0\right)$ heading North, is she ascending or descending? Justify your answers.

Solution:

- Let $f(x, y)=z=1-4 x^{2}-3 y^{2}$.
- This is a problem where we need to calculate the sign of the directional derivative $D_{\langle 0,1\rangle} f\left(\frac{1}{4},-\frac{1}{2}\right)=\nabla f\left(\frac{1}{4},-\frac{1}{2}\right) \cdot\langle 0,1\rangle$, where $\langle 0,1\rangle$ represents North.
- Calculating, we obtain:

$$
\nabla f(x, y)=\langle-8 x,-6 y\rangle \quad \nabla f\left(\frac{1}{4},-\frac{1}{2}\right)=\langle-2,3\rangle
$$

- Hence,

$$
D_{\langle 0,1\rangle} f\left(\frac{1}{4},-\frac{1}{2}\right)=\langle-2,3\rangle \cdot\langle 0,1\rangle=3>0
$$

which means that she is ascending.

Problem 13(b) - Fall 2007

A hiker is walking on a mountain path. The surface of the mountain is modeled by $z=1-4 x^{2}-3 y^{2}$. The positive x-axis points to East direction and the positive y-axis points North. Justify your answers.
When the hiker is at the point $Q\left(\frac{1}{4}, 0, \frac{3}{4}\right)$, in which direction should she initially head to ascend most rapidly?

Problem 13(b) - Fall 2007

A hiker is walking on a mountain path. The surface of the mountain is modeled by $z=1-4 x^{2}-3 y^{2}$. The positive x-axis points to East direction and the positive y-axis points North. Justify your answers.
When the hiker is at the point $Q\left(\frac{1}{4}, 0, \frac{3}{4}\right)$, in which direction should she initially head to ascend most rapidly?

Solution:

- Recall that $\nabla f(x, y)=\langle-8 x,-6 y\rangle$.

Problem 13(b) - Fall 2007

A hiker is walking on a mountain path. The surface of the mountain is modeled by $z=1-4 x^{2}-3 y^{2}$. The positive x-axis points to East direction and the positive y-axis points North. Justify your answers.
When the hiker is at the point $Q\left(\frac{1}{4}, 0, \frac{3}{4}\right)$, in which direction should she initially head to ascend most rapidly?

Solution:

- Recall that $\nabla f(x, y)=\langle-8 x,-6 y\rangle$.
- The direction of greatest ascent is in the direction $\mathbf{v}=\nabla f$ at the point $\left(\frac{1}{4}, 0\right)$ in the $x y$-plane.

Problem 13(b) - Fall 2007

A hiker is walking on a mountain path. The surface of the mountain is modeled by $z=1-4 x^{2}-3 y^{2}$. The positive x-axis points to East direction and the positive y-axis points North. Justify your answers.
When the hiker is at the point $Q\left(\frac{1}{4}, 0, \frac{3}{4}\right)$, in which direction should she initially head to ascend most rapidly?

Solution:

- Recall that $\nabla f(x, y)=\langle-8 x,-6 y\rangle$.
- The direction of greatest ascent is in the direction $\mathbf{v}=\nabla f$ at the point $\left(\frac{1}{4}, 0\right)$ in the $x y$-plane.
- Thus,

$$
\mathbf{v}=\nabla f\left(\frac{1}{4}, 0\right)
$$

Problem 13(b) - Fall 2007

A hiker is walking on a mountain path. The surface of the mountain is modeled by $z=1-4 x^{2}-3 y^{2}$. The positive x-axis points to East direction and the positive y-axis points North. Justify your answers.
When the hiker is at the point $Q\left(\frac{1}{4}, 0, \frac{3}{4}\right)$, in which direction should she initially head to ascend most rapidly?

Solution:

- Recall that $\nabla f(x, y)=\langle-8 x,-6 y\rangle$.
- The direction of greatest ascent is in the direction $\mathbf{v}=\nabla f$ at the point $\left(\frac{1}{4}, 0\right)$ in the $x y$-plane.
- Thus,

$$
\mathbf{v}=\nabla f\left(\frac{1}{4}, 0\right)=\langle-2,0\rangle
$$

Problem 13(b) - Fall 2007

A hiker is walking on a mountain path. The surface of the mountain is modeled by $z=1-4 x^{2}-3 y^{2}$. The positive x-axis points to East direction and the positive y-axis points North. Justify your answers.
When the hiker is at the point $Q\left(\frac{1}{4}, 0, \frac{3}{4}\right)$, in which direction should she initially head to ascend most rapidly?

Solution:

- Recall that $\nabla f(x, y)=\langle-8 x,-6 y\rangle$.
- The direction of greatest ascent is in the direction $\mathbf{v}=\nabla f$ at the point $\left(\frac{1}{4}, 0\right)$ in the $x y$-plane.
- Thus,

$$
\mathbf{v}=\nabla f\left(\frac{1}{4}, 0\right)=\langle-2,0\rangle
$$

which means that she should go West.

Problem 14 - Fall 2007

Find the volume \mathbf{V} of the solid bounded by the surface $z=6-x y$ and the planes $x=2, x=-2, y=0, y=3$ and $z=0$.

Problem 14 - Fall 2007

Find the volume \mathbf{V} of the solid bounded by the surface $z=6-x y$ and the planes $x=2, x=-2, y=0, y=3$ and $z=0$.

Solution:

- Note that the graph of $f(x, y)=z=6-x y$ is nonnegative over the rectangle $\mathbf{R}=[-2,2] \times[0,3]$ and the volume \mathbf{V} described is the volume under the graph.

Problem 14 - Fall 2007

Find the volume \mathbf{V} of the solid bounded by the surface $z=6-x y$ and the planes $x=2, x=-2, y=0, y=3$ and $z=0$.

Solution:

- Note that the graph of $f(x, y)=z=6-x y$ is nonnegative over the rectangle $\mathbf{R}=[-2,2] \times[0,3]$ and the volume \mathbf{V} described is the volume under the graph.
- Applying Fubini's Theorem gives:

$$
\mathbf{V}=\int_{-2}^{2} \int_{0}^{3} 6-x y d y d x
$$

Problem 14 - Fall 2007

Find the volume \mathbf{V} of the solid bounded by the surface $z=6-x y$ and the planes $x=2, x=-2, y=0, y=3$ and $z=0$.

Solution:

- Note that the graph of $f(x, y)=z=6-x y$ is nonnegative over the rectangle $\mathbf{R}=[-2,2] \times[0,3]$ and the volume \mathbf{V} described is the volume under the graph.
- Applying Fubini's Theorem gives:

$$
\mathbf{V}=\int_{-2}^{2} \int_{0}^{3} 6-x y d y d x=\int_{-2}^{2}\left[6 y-\frac{1}{2} x y^{2}\right]_{0}^{3} d x
$$

Problem 14 - Fall 2007

Find the volume \mathbf{V} of the solid bounded by the surface $z=6-x y$ and the planes $x=2, x=-2, y=0, y=3$ and $z=0$.

Solution:

- Note that the graph of $f(x, y)=z=6-x y$ is nonnegative over the rectangle $\mathbf{R}=[-2,2] \times[0,3]$ and the volume \mathbf{V} described is the volume under the graph.
- Applying Fubini's Theorem gives:

$$
\begin{aligned}
& \quad \mathbf{V}=\int_{-2}^{2} \int_{0}^{3} 6-x y d y d x=\int_{-2}^{2}\left[6 y-\frac{1}{2} x y^{2}\right]_{0}^{3} d x \\
& =\int_{-2}^{2}\left(18-\frac{9}{2} x\right) d x
\end{aligned}
$$

Problem 14 - Fall 2007

Find the volume \mathbf{V} of the solid bounded by the surface $z=6-x y$ and the planes $x=2, x=-2, y=0, y=3$ and $z=0$.

Solution:

- Note that the graph of $f(x, y)=z=6-x y$ is nonnegative over the rectangle $\mathbf{R}=[-2,2] \times[0,3]$ and the volume \mathbf{V} described is the volume under the graph.
- Applying Fubini's Theorem gives:

$$
\begin{aligned}
& \quad \mathbf{V}=\int_{-2}^{2} \int_{0}^{3} 6-x y d y d x=\int_{-2}^{2}\left[6 y-\frac{1}{2} x y^{2}\right]_{0}^{3} d x \\
& =\int_{-2}^{2}\left(18-\frac{9}{2} x\right) d x=18 x-\left.\frac{9}{4} x^{2}\right|_{-2} ^{2}
\end{aligned}
$$

Problem 14 - Fall 2007

Find the volume \mathbf{V} of the solid bounded by the surface $z=6-x y$ and the planes $x=2, x=-2, y=0, y=3$ and $z=0$.

Solution:

- Note that the graph of $f(x, y)=z=6-x y$ is nonnegative over the rectangle $\mathbf{R}=[-2,2] \times[0,3]$ and the volume \mathbf{V} described is the volume under the graph.
- Applying Fubini's Theorem gives:

$$
\begin{gathered}
\mathbf{V}=\int_{-2}^{2} \int_{0}^{3} 6-x y d y d x=\int_{-2}^{2}\left[6 y-\frac{1}{2} x y^{2}\right]_{0}^{3} d x \\
=\int_{-2}^{2}\left(18-\frac{9}{2} x\right) d x=18 x-\left.\frac{9}{4} x^{2}\right|_{-2} ^{2}=(36-9)-(-36-9)
\end{gathered}
$$

Problem 14 - Fall 2007

Find the volume \mathbf{V} of the solid bounded by the surface $z=6-x y$ and the planes $x=2, x=-2, y=0, y=3$ and $z=0$.

Solution:

- Note that the graph of $f(x, y)=z=6-x y$ is nonnegative over the rectangle $\mathbf{R}=[-2,2] \times[0,3]$ and the volume \mathbf{V} described is the volume under the graph.
- Applying Fubini's Theorem gives:

$$
\begin{gathered}
\mathbf{V}=\int_{-2}^{2} \int_{0}^{3} 6-x y d y d x=\int_{-2}^{2}\left[6 y-\frac{1}{2} x y^{2}\right]_{0}^{3} d x \\
=\int_{-2}^{2}\left(18-\frac{9}{2} x\right) d x=18 x-\left.\frac{9}{4} x^{2}\right|_{-2} ^{2}=(36-9)-(-36-9)=72 .
\end{gathered}
$$

Problem 15 - Fall 2007

Let $z(x, y)=x^{2}+y^{2}-x y$ where $x=s-r$ and $y=y(r, s)$ is an unknown function of r and s. (Note that z can be considered a function of r and s.) Suppose we know that

$$
y(2,3)=3, \quad \frac{\partial y}{\partial r}(2,3)=7, \quad \text { and } \frac{\partial y}{\partial s}(2,3)=-5 .
$$

Calculate $\frac{\partial z}{\partial r}$ when $r=2$ and $s=3$.

Problem 15 - Fall 2007

Let $z(x, y)=x^{2}+y^{2}-x y$ where $x=s-r$ and $y=y(r, s)$ is an unknown function of r and s. (Note that z can be considered a function of r and s.) Suppose we know that

$$
y(2,3)=3, \quad \frac{\partial y}{\partial r}(2,3)=7, \quad \text { and } \frac{\partial y}{\partial s}(2,3)=-5 .
$$

Calculate $\frac{\partial z}{\partial r}$ when $r=2$ and $s=3$.

Solution:

- By the Chain Rule:

$$
\frac{\partial z}{\partial r}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial r}
$$

Problem 15 - Fall 2007

Let $z(x, y)=x^{2}+y^{2}-x y$ where $x=s-r$ and $y=y(r, s)$ is an unknown function of r and s. (Note that z can be considered a function of r and s.) Suppose we know that

$$
y(2,3)=3, \quad \frac{\partial y}{\partial r}(2,3)=7, \quad \text { and } \frac{\partial y}{\partial s}(2,3)=-5 .
$$

Calculate $\frac{\partial z}{\partial r}$ when $r=2$ and $s=3$.

Solution:

- By the Chain Rule:

$$
\frac{\partial z}{\partial r}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial r}=(2 x-y) \frac{\partial x}{\partial r}+(2 y-x) \frac{\partial y}{\partial r}
$$

Problem 15 - Fall 2007

Let $z(x, y)=x^{2}+y^{2}-x y$ where $x=s-r$ and $y=y(r, s)$ is an unknown function of r and s. (Note that z can be considered a function of r and s.) Suppose we know that

$$
y(2,3)=3, \quad \frac{\partial y}{\partial r}(2,3)=7, \quad \text { and } \frac{\partial y}{\partial s}(2,3)=-5 .
$$

Calculate $\frac{\partial z}{\partial r}$ when $r=2$ and $s=3$.

Solution:

- By the Chain Rule:

$$
\frac{\partial z}{\partial r}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial r}=(2 x-y) \frac{\partial x}{\partial r}+(2 y-x) \frac{\partial y}{\partial r}
$$

- Note that $r=2$ and $s=3 \Longrightarrow x=1$ and $y=3$.

Problem 15-Fall 2007

Let $z(x, y)=x^{2}+y^{2}-x y$ where $x=s-r$ and $y=y(r, s)$ is an unknown function of r and s. (Note that z can be considered a function of r and s.) Suppose we know that

$$
y(2,3)=3, \quad \frac{\partial y}{\partial r}(2,3)=7, \quad \text { and } \frac{\partial y}{\partial s}(2,3)=-5 .
$$

Calculate $\frac{\partial z}{\partial r}$ when $r=2$ and $s=3$.

Solution:

- By the Chain Rule:

$$
\frac{\partial z}{\partial r}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial r}=(2 x-y) \frac{\partial x}{\partial r}+(2 y-x) \frac{\partial y}{\partial r}
$$

- Note that $r=2$ and $s=3 \Longrightarrow x=1$ and $y=3$.
- Hence,

$$
\frac{\partial z}{\partial r}
$$

Problem 15-Fall 2007

Let $z(x, y)=x^{2}+y^{2}-x y$ where $x=s-r$ and $y=y(r, s)$ is an unknown function of r and s. (Note that z can be considered a function of r and s.) Suppose we know that

$$
y(2,3)=3, \quad \frac{\partial y}{\partial r}(2,3)=7, \quad \text { and } \frac{\partial y}{\partial s}(2,3)=-5 .
$$

Calculate $\frac{\partial z}{\partial r}$ when $r=2$ and $s=3$.

Solution:

- By the Chain Rule:

$$
\frac{\partial z}{\partial r}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial r}=(2 x-y) \frac{\partial x}{\partial r}+(2 y-x) \frac{\partial y}{\partial r}
$$

- Note that $r=2$ and $s=3 \Longrightarrow x=1$ and $y=3$.
- Hence,

$$
\frac{\partial z}{\partial r}=(2-3)(-1)+(6-1) 7
$$

Problem 15-Fall 2007

Let $z(x, y)=x^{2}+y^{2}-x y$ where $x=s-r$ and $y=y(r, s)$ is an unknown function of r and s. (Note that z can be considered a function of r and s.) Suppose we know that

$$
y(2,3)=3, \quad \frac{\partial y}{\partial r}(2,3)=7, \quad \text { and } \frac{\partial y}{\partial s}(2,3)=-5 .
$$

Calculate $\frac{\partial z}{\partial r}$ when $r=2$ and $s=3$.

Solution:

- By the Chain Rule:

$$
\frac{\partial z}{\partial r}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial r}=(2 x-y) \frac{\partial x}{\partial r}+(2 y-x) \frac{\partial y}{\partial r}
$$

- Note that $r=2$ and $s=3 \Longrightarrow x=1$ and $y=3$.
- Hence,

$$
\frac{\partial z}{\partial r}=(2-3)(-1)+(6-1) 7=1+35
$$

Problem 15-Fall 2007

Let $z(x, y)=x^{2}+y^{2}-x y$ where $x=s-r$ and $y=y(r, s)$ is an unknown function of r and s. (Note that z can be considered a function of r and s.) Suppose we know that

$$
y(2,3)=3, \quad \frac{\partial y}{\partial r}(2,3)=7, \quad \text { and } \frac{\partial y}{\partial s}(2,3)=-5 .
$$

Calculate $\frac{\partial z}{\partial r}$ when $r=2$ and $s=3$.

Solution:

- By the Chain Rule:

$$
\frac{\partial z}{\partial r}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial r}=(2 x-y) \frac{\partial x}{\partial r}+(2 y-x) \frac{\partial y}{\partial r} .
$$

- Note that $r=2$ and $s=3 \Longrightarrow x=1$ and $y=3$.
- Hence,

$$
\frac{\partial z}{\partial r}=(2-3)(-1)+(6-1) 7=1+35=36
$$

Problem 16(a) - Fall 2007
Let $\mathbf{F}(x, y, z)=x^{2}-2 x y-y^{2}+8 x+4 y-z$.
Write the equation of the tangent plane to the surface given by $\mathbf{F}(x, y, z)=0$ at the point $(-2,1,-5)$.

Problem 16(a) - Fall 2007
Let $\mathbf{F}(x, y, z)=x^{2}-2 x y-y^{2}+8 x+4 y-z$.
Write the equation of the tangent plane to the surface given by $\mathbf{F}(x, y, z)=0$ at the point $(-2,1,-5)$.

Solution:

- Note that the normal \mathbf{n} of the plane is $\nabla \mathbf{F}(-2,1,-5)$.

Problem 16(a) - Fall 2007

Let $\mathbf{F}(x, y, z)=x^{2}-2 x y-y^{2}+8 x+4 y-z$.
Write the equation of the tangent plane to the surface given by $\mathbf{F}(x, y, z)=0$ at the point $(-2,1,-5)$.

Solution:

- Note that the normal \mathbf{n} of the plane is $\nabla \mathbf{F}(-2,1,-5)$.
- Calculating, we obtain:

$$
\nabla \mathbf{F}(x, y, z)=\langle 2 x-2 y+8,-2 x-2 y+4,-1\rangle
$$

Problem 16(a) - Fall 2007

Let $\mathbf{F}(x, y, z)=x^{2}-2 x y-y^{2}+8 x+4 y-z$.
Write the equation of the tangent plane to the surface given by $\mathbf{F}(x, y, z)=0$ at the point $(-2,1,-5)$.

Solution:

- Note that the normal \mathbf{n} of the plane is $\nabla \mathbf{F}(-2,1,-5)$.
- Calculating, we obtain:

$$
\nabla \mathbf{F}(x, y, z)=\langle 2 x-2 y+8,-2 x-2 y+4,-1\rangle
$$

- So,

$$
\mathbf{n}=\nabla \mathbf{F}(-2,1,-5)=\langle-4-2+8,4-2+4,-1\rangle=\langle 2,6,-1\rangle .
$$

Problem 16(a) - Fall 2007

Let $\mathbf{F}(x, y, z)=x^{2}-2 x y-y^{2}+8 x+4 y-z$.
Write the equation of the tangent plane to the surface given by $\mathbf{F}(x, y, z)=0$ at the point $(-2,1,-5)$.

Solution:

- Note that the normal \mathbf{n} of the plane is $\nabla \mathbf{F}(-2,1,-5)$.
- Calculating, we obtain:

$$
\nabla \mathbf{F}(x, y, z)=\langle 2 x-2 y+8,-2 x-2 y+4,-1\rangle
$$

- So,

$$
\mathbf{n}=\nabla \mathbf{F}(-2,1,-5)=\langle-4-2+8,4-2+4,-1\rangle=\langle 2,6,-1\rangle .
$$

- The equation of the tangent plane is:

$$
\mathbf{n} \cdot\langle x+2, y-1, z+5\rangle=2(x+2)+6(y-1)-(z+5)=0 .
$$

Problem 16(b) - Fall 2007

Find the point (a, b, c) on the surface $\mathbf{F}(x, y, z)=0$ at which the tangent plane is horizontal, that is, parallel to the $z=0$ plane.

Problem 16(b) - Fall 2007

Find the point (a, b, c) on the surface $\mathbf{F}(x, y, z)=0$ at which the tangent plane is horizontal, that is, parallel to the $z=0$ plane.

Solution:

- Since $\nabla \mathbf{F}$ is normal to the surface $\mathbf{F}(x, y, z)=0$, a horizontal tangent plane to the surface occurs where $\nabla \mathrm{F}$ is vertical.

Problem 16(b) - Fall 2007

Find the point (a, b, c) on the surface $\mathbf{F}(x, y, z)=0$ at which the tangent plane is horizontal, that is, parallel to the $z=0$ plane.

Solution:

- Since $\nabla \mathbf{F}$ is normal to the surface $\mathbf{F}(x, y, z)=0$, a horizontal tangent plane to the surface occurs where $\nabla \mathbf{F}$ is vertical.
- $\nabla \mathbf{F}$ is vertical on $\mathbf{F}(x, y, z)=0$, when its first 2 coordinates vanish:

Problem 16(b) - Fall 2007

Find the point (a, b, c) on the surface $\mathbf{F}(x, y, z)=0$ at which the tangent plane is horizontal, that is, parallel to the $z=0$ plane.

Solution:

- Since $\nabla \mathbf{F}$ is normal to the surface $\mathbf{F}(x, y, z)=0$, a horizontal tangent plane to the surface occurs where $\nabla \mathbf{F}$ is vertical.
- $\nabla \mathbf{F}$ is vertical on $\mathbf{F}(x, y, z)=0$, when its first 2 coordinates vanish:

$$
\nabla \mathbf{F}=\langle 2 x-2 y+8,-2 x-2 y+4,-1\rangle=\langle 0,0,-1\rangle
$$

Problem 16(b) - Fall 2007

Find the point (a, b, c) on the surface $\mathbf{F}(x, y, z)=0$ at which the tangent plane is horizontal, that is, parallel to the $z=0$ plane.

Solution:

- Since $\nabla \mathbf{F}$ is normal to the surface $\mathbf{F}(x, y, z)=0$, a horizontal tangent plane to the surface occurs where $\nabla \mathbf{F}$ is vertical.
- $\nabla \mathbf{F}$ is vertical on $\mathbf{F}(x, y, z)=0$, when its first 2 coordinates vanish:

$$
\begin{gathered}
\nabla \mathbf{F}=\langle 2 x-2 y+8,-2 x-2 y+4,-1\rangle=\langle 0,0,-1\rangle \Longrightarrow \\
2 x-2 y+8=0 \\
-2 x-2 y+4=0
\end{gathered}
$$

Problem 16(b) - Fall 2007

Find the point (a, b, c) on the surface $\mathbf{F}(x, y, z)=0$ at which the tangent plane is horizontal, that is, parallel to the $z=0$ plane.

Solution:

- Since $\nabla \mathbf{F}$ is normal to the surface $\mathbf{F}(x, y, z)=0$, a horizontal tangent plane to the surface occurs where $\nabla \mathbf{F}$ is vertical.
- $\nabla \mathbf{F}$ is vertical on $\mathbf{F}(x, y, z)=0$, when its first 2 coordinates vanish:

$$
\begin{gathered}
\nabla \mathbf{F}=\langle 2 x-2 y+8,-2 x-2 y+4,-1\rangle=\langle 0,0,-1\rangle \Longrightarrow \\
2 x-2 y+8=0 \\
-2 x-2 y+4=0
\end{gathered}
$$

- Adding these equations $\Longrightarrow 4 y=12$

Problem 16(b) - Fall 2007

Find the point (a, b, c) on the surface $\mathbf{F}(x, y, z)=0$ at which the tangent plane is horizontal, that is, parallel to the $z=0$ plane.

Solution:

- Since $\nabla \mathbf{F}$ is normal to the surface $\mathbf{F}(x, y, z)=0$, a horizontal tangent plane to the surface occurs where $\nabla \mathbf{F}$ is vertical.
- $\nabla \mathbf{F}$ is vertical on $\mathbf{F}(x, y, z)=0$, when its first 2 coordinates vanish:

$$
\begin{gathered}
\nabla \mathbf{F}=\langle 2 x-2 y+8,-2 x-2 y+4,-1\rangle=\langle 0,0,-1\rangle \Longrightarrow \\
2 x-2 y+8=0 \\
-2 x-2 y+4=0
\end{gathered}
$$

- Adding these equations $\Longrightarrow 4 y=12 \Longrightarrow y=3$.

Problem 16(b) - Fall 2007

Find the point (a, b, c) on the surface $\mathbf{F}(x, y, z)=0$ at which the tangent plane is horizontal, that is, parallel to the $z=0$ plane.

Solution:

- Since $\nabla \mathbf{F}$ is normal to the surface $\mathbf{F}(x, y, z)=0$, a horizontal tangent plane to the surface occurs where $\nabla \mathbf{F}$ is vertical.
- $\nabla \mathbf{F}$ is vertical on $\mathbf{F}(x, y, z)=0$, when its first 2 coordinates vanish:

$$
\begin{gathered}
\nabla \mathbf{F}=\langle 2 x-2 y+8,-2 x-2 y+4,-1\rangle=\langle 0,0,-1\rangle \Longrightarrow \\
2 x-2 y+8=0 \\
-2 x-2 y+4=0
\end{gathered}
$$

- Adding these equations $\Longrightarrow 4 y=12 \Longrightarrow y=3$.
- Plugging in $y=3$ in first equation gives

$$
2 x-2 \cdot 3+8=0
$$

Problem 16(b) - Fall 2007

Find the point (a, b, c) on the surface $\mathbf{F}(x, y, z)=0$ at which the tangent plane is horizontal, that is, parallel to the $z=0$ plane.

Solution:

- Since $\nabla \mathbf{F}$ is normal to the surface $\mathbf{F}(x, y, z)=0$, a horizontal tangent plane to the surface occurs where $\nabla \mathbf{F}$ is vertical.
- $\nabla \mathbf{F}$ is vertical on $\mathbf{F}(x, y, z)=0$, when its first 2 coordinates vanish:

$$
\begin{gathered}
\nabla \mathbf{F}=\langle 2 x-2 y+8,-2 x-2 y+4,-1\rangle=\langle 0,0,-1\rangle \Longrightarrow \\
2 x-2 y+8=0 \\
-2 x-2 y+4=0
\end{gathered}
$$

- Adding these equations $\Longrightarrow 4 y=12 \Longrightarrow y=3$.
- Plugging in $y=3$ in first equation gives

$$
2 x-2 \cdot 3+8=0 \Longrightarrow x=-1
$$

Problem 16(b) - Fall 2007

Find the point (a, b, c) on the surface $\mathbf{F}(x, y, z)=0$ at which the tangent plane is horizontal, that is, parallel to the $z=0$ plane.

Solution:

- Since $\nabla \mathbf{F}$ is normal to the surface $\mathbf{F}(x, y, z)=0$, a horizontal tangent plane to the surface occurs where $\nabla \mathbf{F}$ is vertical.
- $\nabla \mathbf{F}$ is vertical on $\mathbf{F}(x, y, z)=0$, when its first 2 coordinates vanish:

$$
\begin{gathered}
\nabla \mathbf{F}=\langle 2 x-2 y+8,-2 x-2 y+4,-1\rangle=\langle 0,0,-1\rangle \Longrightarrow \\
2 x-2 y+8=0 \\
-2 x-2 y+4=0
\end{gathered}
$$

- Adding these equations $\Longrightarrow 4 y=12 \Longrightarrow y=3$.
- Plugging in $y=3$ in first equation gives

$$
2 x-2 \cdot 3+8=0 \Longrightarrow x=-1
$$

- $\mathbf{F}(x, y, z)=x^{2}-2 x y-y^{2}+8 x+4 y-z$ and $\mathbf{F}(-1,3, z)=0$, \Longrightarrow

Problem 16(b) - Fall 2007

Find the point (a, b, c) on the surface $\mathbf{F}(x, y, z)=0$ at which the tangent plane is horizontal, that is, parallel to the $z=0$ plane.

Solution:

- Since $\nabla \mathbf{F}$ is normal to the surface $\mathbf{F}(x, y, z)=0$, a horizontal tangent plane to the surface occurs where $\nabla \mathbf{F}$ is vertical.
- $\nabla \mathbf{F}$ is vertical on $\mathbf{F}(x, y, z)=0$, when its first 2 coordinates vanish:

$$
\begin{gathered}
\nabla \mathbf{F}=\langle 2 x-2 y+8,-2 x-2 y+4,-1\rangle=\langle 0,0,-1\rangle \Longrightarrow \\
2 x-2 y+8=0 \\
-2 x-2 y+4=0
\end{gathered}
$$

- Adding these equations $\Longrightarrow 4 y=12 \Longrightarrow y=3$.
- Plugging in $y=3$ in first equation gives

$$
2 x-2 \cdot 3+8=0 \Longrightarrow x=-1
$$

- $\mathbf{F}(x, y, z)=x^{2}-2 x y-y^{2}+8 x+4 y-z$ and $\mathbf{F}(-1,3, z)=0$,
$\Longrightarrow z=(-1)^{2}-2(-1)(3)-3^{2}+8(-1)+4(3)=2$.

Problem 16(b) - Fall 2007

Find the point (a, b, c) on the surface $\mathbf{F}(x, y, z)=0$ at which the tangent plane is horizontal, that is, parallel to the $z=0$ plane.

Solution:

- Since $\nabla \mathbf{F}$ is normal to the surface $\mathbf{F}(x, y, z)=0$, a horizontal tangent plane to the surface occurs where $\nabla \mathbf{F}$ is vertical.
- $\nabla \mathbf{F}$ is vertical on $\mathbf{F}(x, y, z)=0$, when its first 2 coordinates vanish:

$$
\begin{gathered}
\nabla \mathbf{F}=\langle 2 x-2 y+8,-2 x-2 y+4,-1\rangle=\langle 0,0,-1\rangle \Longrightarrow \\
2 x-2 y+8=0 \\
-2 x-2 y+4=0
\end{gathered}
$$

- Adding these equations $\Longrightarrow 4 y=12 \Longrightarrow y=3$.
- Plugging in $y=3$ in first equation gives

$$
2 x-2 \cdot 3+8=0 \Longrightarrow x=-1
$$

- $\mathbf{F}(x, y, z)=x^{2}-2 x y-y^{2}+8 x+4 y-z$ and $\mathbf{F}(-1,3, z)=0$, $\Longrightarrow z=(-1)^{2}-2(-1)(3)-3^{2}+8(-1)+4(3)=2$.
- The unique point with horizontal tangent plane is $(-1,3,2)$.

Problem 17-Fall 2007

Find the points on the ellipse $x^{2}+4 y^{2}=4$ that are closest to the point $(1,0)$.

Problem 17-Fall 2007

Find the points on the ellipse $x^{2}+4 y^{2}=4$ that are closest to the point $(1,0)$.

Solution:

- We approach this problem using the method of Lagrange multipliers.

Problem 17-Fall 2007

Find the points on the ellipse $x^{2}+4 y^{2}=4$ that are closest to the point $(1,0)$.

Solution:

- We approach this problem using the method of Lagrange multipliers. Let $f(x, y)$ be square of the distance function from $(1,0)$ to an arbitrary point (x, y) in \mathbb{R}^{2}.

Problem 17-Fall 2007

Find the points on the ellipse $x^{2}+4 y^{2}=4$ that are closest to the point $(1,0)$.

Solution:

- We approach this problem using the method of Lagrange multipliers. Let $f(x, y)$ be square of the distance function from $(1,0)$ to an arbitrary point (x, y) in \mathbb{R}^{2}.
- We must find the minimum of $f(x, y)=(x-1)^{2}+y^{2}$, subject to the constraint $g(x, y)=x^{2}+4 y^{2}=4$ (distance squared to $(1,0)$).

Problem 17-Fall 2007

Find the points on the ellipse $x^{2}+4 y^{2}=4$ that are closest to the point $(1,0)$.

Solution:

- We approach this problem using the method of Lagrange multipliers. Let $f(x, y)$ be square of the distance function from $(1,0)$ to an arbitrary point (x, y) in \mathbb{R}^{2}.
- We must find the minimum of $f(x, y)=(x-1)^{2}+y^{2}$, subject to the constraint $g(x, y)=x^{2}+4 y^{2}=4$ (distance squared to $(1,0)$).
- Calculating for some $\lambda \in \mathbb{R}$, $\nabla f(x, y)=\langle 2(x-1), 2 y\rangle=\lambda \nabla g(x, y)=\lambda\langle 2 x, 8 y\rangle$.

Problem 17-Fall 2007

Find the points on the ellipse $x^{2}+4 y^{2}=4$ that are closest to the point $(1,0)$.

Solution:

- We approach this problem using the method of Lagrange multipliers. Let $f(x, y)$ be square of the distance function from $(1,0)$ to an arbitrary point (x, y) in \mathbb{R}^{2}.
- We must find the minimum of $f(x, y)=(x-1)^{2}+y^{2}$, subject to the constraint $g(x, y)=x^{2}+4 y^{2}=4$ (distance squared to $(1,0)$).
- Calculating for some $\lambda \in \mathbb{R}$, $\nabla f(x, y)=\langle 2(x-1), 2 y\rangle=\lambda \nabla g(x, y)=\lambda\langle 2 x, 8 y\rangle$.
- Hence, $2 y=\lambda 8 y$

Problem 17-Fall 2007

Find the points on the ellipse $x^{2}+4 y^{2}=4$ that are closest to the point $(1,0)$.

Solution:

- We approach this problem using the method of Lagrange multipliers. Let $f(x, y)$ be square of the distance function from $(1,0)$ to an arbitrary point (x, y) in \mathbb{R}^{2}.
- We must find the minimum of $f(x, y)=(x-1)^{2}+y^{2}$, subject to the constraint $g(x, y)=x^{2}+4 y^{2}=4$ (distance squared to $(1,0)$).
- Calculating for some $\lambda \in \mathbb{R}$, $\nabla f(x, y)=\langle 2(x-1), 2 y\rangle=\lambda \nabla g(x, y)=\lambda\langle 2 x, 8 y\rangle$.
- Hence, $2 y=\lambda 8 y \Longrightarrow \lambda=\frac{1}{4}$ or $y=0$.

Problem 17-Fall 2007

Find the points on the ellipse $x^{2}+4 y^{2}=4$ that are closest to the point $(1,0)$.

Solution:

- We approach this problem using the method of Lagrange multipliers. Let $f(x, y)$ be square of the distance function from $(1,0)$ to an arbitrary point (x, y) in \mathbb{R}^{2}.
- We must find the minimum of $f(x, y)=(x-1)^{2}+y^{2}$, subject to the constraint $g(x, y)=x^{2}+4 y^{2}=4$ (distance squared to $(1,0)$).
- Calculating for some $\lambda \in \mathbb{R}$, $\nabla f(x, y)=\langle 2(x-1), 2 y\rangle=\lambda \nabla g(x, y)=\lambda\langle 2 x, 8 y\rangle$.
- Hence, $2 y=\lambda 8 y \Longrightarrow \lambda=\frac{1}{4}$ or $y=0$.
- If $y=0$, then the constraint implies $x= \pm 2$.

Problem 17-Fall 2007

Find the points on the ellipse $x^{2}+4 y^{2}=4$ that are closest to the point $(1,0)$.

Solution:

- We approach this problem using the method of Lagrange multipliers. Let $f(x, y)$ be square of the distance function from $(1,0)$ to an arbitrary point (x, y) in \mathbb{R}^{2}.
- We must find the minimum of $f(x, y)=(x-1)^{2}+y^{2}$, subject to the constraint $g(x, y)=x^{2}+4 y^{2}=4$ (distance squared to $(1,0)$).
- Calculating for some $\lambda \in \mathbb{R}$, $\nabla f(x, y)=\langle 2(x-1), 2 y\rangle=\lambda \nabla g(x, y)=\lambda\langle 2 x, 8 y\rangle$.
- Hence, $2 y=\lambda 8 y \Longrightarrow \lambda=\frac{1}{4}$ or $y=0$.
- If $y=0$, then the constraint implies $x= \pm 2$.
- If $\lambda=\frac{1}{4}$, then $2(x-1)=\lambda 2 x=\frac{1}{2} x \Longrightarrow x=\frac{4}{3}$.

Problem 17-Fall 2007

Find the points on the ellipse $x^{2}+4 y^{2}=4$ that are closest to the point $(1,0)$.

Solution:

- We approach this problem using the method of Lagrange multipliers. Let $f(x, y)$ be square of the distance function from $(1,0)$ to an arbitrary point (x, y) in \mathbb{R}^{2}.
- We must find the minimum of $f(x, y)=(x-1)^{2}+y^{2}$, subject to the constraint $g(x, y)=x^{2}+4 y^{2}=4$ (distance squared to $(1,0)$).
- Calculating for some $\lambda \in \mathbb{R}$, $\nabla f(x, y)=\langle 2(x-1), 2 y\rangle=\lambda \nabla g(x, y)=\lambda\langle 2 x, 8 y\rangle$.
- Hence, $2 y=\lambda 8 y \Longrightarrow \lambda=\frac{1}{4}$ or $y=0$.
- If $y=0$, then the constraint implies $x= \pm 2$.
- If $\lambda=\frac{1}{4}$, then $2(x-1)=\lambda 2 x=\frac{1}{2} x \Longrightarrow x=\frac{4}{3}$.
- If $x=\frac{4}{3}$, then the constraint implies $y= \pm \frac{\sqrt{5}}{3}$.

Problem 17 - Fall 2007

Find the points on the ellipse $x^{2}+4 y^{2}=4$ that are closest to the point $(1,0)$.

Solution:

- We approach this problem using the method of Lagrange multipliers. Let $f(x, y)$ be square of the distance function from $(1,0)$ to an arbitrary point (x, y) in \mathbb{R}^{2}.
- We must find the minimum of $f(x, y)=(x-1)^{2}+y^{2}$, subject to the constraint $g(x, y)=x^{2}+4 y^{2}=4$ (distance squared to $(1,0)$).
- Calculating for some $\lambda \in \mathbb{R}$, $\nabla f(x, y)=\langle 2(x-1), 2 y\rangle=\lambda \nabla g(x, y)=\lambda\langle 2 x, 8 y\rangle$.
- Hence, $2 y=\lambda 8 y \Longrightarrow \lambda=\frac{1}{4}$ or $y=0$.
- If $y=0$, then the constraint implies $x= \pm 2$.
- If $\lambda=\frac{1}{4}$, then $2(x-1)=\lambda 2 x=\frac{1}{2} x \Longrightarrow x=\frac{4}{3}$.
- If $x=\frac{4}{3}$, then the constraint implies $y= \pm \frac{\sqrt{5}}{3}$.
- The function $f(x, y)$ has its minimum value at one of the 4 points $(\pm 2,0)$ and $\left(\frac{4}{3}, \pm \frac{\sqrt{5}}{3}\right)$,

Problem 17-Fall 2007

Find the points on the ellipse $x^{2}+4 y^{2}=4$ that are closest to the point $(1,0)$.

Solution:

- We approach this problem using the method of Lagrange multipliers. Let $f(x, y)$ be square of the distance function from $(1,0)$ to an arbitrary point (x, y) in \mathbb{R}^{2}.
- We must find the minimum of $f(x, y)=(x-1)^{2}+y^{2}$, subject to the constraint $g(x, y)=x^{2}+4 y^{2}=4$ (distance squared to $(1,0)$).
- Calculating for some $\lambda \in \mathbb{R}$, $\nabla f(x, y)=\langle 2(x-1), 2 y\rangle=\lambda \nabla g(x, y)=\lambda\langle 2 x, 8 y\rangle$.
- Hence, $2 y=\lambda 8 y \Longrightarrow \lambda=\frac{1}{4}$ or $y=0$.
- If $y=0$, then the constraint implies $x= \pm 2$.
- If $\lambda=\frac{1}{4}$, then $2(x-1)=\lambda 2 x=\frac{1}{2} x \Longrightarrow x=\frac{4}{3}$.
- If $x=\frac{4}{3}$, then the constraint implies $y= \pm \frac{\sqrt{5}}{3}$.
- The function $f(x, y)$ has its minimum value at one of the 4 points $(\pm 2,0)$ and $\left(\frac{4}{3}, \pm \frac{\sqrt{5}}{3}\right)$, and one easily checks its minimum value of $\frac{2}{3}$ occurs at the 2 points $\left(\frac{4}{3}, \pm \frac{\sqrt{5}}{3}\right)$.

Problem 18(a) - Fall 2006

Let $f(x, y)$ be a differentiable function with the following values of the partial derivatives $f_{x}(x, y)$ and $f_{y}(x, y)$ at certain points (x, y)

x	y	$f_{x}(x, y)$	$f_{y}(x, y)$
1	1	-2	4
-1	2	3	-1
1	2	-1	1

(You are given more values than you will need for this problem.) Suppose that x and y are functions of variable $t: x=t^{3} ; y=t^{2}+1$, so that we may regard f as a function of t. Compute the derivative of f with respect to t when $t=1$.

Problem 18(a) - Fall 2006

Let $f(x, y)$ be a differentiable function with the following values of the partial derivatives $f_{x}(x, y)$ and $f_{y}(x, y)$ at certain points (x, y)

x	y	$f_{x}(x, y)$	$f_{y}(x, y)$
1	1	-2	4
-1	2	3	-1
1	2	-1	1

(You are given more values than you will need for this problem.) Suppose that x and y are functions of variable $t: x=t^{3} ; \quad y=t^{2}+1$, so that we may regard f as a function of t. Compute the derivative of f with respect to t when $t=1$.

Solution:

- By the Chain Rule we have:

$$
f^{\prime}(t)=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}
$$

Problem 18(a) - Fall 2006

Let $f(x, y)$ be a differentiable function with the following values of the partial derivatives $f_{x}(x, y)$ and $f_{y}(x, y)$ at certain points (x, y)

x	y	$f_{x}(x, y)$	$f_{y}(x, y)$
1	1	-2	4
-1	2	3	-1
1	2	-1	1

(You are given more values than you will need for this problem.) Suppose that x and y are functions of variable $t: x=t^{3} ; \quad y=t^{2}+1$, so that we may regard f as a function of t. Compute the derivative of f with respect to t when $t=1$.

Solution:

- By the Chain Rule we have:

$$
f^{\prime}(t)=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}=\frac{\partial f}{\partial x} \cdot 3 t^{2}+\frac{\partial f}{\partial y} \cdot 2 t .
$$

Problem 18(a) - Fall 2006

Let $f(x, y)$ be a differentiable function with the following values of the partial derivatives $f_{x}(x, y)$ and $f_{y}(x, y)$ at certain points (x, y)

x	y	$f_{x}(x, y)$	$f_{y}(x, y)$
1	1	-2	4
-1	2	3	-1
1	2	-1	1

(You are given more values than you will need for this problem.) Suppose that x and y are functions of variable $t: x=t^{3} ; \quad y=t^{2}+1$, so that we may regard f as a function of t. Compute the derivative of f with respect to t when $t=1$.

Solution:

- By the Chain Rule we have:

$$
f^{\prime}(t)=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}=\frac{\partial f}{\partial x} \cdot 3 t^{2}+\frac{\partial f}{\partial y} \cdot 2 t .
$$

- Note that when $t=1$, then $x=1$ and $y=2$

Problem 18(a) - Fall 2006

Let $f(x, y)$ be a differentiable function with the following values of the partial derivatives $f_{x}(x, y)$ and $f_{y}(x, y)$ at certain points (x, y)

x	y	$f_{x}(x, y)$	$f_{y}(x, y)$
1	1	-2	4
-1	2	3	-1
1	2	-1	1

(You are given more values than you will need for this problem.) Suppose that x and y are functions of variable $t: x=t^{3} ; \quad y=t^{2}+1$, so that we may regard f as a function of t. Compute the derivative of f with respect to t when $t=1$.

Solution:

- By the Chain Rule we have:

$$
f^{\prime}(t)=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}=\frac{\partial f}{\partial x} \cdot 3 t^{2}+\frac{\partial f}{\partial y} \cdot 2 t .
$$

- Note that when $t=1$, then $x=1$ and $y=2$ and that $\frac{d x}{d t}=3 t^{2}$ and

$$
\frac{d y}{d t}=2 t
$$

Problem 18(a) - Fall 2006

Let $f(x, y)$ be a differentiable function with the following values of the partial derivatives $f_{x}(x, y)$ and $f_{y}(x, y)$ at certain points (x, y)

x	y	$f_{x}(x, y)$	$f_{y}(x, y)$
1	1	-2	4
-1	2	3	-1
1	2	-1	1

(You are given more values than you will need for this problem.) Suppose that x and y are functions of variable $t: x=t^{3} ; \quad y=t^{2}+1$, so that we may regard f as a function of t. Compute the derivative of f with respect to t when $t=1$.

Solution:

- By the Chain Rule we have:

$$
f^{\prime}(t)=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}=\frac{\partial f}{\partial x} \cdot 3 t^{2}+\frac{\partial f}{\partial y} \cdot 2 t .
$$

- Note that when $t=1$, then $x=1$ and $y=2$ and that $\frac{d x}{d t}=3 t^{2}$ and

$$
\frac{d y}{d t}=2 t \Longrightarrow \frac{d x}{d t}(1)=3 \text { and } \frac{d y}{d t}(1)=2
$$

Problem 18(a) - Fall 2006

Let $f(x, y)$ be a differentiable function with the following values of the partial derivatives $f_{x}(x, y)$ and $f_{y}(x, y)$ at certain points (x, y)

x	y	$f_{x}(x, y)$	$f_{y}(x, y)$
1	1	-2	4
-1	2	3	-1
1	2	-1	1

(You are given more values than you will need for this problem.) Suppose that x and y are functions of variable $t: x=t^{3} ; \quad y=t^{2}+1$, so that we may regard f as a function of t. Compute the derivative of f with respect to t when $t=1$.

Solution:

- By the Chain Rule we have:

$$
f^{\prime}(t)=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}=\frac{\partial f}{\partial x} \cdot 3 t^{2}+\frac{\partial f}{\partial y} \cdot 2 t .
$$

- Note that when $t=1$, then $x=1$ and $y=2$ and that $\frac{d x}{d t}=3 t^{2}$ and

$$
\frac{d y}{d t}=2 t \Longrightarrow \frac{d x}{d t}(1)=3 \text { and } \frac{d y}{d t}(1)=2
$$

- Plug in the values in the table into the Chain Rule at $t=1$:

Problem 18(a) - Fall 2006

Let $f(x, y)$ be a differentiable function with the following values of the partial derivatives $f_{x}(x, y)$ and $f_{y}(x, y)$ at certain points (x, y)

x	y	$f_{x}(x, y)$	$f_{y}(x, y)$
1	1	-2	4
-1	2	3	-1
1	2	-1	1

(You are given more values than you will need for this problem.) Suppose that x and y are functions of variable $t: x=t^{3} ; \quad y=t^{2}+1$, so that we may regard f as a function of t. Compute the derivative of f with respect to t when $t=1$.

Solution:

- By the Chain Rule we have:

$$
f^{\prime}(t)=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}=\frac{\partial f}{\partial x} \cdot 3 t^{2}+\frac{\partial f}{\partial y} \cdot 2 t .
$$

- Note that when $t=1$, then $x=1$ and $y=2$ and that $\frac{d x}{d t}=3 t^{2}$ and

$$
\frac{d y}{d t}=2 t \Longrightarrow \frac{d x}{d t}(1)=3 \text { and } \frac{d y}{d t}(1)=2
$$

- Plug in the values in the table into the Chain Rule at $t=1$:

$$
f^{\prime}(1)=\frac{\partial f}{\partial x}(1,2) \cdot 3+\frac{\partial f}{\partial y}(1,2) \cdot 2
$$

Problem 18(a) - Fall 2006

Let $f(x, y)$ be a differentiable function with the following values of the partial derivatives $f_{x}(x, y)$ and $f_{y}(x, y)$ at certain points (x, y)

x	y	$f_{x}(x, y)$	$f_{y}(x, y)$
1	1	-2	4
-1	2	3	-1
1	2	-1	1

(You are given more values than you will need for this problem.) Suppose that x and y are functions of variable $t: x=t^{3} ; \quad y=t^{2}+1$, so that we may regard f as a function of t. Compute the derivative of f with respect to t when $t=1$.

Solution:

- By the Chain Rule we have:

$$
f^{\prime}(t)=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}=\frac{\partial f}{\partial x} \cdot 3 t^{2}+\frac{\partial f}{\partial y} \cdot 2 t .
$$

- Note that when $t=1$, then $x=1$ and $y=2$ and that $\frac{d x}{d t}=3 t^{2}$ and

$$
\frac{d y}{d t}=2 t \Longrightarrow \frac{d x}{d t}(1)=3 \text { and } \frac{d y}{d t}(1)=2
$$

- Plug in the values in the table into the Chain Rule at $t=1$:

$$
f^{\prime}(1)=\frac{\partial f}{\partial x}(1,2) \cdot 3+\frac{\partial f}{\partial y}(1,2) \cdot 2=(-1) \cdot 3+1 \cdot 2
$$

Problem 18(a) - Fall 2006

Let $f(x, y)$ be a differentiable function with the following values of the partial derivatives $f_{x}(x, y)$ and $f_{y}(x, y)$ at certain points (x, y)

x	y	$f_{x}(x, y)$	$f_{y}(x, y)$
1	1	-2	4
-1	2	3	-1
1	2	-1	1

(You are given more values than you will need for this problem.) Suppose that x and y are functions of variable $t: x=t^{3} ; \quad y=t^{2}+1$, so that we may regard f as a function of t. Compute the derivative of f with respect to t when $t=1$.

Solution:

- By the Chain Rule we have:

$$
f^{\prime}(t)=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}=\frac{\partial f}{\partial x} \cdot 3 t^{2}+\frac{\partial f}{\partial y} \cdot 2 t .
$$

- Note that when $t=1$, then $x=1$ and $y=2$ and that $\frac{d x}{d t}=3 t^{2}$ and

$$
\frac{d y}{d t}=2 t \Longrightarrow \frac{d x}{d t}(1)=3 \text { and } \frac{d y}{d t}(1)=2 .
$$

- Plug in the values in the table into the Chain Rule at $t=1$:

$$
f^{\prime}(1)=\frac{\partial f}{\partial x}(1,2) \cdot 3+\frac{\partial f}{\partial y}(1,2) \cdot 2=(-1) \cdot 3+1 \cdot 2=-1 .
$$

Problem 18(b) - Fall 2006

Use the Chain Rule to find $\frac{\partial z}{\partial v}$ when $u=1$ and $v=1$, where

$$
z=x^{3} y^{2}+y^{3} x ; \quad x=u^{2}+v, y=2 u-v .
$$

Problem 18(b) - Fall 2006

Use the Chain Rule to find $\frac{\partial z}{\partial v}$ when $u=1$ and $v=1$, where

$$
z=x^{3} y^{2}+y^{3} x ; \quad x=u^{2}+v, y=2 u-v .
$$

Solution:

- When $u=1$ and $v=1$, then $x=1^{2}+1=2$,

$$
y=2 \cdot 1-1=1, \quad \frac{\partial x}{\partial v}=1 \quad \text { and } \quad \frac{\partial y}{\partial v}=-1
$$

Problem 18(b) - Fall 2006

Use the Chain Rule to find $\frac{\partial z}{\partial v}$ when $u=1$ and $v=1$, where

$$
z=x^{3} y^{2}+y^{3} x ; \quad x=u^{2}+v, y=2 u-v .
$$

Solution:

- When $u=1$ and $v=1$, then $x=1^{2}+1=2$,

$$
y=2 \cdot 1-1=1, \quad \frac{\partial x}{\partial v}=1 \quad \text { and } \quad \frac{\partial y}{\partial v}=-1
$$

- By the Chain Rule we have:

$$
\frac{\partial z}{\partial v}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial v}
$$

Problem 18(b) - Fall 2006

Use the Chain Rule to find $\frac{\partial z}{\partial v}$ when $u=1$ and $v=1$, where

$$
z=x^{3} y^{2}+y^{3} x ; \quad x=u^{2}+v, y=2 u-v .
$$

Solution:

- When $u=1$ and $v=1$, then $x=1^{2}+1=2$,

$$
y=2 \cdot 1-1=1, \quad \frac{\partial x}{\partial v}=1 \quad \text { and } \quad \frac{\partial y}{\partial v}=-1
$$

- By the Chain Rule we have:

$$
\begin{aligned}
& \frac{\partial z}{\partial v}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial v} \\
& =\left(3 x^{2} y^{2}+y^{3}\right)(1)+\left(2 x^{3} y+3 y^{2} x\right)(-1)
\end{aligned}
$$

Problem 18(b) - Fall 2006

Use the Chain Rule to find $\frac{\partial z}{\partial v}$ when $u=1$ and $v=1$, where

$$
z=x^{3} y^{2}+y^{3} x ; \quad x=u^{2}+v, y=2 u-v .
$$

Solution:

- When $u=1$ and $v=1$, then $x=1^{2}+1=2$,

$$
y=2 \cdot 1-1=1, \quad \frac{\partial x}{\partial v}=1 \quad \text { and } \quad \frac{\partial y}{\partial v}=-1
$$

- By the Chain Rule we have:

$$
\begin{gathered}
\frac{\partial z}{\partial v}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial v} \\
=\left(3 x^{2} y^{2}+y^{3}\right)(1)+\left(2 x^{3} y+3 y^{2} x\right)(-1)=3 x^{2} y^{2}+y^{3}-2 x^{3} y-3 y^{2} x .
\end{gathered}
$$

Problem 18(b) - Fall 2006

Use the Chain Rule to find $\frac{\partial z}{\partial v}$ when $u=1$ and $v=1$, where

$$
z=x^{3} y^{2}+y^{3} x ; \quad x=u^{2}+v, y=2 u-v
$$

Solution:

- When $u=1$ and $v=1$, then $x=1^{2}+1=2$,

$$
y=2 \cdot 1-1=1, \quad \frac{\partial x}{\partial v}=1 \quad \text { and } \quad \frac{\partial y}{\partial v}=-1
$$

- By the Chain Rule we have:

$$
\begin{gathered}
\frac{\partial z}{\partial v}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial v} \\
=\left(3 x^{2} y^{2}+y^{3}\right)(1)+\left(2 x^{3} y+3 y^{2} x\right)(-1)=3 x^{2} y^{2}+y^{3}-2 x^{3} y-3 y^{2} x .
\end{gathered}
$$

- So for $u=1$ and $v=1$, we get:

Problem 18(b) - Fall 2006

Use the Chain Rule to find $\frac{\partial z}{\partial v}$ when $u=1$ and $v=1$, where

$$
z=x^{3} y^{2}+y^{3} x ; \quad x=u^{2}+v, y=2 u-v
$$

Solution:

- When $u=1$ and $v=1$, then $x=1^{2}+1=2$,

$$
y=2 \cdot 1-1=1, \quad \frac{\partial x}{\partial v}=1 \quad \text { and } \quad \frac{\partial y}{\partial v}=-1
$$

- By the Chain Rule we have:

$$
\begin{gathered}
\frac{\partial z}{\partial v}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial v} \\
=\left(3 x^{2} y^{2}+y^{3}\right)(1)+\left(2 x^{3} y+3 y^{2} x\right)(-1)=3 x^{2} y^{2}+y^{3}-2 x^{3} y-3 y^{2} x .
\end{gathered}
$$

- So for $u=1$ and $v=1$, we get:

$$
\frac{\partial z}{\partial v}(1,1)
$$

Problem 18(b) - Fall 2006

Use the Chain Rule to find $\frac{\partial z}{\partial v}$ when $u=1$ and $v=1$, where

$$
z=x^{3} y^{2}+y^{3} x ; \quad x=u^{2}+v, y=2 u-v
$$

Solution:

- When $u=1$ and $v=1$, then $x=1^{2}+1=2$,

$$
y=2 \cdot 1-1=1, \quad \frac{\partial x}{\partial v}=1 \quad \text { and } \quad \frac{\partial y}{\partial v}=-1
$$

- By the Chain Rule we have:

$$
\begin{gathered}
\frac{\partial z}{\partial v}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial v} \\
=\left(3 x^{2} y^{2}+y^{3}\right)(1)+\left(2 x^{3} y+3 y^{2} x\right)(-1)=3 x^{2} y^{2}+y^{3}-2 x^{3} y-3 y^{2} x .
\end{gathered}
$$

- So for $u=1$ and $v=1$, we get:

$$
\frac{\partial z}{\partial v}(1,1)=3 \cdot 4+1-2 \cdot 8-3 \cdot 2
$$

Problem 18(b) - Fall 2006

Use the Chain Rule to find $\frac{\partial z}{\partial v}$ when $u=1$ and $v=1$, where

$$
z=x^{3} y^{2}+y^{3} x ; \quad x=u^{2}+v, y=2 u-v
$$

Solution:

- When $u=1$ and $v=1$, then $x=1^{2}+1=2$,

$$
y=2 \cdot 1-1=1, \quad \frac{\partial x}{\partial v}=1 \quad \text { and } \quad \frac{\partial y}{\partial v}=-1
$$

- By the Chain Rule we have:

$$
\begin{gathered}
\frac{\partial z}{\partial v}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial v} \\
=\left(3 x^{2} y^{2}+y^{3}\right)(1)+\left(2 x^{3} y+3 y^{2} x\right)(-1)=3 x^{2} y^{2}+y^{3}-2 x^{3} y-3 y^{2} x .
\end{gathered}
$$

- So for $u=1$ and $v=1$, we get:

$$
\frac{\partial z}{\partial v}(1,1)=3 \cdot 4+1-2 \cdot 8-3 \cdot 2=-9
$$

Problem 19(a) - Fall 2006

Let $f(x, y)=x^{2} y^{3}+y^{4}$. Find the directional derivative of f at the point $(1,1)$ in the direction which forms an angle (counterclockwise) of $\pi / 6$ with the positive x-axis.

Problem 19(a) - Fall 2006

Let $f(x, y)=x^{2} y^{3}+y^{4}$. Find the directional derivative of f at the point $(1,1)$ in the direction which forms an angle (counterclockwise) of $\pi / 6$ with the positive x-axis.

Solution:

- The unit vector in the direction of $\frac{\pi}{6}$ is

$$
\mathbf{u}=\left\langle\cos \frac{\pi}{6}, \sin \frac{\pi}{6}\right\rangle=\left\langle\frac{\sqrt{3}}{2}, \frac{1}{2}\right\rangle .
$$

Problem 19(a) - Fall 2006

Let $f(x, y)=x^{2} y^{3}+y^{4}$. Find the directional derivative of f at the point $(1,1)$ in the direction which forms an angle (counterclockwise) of $\pi / 6$ with the positive x-axis.

Solution:

- The unit vector in the direction of $\frac{\pi}{6}$ is

$$
\mathbf{u}=\left\langle\cos \frac{\pi}{6}, \sin \frac{\pi}{6}\right\rangle=\left\langle\frac{\sqrt{3}}{2}, \frac{1}{2}\right\rangle .
$$

- Calculating the gradient, we get:

$$
\nabla f(x, y)=\left\langle 2 x y^{3}, 3 x^{2} y^{2}+4 y^{3}\right\rangle
$$

Problem 19(a) - Fall 2006

Let $f(x, y)=x^{2} y^{3}+y^{4}$. Find the directional derivative of f at the point $(1,1)$ in the direction which forms an angle (counterclockwise) of $\pi / 6$ with the positive x-axis.

Solution:

- The unit vector in the direction of $\frac{\pi}{6}$ is

$$
\mathbf{u}=\left\langle\cos \frac{\pi}{6}, \sin \frac{\pi}{6}\right\rangle=\left\langle\frac{\sqrt{3}}{2}, \frac{1}{2}\right\rangle
$$

- Calculating the gradient, we get:

$$
\begin{gathered}
\nabla f(x, y)=\left\langle 2 x y^{3}, 3 x^{2} y^{2}+4 y^{3}\right\rangle \\
\nabla f(1,1)=\langle 2,3+4\rangle=\langle 2,7\rangle
\end{gathered}
$$

Problem 19(a) - Fall 2006

Let $f(x, y)=x^{2} y^{3}+y^{4}$. Find the directional derivative of f at the point $(1,1)$ in the direction which forms an angle (counterclockwise) of $\pi / 6$ with the positive x-axis.

Solution:

- The unit vector in the direction of $\frac{\pi}{6}$ is

$$
\mathbf{u}=\left\langle\cos \frac{\pi}{6}, \sin \frac{\pi}{6}\right\rangle=\left\langle\frac{\sqrt{3}}{2}, \frac{1}{2}\right\rangle
$$

- Calculating the gradient, we get:

$$
\begin{gathered}
\nabla f(x, y)=\left\langle 2 x y^{3}, 3 x^{2} y^{2}+4 y^{3}\right\rangle \\
\nabla f(1,1)=\langle 2,3+4\rangle=\langle 2,7\rangle
\end{gathered}
$$

- So the directional derivative is:

$$
D_{\mathbf{u}} f(1,1)=\nabla f(1,1) \cdot \mathbf{u}
$$

Problem 19(a) - Fall 2006

Let $f(x, y)=x^{2} y^{3}+y^{4}$. Find the directional derivative of f at the point $(1,1)$ in the direction which forms an angle (counterclockwise) of $\pi / 6$ with the positive x-axis.

Solution:

- The unit vector in the direction of $\frac{\pi}{6}$ is

$$
\mathbf{u}=\left\langle\cos \frac{\pi}{6}, \sin \frac{\pi}{6}\right\rangle=\left\langle\frac{\sqrt{3}}{2}, \frac{1}{2}\right\rangle
$$

- Calculating the gradient, we get:

$$
\begin{gathered}
\nabla f(x, y)=\left\langle 2 x y^{3}, 3 x^{2} y^{2}+4 y^{3}\right\rangle \\
\nabla f(1,1)=\langle 2,3+4\rangle=\langle 2,7\rangle
\end{gathered}
$$

- So the directional derivative is:

$$
D_{\mathbf{u}} f(1,1)=\nabla f(1,1) \cdot \mathbf{u}=\langle 2,7\rangle \cdot\left\langle\frac{\sqrt{3}}{2}, \frac{1}{2}\right\rangle
$$

Problem 19(a) - Fall 2006

Let $f(x, y)=x^{2} y^{3}+y^{4}$. Find the directional derivative of f at the point $(1,1)$ in the direction which forms an angle (counterclockwise) of $\pi / 6$ with the positive x-axis.

Solution:

- The unit vector in the direction of $\frac{\pi}{6}$ is

$$
\mathbf{u}=\left\langle\cos \frac{\pi}{6}, \sin \frac{\pi}{6}\right\rangle=\left\langle\frac{\sqrt{3}}{2}, \frac{1}{2}\right\rangle
$$

- Calculating the gradient, we get:

$$
\begin{gathered}
\nabla f(x, y)=\left\langle 2 x y^{3}, 3 x^{2} y^{2}+4 y^{3}\right\rangle \\
\nabla f(1,1)=\langle 2,3+4\rangle=\langle 2,7\rangle
\end{gathered}
$$

- So the directional derivative is:

$$
D_{\mathrm{u}} f(1,1)=\nabla f(1,1) \cdot \mathbf{u}=\langle 2,7\rangle \cdot\left\langle\frac{\sqrt{3}}{2}, \frac{1}{2}\right\rangle=\sqrt{3}+\frac{7}{2}
$$

Problem 19(b) - Fall 2006

Find an equation of the tangent line to curve
$x^{2} y+y^{3}-5=0$ at the point $(x, y)=(2,1)$.

Problem 19(b) - Fall 2006

Find an equation of the tangent line to the curve $x^{2} y+y^{3}-5=0$ at the point $(x, y)=(2,1)$.

Solution:

- The normal vector \mathbf{n} to the curve $\mathbf{F}(x, y)=x^{2} y+y^{3}-5=0$ at the point $(2,1)$ is $\nabla \mathbf{F}(2,1)$.

Problem 19(b) - Fall 2006

Find an equation of the tangent line to the curve $x^{2} y+y^{3}-5=0$ at the point $(x, y)=(2,1)$.

Solution:

- The normal vector \mathbf{n} to the curve $\mathbf{F}(x, y)=x^{2} y+y^{3}-5=0$ at the point $(2,1)$ is $\nabla \mathbf{F}(2,1)$.
- Calculating, we obtain:

$$
\nabla \mathbf{F}(x, y)=\left\langle 2 x y, x^{2}+3 y^{2}\right\rangle
$$

Problem 19(b) - Fall 2006

Find an equation of the tangent line to the curve $x^{2} y+y^{3}-5=0$ at the point $(x, y)=(2,1)$.

Solution:

- The normal vector \mathbf{n} to the curve $\mathbf{F}(x, y)=x^{2} y+y^{3}-5=0$ at the point $(2,1)$ is $\nabla \mathbf{F}(2,1)$.
- Calculating, we obtain:

$$
\begin{gathered}
\nabla \mathbf{F}(x, y)=\left\langle 2 x y, x^{2}+3 y^{2}\right\rangle \\
\mathbf{n}=\nabla \mathbf{F}(2,1)=\langle 4,7\rangle
\end{gathered}
$$

Problem 19(b) - Fall 2006

Find an equation of the tangent line to the curve $x^{2} y+y^{3}-5=0$ at the point $(x, y)=(2,1)$.

Solution:

- The normal vector \mathbf{n} to the curve $\mathbf{F}(x, y)=x^{2} y+y^{3}-5=0$ at the point $(2,1)$ is $\nabla \mathbf{F}(2,1)$.
- Calculating, we obtain:

$$
\begin{gathered}
\nabla \mathbf{F}(x, y)=\left\langle 2 x y, x^{2}+3 y^{2}\right\rangle \\
\mathbf{n}=\nabla \mathbf{F}(2,1)=\langle 4,7\rangle
\end{gathered}
$$

- The equation of the tangent line is:

$$
\mathbf{n} \cdot\langle x-2, y-1\rangle
$$

Problem 19(b) - Fall 2006

Find an equation of the tangent line to the curve $x^{2} y+y^{3}-5=0$ at the point $(x, y)=(2,1)$.

Solution:

- The normal vector \mathbf{n} to the curve $\mathbf{F}(x, y)=x^{2} y+y^{3}-5=0$ at the point $(2,1)$ is $\nabla \mathbf{F}(2,1)$.
- Calculating, we obtain:

$$
\begin{gathered}
\nabla \mathbf{F}(x, y)=\left\langle 2 x y, x^{2}+3 y^{2}\right\rangle \\
\mathbf{n}=\nabla \mathbf{F}(2,1)=\langle 4,7\rangle
\end{gathered}
$$

- The equation of the tangent line is:

$$
\mathbf{n} \cdot\langle x-2, y-1\rangle=\langle 4,7\rangle \cdot\langle x-2, y-1\rangle
$$

Problem 19(b) - Fall 2006

Find an equation of the tangent line to the curve $x^{2} y+y^{3}-5=0$ at the point $(x, y)=(2,1)$.

Solution:

- The normal vector \mathbf{n} to the curve $\mathbf{F}(x, y)=x^{2} y+y^{3}-5=0$ at the point $(2,1)$ is $\nabla \mathbf{F}(2,1)$.
- Calculating, we obtain:

$$
\begin{gathered}
\nabla \mathbf{F}(x, y)=\left\langle 2 x y, x^{2}+3 y^{2}\right\rangle \\
\mathbf{n}=\nabla \mathbf{F}(2,1)=\langle 4,7\rangle
\end{gathered}
$$

- The equation of the tangent line is:

$$
\mathbf{n} \cdot\langle x-2, y-1\rangle=\langle 4,7\rangle \cdot\langle x-2, y-1\rangle=4(x-2)+7(y-1)=0 .
$$

Problem 20 - Fall 2006

Let $\quad f(x, y)=2 x^{3}+x y^{2}+5 x^{2}+y^{2}$.
Find and classify (as local maxima, local minima or saddle points) all critical points of f.

Problem 20 - Fall 2006

Let

$$
f(x, y)=2 x^{3}+x y^{2}+5 x^{2}+y^{2}
$$

Find and classify (as local maxima, local minima or saddle points) all critical points of f.

Solution:

- First calculate $\nabla f(x, y)$ and set to $\langle 0,0\rangle$:

$$
\nabla f(x, y)=\left\langle 6 x^{2}+y^{2}+10 x, 2 x y+2 y\right\rangle=\langle 0,0\rangle .
$$

Problem 20 - Fall 2006

Let

$$
f(x, y)=2 x^{3}+x y^{2}+5 x^{2}+y^{2}
$$

Find and classify (as local maxima, local minima or saddle points) all critical points of f.

Solution:

- First calculate $\nabla f(x, y)$ and set to $\langle 0,0\rangle$:

$$
\nabla f(x, y)=\left\langle 6 x^{2}+y^{2}+10 x, 2 x y+2 y\right\rangle=\langle 0,0\rangle .
$$

- This gives the following two equations:

Problem 20 - Fall 2006

Let

$$
f(x, y)=2 x^{3}+x y^{2}+5 x^{2}+y^{2}
$$

Find and classify (as local maxima, local minima or saddle points) all critical points of f.

Solution:

- First calculate $\nabla f(x, y)$ and set to $\langle 0,0\rangle$:

$$
\nabla f(x, y)=\left\langle 6 x^{2}+y^{2}+10 x, 2 x y+2 y\right\rangle=\langle 0,0\rangle .
$$

- This gives the following two equations:

$$
\begin{aligned}
& 6 x^{2}+y^{2}+10 x=0 \\
& 2 x y+2 y=y(2 x+2)=0
\end{aligned}
$$

Problem 20 - Fall 2006

Let

$$
f(x, y)=2 x^{3}+x y^{2}+5 x^{2}+y^{2}
$$

Find and classify (as local maxima, local minima or saddle points) all critical points of f.

Solution:

- First calculate $\nabla f(x, y)$ and set to $\langle 0,0\rangle$:

$$
\nabla f(x, y)=\left\langle 6 x^{2}+y^{2}+10 x, 2 x y+2 y\right\rangle=\langle 0,0\rangle .
$$

- This gives the following two equations:

$$
\begin{gathered}
6 x^{2}+y^{2}+10 x=0 \\
2 x y+2 y=y(2 x+2)=0 \Longrightarrow y=0 \text { or } x=-1
\end{gathered}
$$

Problem 20 - Fall 2006

Let

$$
f(x, y)=2 x^{3}+x y^{2}+5 x^{2}+y^{2}
$$

Find and classify (as local maxima, local minima or saddle points) all critical points of f.

Solution:

- First calculate $\nabla f(x, y)$ and set to $\langle 0,0\rangle$:

$$
\nabla f(x, y)=\left\langle 6 x^{2}+y^{2}+10 x, 2 x y+2 y\right\rangle=\langle 0,0\rangle .
$$

- This gives the following two equations:

$$
\begin{gathered}
6 x^{2}+y^{2}+10 x=0 \\
2 x y+2 y=y(2 x+2)=0 \Longrightarrow y=0 \text { or } x=-1
\end{gathered}
$$

- If $x=-1$, then the first equation gives:

$$
6+y^{2}-10=y^{2}-4=0
$$

Problem 20 - Fall 2006

Let

$$
f(x, y)=2 x^{3}+x y^{2}+5 x^{2}+y^{2}
$$

Find and classify (as local maxima, local minima or saddle points) all critical points of f.

Solution:

- First calculate $\nabla f(x, y)$ and set to $\langle 0,0\rangle$:

$$
\nabla f(x, y)=\left\langle 6 x^{2}+y^{2}+10 x, 2 x y+2 y\right\rangle=\langle 0,0\rangle .
$$

- This gives the following two equations:

$$
\begin{gathered}
6 x^{2}+y^{2}+10 x=0 \\
2 x y+2 y=y(2 x+2)=0 \Longrightarrow y=0 \text { or } x=-1
\end{gathered}
$$

- If $x=-1$, then the first equation gives:

$$
6+y^{2}-10=y^{2}-4=0 \Longrightarrow y=2 \text { or } y=-2
$$

Problem 20 - Fall 2006

Let

$$
f(x, y)=2 x^{3}+x y^{2}+5 x^{2}+y^{2}
$$

Find and classify (as local maxima, local minima or saddle points) all critical points of f.

Solution:

- First calculate $\nabla f(x, y)$ and set to $\langle 0,0\rangle$:

$$
\nabla f(x, y)=\left\langle 6 x^{2}+y^{2}+10 x, 2 x y+2 y\right\rangle=\langle 0,0\rangle .
$$

- This gives the following two equations:

$$
\begin{gathered}
6 x^{2}+y^{2}+10 x=0 \\
2 x y+2 y=y(2 x+2)=0 \Longrightarrow y=0 \text { or } x=-1
\end{gathered}
$$

- If $x=-1$, then the first equation gives:

$$
6+y^{2}-10=y^{2}-4=0 \Longrightarrow y=2 \text { or } y=-2
$$

- If $y=0$, then the first equation gives $x=0$ or $x=-\frac{5}{3}$.

Problem 20 - Fall 2006

Let $\quad f(x, y)=2 x^{3}+x y^{2}+5 x^{2}+y^{2}$.
Find and classify (as local maxima, local minima or saddle points) all critical points of f.

Solution:

- First calculate $\nabla f(x, y)$ and set to $\langle 0,0\rangle$:

$$
\nabla f(x, y)=\left\langle 6 x^{2}+y^{2}+10 x, 2 x y+2 y\right\rangle=\langle 0,0\rangle .
$$

- This gives the following two equations:

$$
\begin{gathered}
6 x^{2}+y^{2}+10 x=0 \\
2 x y+2 y=y(2 x+2)=0 \Longrightarrow y=0 \text { or } x=-1
\end{gathered}
$$

- If $x=-1$, then the first equation gives:

$$
6+y^{2}-10=y^{2}-4=0 \Longrightarrow y=2 \text { or } y=-2
$$

- If $y=0$, then the first equation gives $x=0$ or $x=-\frac{5}{3}$.
- The set of critical points is:

$$
\left\{(0,0),\left(-\frac{5}{3}, 0\right),(-1,2),(-1,-2)\right\}
$$

Problem 20 - Fall 2006
Let $\quad f(x, y)=2 x^{3}+x y^{2}+5 x^{2}+y^{2}$.
Find and classify (as local maxima, local minima or saddle points) all critical points of f.

Solution: Continuation of problem 14.

- Recall that $\left\{(0,0),\left(-\frac{5}{3}, 0\right),(-1,2),(-1,-2)\right\}$ is the set of critical points.

Problem 20 - Fall 2006
Let $\quad f(x, y)=2 x^{3}+x y^{2}+5 x^{2}+y^{2}$.
Find and classify (as local maxima, local minima or saddle points) all critical points of f.

Solution: Continuation of problem 14.

- Recall that $\left\{(0,0),\left(-\frac{5}{3}, 0\right),(-1,2),(-1,-2)\right\}$ is the set of critical points.
- Since we will apply the Second Derivative Test, we first write down the second derivative matrix:

$$
\mathbf{D}=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|=\left|\begin{array}{cc}
12 x+10 & 2 y \\
2 y & 2 x+2
\end{array}\right|
$$

Problem 20 - Fall 2006
Let $\quad f(x, y)=2 x^{3}+x y^{2}+5 x^{2}+y^{2}$.
Find and classify (as local maxima, local minima or saddle points) all critical points of f.

Solution: Continuation of problem 14.

- Recall that $\left\{(0,0),\left(-\frac{5}{3}, 0\right),(-1,2),(-1,-2)\right\}$ is the set of critical points.
- Since we will apply the Second Derivative Test, we first write down the second derivative matrix:

$$
\mathbf{D}=\left|\begin{array}{cc}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|=\left|\begin{array}{cc}
12 x+10 & 2 y \\
2 y & 2 x+2
\end{array}\right|
$$

- Since $D(0,0)=10 \cdot 2=20>0$ and $f_{x x}(0,0)=10>0$,

Problem 20 - Fall 2006
Let $\quad f(x, y)=2 x^{3}+x y^{2}+5 x^{2}+y^{2}$.
Find and classify (as local maxima, local minima or saddle points) all critical points of f.

Solution: Continuation of problem 14.

- Recall that $\left\{(0,0),\left(-\frac{5}{3}, 0\right),(-1,2),(-1,-2)\right\}$ is the set of critical points.
- Since we will apply the Second Derivative Test, we first write down the second derivative matrix:

$$
\mathbf{D}=\left|\begin{array}{cc}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|=\left|\begin{array}{cc}
12 x+10 & 2 y \\
2 y & 2 x+2
\end{array}\right|
$$

- Since $D(0,0)=10 \cdot 2=20>0$ and $f_{x x}(0,0)=10>0$, then $(0,0)$ is a local minimum.

Problem 20 - Fall 2006

Let $\quad f(x, y)=2 x^{3}+x y^{2}+5 x^{2}+y^{2}$.
Find and classify (as local maxima, local minima or saddle points) all critical points of f.

Solution: Continuation of problem 14.

- Recall that $\left\{(0,0),\left(-\frac{5}{3}, 0\right),(-1,2),(-1,-2)\right\}$ is the set of critical points.
- Since we will apply the Second Derivative Test, we first write down the second derivative matrix:

$$
\mathbf{D}=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|=\left|\begin{array}{cc}
12 x+10 & 2 y \\
2 y & 2 x+2
\end{array}\right|
$$

- Since $D(0,0)=10 \cdot 2=20>0$ and $f_{x x}(0,0)=10>0$, then $(0,0)$ is a local minimum.
- Since $D\left(\frac{-5}{3}, 0\right)=-10 \cdot\left(-\frac{4}{3}\right)>0$ and $f_{x x}\left(\frac{-5}{3}, 0\right)=-10<0$,

Problem 20 - Fall 2006

Let $\quad f(x, y)=2 x^{3}+x y^{2}+5 x^{2}+y^{2}$.
Find and classify (as local maxima, local minima or saddle points) all critical points of f.

Solution: Continuation of problem 14.

- Recall that $\left\{(0,0),\left(-\frac{5}{3}, 0\right),(-1,2),(-1,-2)\right\}$ is the set of critical points.
- Since we will apply the Second Derivative Test, we first write down the second derivative matrix:

$$
\mathbf{D}=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|=\left\lvert\, \begin{array}{cc}
12 x+10 & 2 y \\
2 y & 2 x+2
\end{array}\right.
$$

- Since $D(0,0)=10 \cdot 2=20>0$ and $f_{x x}(0,0)=10>0$, then $(0,0)$ is a local minimum.
- Since $D\left(\frac{-5}{3}, 0\right)=-10 \cdot\left(-\frac{4}{3}\right)>0$ and $f_{x x}\left(\frac{-5}{3}, 0\right)=-10<0$, then $\left(-\frac{5}{3}, 0\right)$ is a local maximum.

Problem 20 - Fall 2006

Let $\quad f(x, y)=2 x^{3}+x y^{2}+5 x^{2}+y^{2}$.
Find and classify (as local maxima, local minima or saddle points) all critical points of f.

Solution: Continuation of problem 14.

- Recall that $\left\{(0,0),\left(-\frac{5}{3}, 0\right),(-1,2),(-1,-2)\right\}$ is the set of critical points.
- Since we will apply the Second Derivative Test, we first write down the second derivative matrix:

$$
\mathbf{D}=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|=\left\lvert\, \begin{array}{cc}
12 x+10 & 2 y \\
2 y & 2 x+2
\end{array}\right.
$$

- Since $D(0,0)=10 \cdot 2=20>0$ and $f_{x x}(0,0)=10>0$, then $(0,0)$ is a local minimum.
- Since $D\left(\frac{-5}{3}, 0\right)=-10 \cdot\left(-\frac{4}{3}\right)>0$ and $f_{x x}\left(\frac{-5}{3}, 0\right)=-10<0$, then $\left(-\frac{5}{3}, 0\right)$ is a local maximum.
- Since $D(-1,2)<0$, then $(-1,2)$ is a saddle point.

Problem 20 - Fall 2006

Let $\quad f(x, y)=2 x^{3}+x y^{2}+5 x^{2}+y^{2}$.
Find and classify (as local maxima, local minima or saddle points) all critical points of f.

Solution: Continuation of problem 14.

- Recall that $\left\{(0,0),\left(-\frac{5}{3}, 0\right),(-1,2),(-1,-2)\right\}$ is the set of critical points.
- Since we will apply the Second Derivative Test, we first write down the second derivative matrix:

$$
\mathbf{D}=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|=\left\lvert\, \begin{array}{cc}
12 x+10 & 2 y \\
2 y & 2 x+2
\end{array}\right.
$$

- Since $D(0,0)=10 \cdot 2=20>0$ and $f_{x x}(0,0)=10>0$, then $(0,0)$ is a local minimum.
- Since $D\left(\frac{-5}{3}, 0\right)=-10 \cdot\left(-\frac{4}{3}\right)>0$ and $f_{x x}\left(\frac{-5}{3}, 0\right)=-10<0$, then $\left(-\frac{5}{3}, 0\right)$ is a local maximum.
- Since $D(-1,2)<0$, then $(-1,2)$ is a saddle point.
- Since $D(-1,-2)<0$, then $(-1,-2)$ is a saddle point.

Problem 21 - Fall 2006

Find the maximum value of $f(x, y)=2 x^{2}+y^{2}$ on the circle $x^{2}+y^{2}=1$ (Hint: Use Lagrange Multipliers).

Problem 21 - Fall 2006

Find the maximum value of $f(x, y)=2 x^{2}+y^{2}$ on the circle $x^{2}+y^{2}=1$ (Hint: Use Lagrange Multipliers).

Solution:

- The constraint function is $g(x, y)=x^{2}+y^{2}$.

Problem 21 - Fall 2006

Find the maximum value of $f(x, y)=2 x^{2}+y^{2}$ on the circle $x^{2}+y^{2}=1$ (Hint: Use Lagrange Multipliers).

Solution:

- The constraint function is $g(x, y)=x^{2}+y^{2}$. Note that x and y cannot both be 0 .

Problem 21 - Fall 2006

Find the maximum value of $f(x, y)=2 x^{2}+y^{2}$ on the circle $x^{2}+y^{2}=1$ (Hint: Use Lagrange Multipliers).

Solution:

- The constraint function is $g(x, y)=x^{2}+y^{2}$. Note that x and y cannot both be 0 .
- Set $\nabla f=\langle 4 x, 2 y\rangle=\lambda \nabla g=\lambda\langle 2 x, 2 y\rangle$ and solve:

Problem 21 - Fall 2006

Find the maximum value of $f(x, y)=2 x^{2}+y^{2}$ on the circle $x^{2}+y^{2}=1$ (Hint: Use Lagrange Multipliers).

Solution:

- The constraint function is $g(x, y)=x^{2}+y^{2}$. Note that x and y cannot both be 0 .
- Set $\nabla f=\langle 4 x, 2 y\rangle=\lambda \nabla g=\lambda\langle 2 x, 2 y\rangle$ and solve:

$$
4 x=\lambda 2 x
$$

Problem 21 - Fall 2006

Find the maximum value of $f(x, y)=2 x^{2}+y^{2}$ on the circle $x^{2}+y^{2}=1$ (Hint: Use Lagrange Multipliers).

Solution:

- The constraint function is $g(x, y)=x^{2}+y^{2}$. Note that x and y cannot both be 0 .
- Set $\nabla f=\langle 4 x, 2 y\rangle=\lambda \nabla g=\lambda\langle 2 x, 2 y\rangle$ and solve:

$$
4 x=\lambda 2 x \Longrightarrow x=0 \text { or } \lambda=2
$$

Problem 21 - Fall 2006

Find the maximum value of $f(x, y)=2 x^{2}+y^{2}$ on the circle $x^{2}+y^{2}=1$ (Hint: Use Lagrange Multipliers).

Solution:

- The constraint function is $g(x, y)=x^{2}+y^{2}$. Note that x and y cannot both be 0 .
- Set $\nabla f=\langle 4 x, 2 y\rangle=\lambda \nabla g=\lambda\langle 2 x, 2 y\rangle$ and solve:

$$
\begin{aligned}
& 4 x=\lambda 2 x \Longrightarrow x=0 \text { or } \lambda=2 \\
& 2 y=\lambda 2 y
\end{aligned}
$$

Problem 21 - Fall 2006

Find the maximum value of $f(x, y)=2 x^{2}+y^{2}$ on the circle $x^{2}+y^{2}=1$ (Hint: Use Lagrange Multipliers).

Solution:

- The constraint function is $g(x, y)=x^{2}+y^{2}$. Note that x and y cannot both be 0 .
- Set $\nabla f=\langle 4 x, 2 y\rangle=\lambda \nabla g=\lambda\langle 2 x, 2 y\rangle$ and solve:

$$
\begin{aligned}
& 4 x=\lambda 2 x \Longrightarrow x=0 \text { or } \lambda=2 \\
& 2 y=\lambda 2 y \Longrightarrow y=0 \text { or } \lambda=1
\end{aligned}
$$

Problem 21 - Fall 2006

Find the maximum value of $f(x, y)=2 x^{2}+y^{2}$ on the circle $x^{2}+y^{2}=1$ (Hint: Use Lagrange Multipliers).

Solution:

- The constraint function is $g(x, y)=x^{2}+y^{2}$. Note that x and y cannot both be 0 .
- Set $\nabla f=\langle 4 x, 2 y\rangle=\lambda \nabla g=\lambda\langle 2 x, 2 y\rangle$ and solve:

$$
\begin{aligned}
& 4 x=\lambda 2 x \Longrightarrow x=0 \text { or } \lambda=2 \\
& 2 y=\lambda 2 y \Longrightarrow y=0 \text { or } \lambda=1
\end{aligned}
$$

- Since λ cannot simultaneously be 2 and 1 , then x or y is zero.

Problem 21 - Fall 2006

Find the maximum value of $f(x, y)=2 x^{2}+y^{2}$ on the circle $x^{2}+y^{2}=1$ (Hint: Use Lagrange Multipliers).

Solution:

- The constraint function is $g(x, y)=x^{2}+y^{2}$. Note that x and y cannot both be 0 .
- Set $\nabla f=\langle 4 x, 2 y\rangle=\lambda \nabla g=\lambda\langle 2 x, 2 y\rangle$ and solve:

$$
\begin{aligned}
& 4 x=\lambda 2 x \Longrightarrow x=0 \text { or } \lambda=2 \\
& 2 y=\lambda 2 y \Longrightarrow y=0 \text { or } \lambda=1
\end{aligned}
$$

- Since λ cannot simultaneously be 2 and 1 , then x or y is zero.
- From the constraint $x^{2}+y^{2}=1$,

Problem 21 - Fall 2006

Find the maximum value of $f(x, y)=2 x^{2}+y^{2}$ on the circle $x^{2}+y^{2}=1$ (Hint: Use Lagrange Multipliers).

Solution:

- The constraint function is $g(x, y)=x^{2}+y^{2}$. Note that x and y cannot both be 0 .
- Set $\nabla f=\langle 4 x, 2 y\rangle=\lambda \nabla g=\lambda\langle 2 x, 2 y\rangle$ and solve:

$$
\begin{aligned}
& 4 x=\lambda 2 x \Longrightarrow x=0 \text { or } \lambda=2 \\
& 2 y=\lambda 2 y \Longrightarrow y=0 \text { or } \lambda=1
\end{aligned}
$$

- Since λ cannot simultaneously be 2 and 1 , then x or y is zero.
- From the constraint $x^{2}+y^{2}=1, x=0 \Longrightarrow y= \pm 1$

Problem 21 - Fall 2006

Find the maximum value of $f(x, y)=2 x^{2}+y^{2}$ on the circle $x^{2}+y^{2}=1$ (Hint: Use Lagrange Multipliers).

Solution:

- The constraint function is $g(x, y)=x^{2}+y^{2}$. Note that x and y cannot both be 0 .
- Set $\nabla f=\langle 4 x, 2 y\rangle=\lambda \nabla g=\lambda\langle 2 x, 2 y\rangle$ and solve:

$$
\begin{aligned}
& 4 x=\lambda 2 x \Longrightarrow x=0 \text { or } \lambda=2 \\
& 2 y=\lambda 2 y \Longrightarrow y=0 \text { or } \lambda=1
\end{aligned}
$$

- Since λ cannot simultaneously be 2 and 1 , then x or y is zero.
- From the constraint $x^{2}+y^{2}=1, x=0 \Longrightarrow y= \pm 1$ and $y=0 \Longrightarrow x= \pm 1$.

Problem 21 - Fall 2006

Find the maximum value of $f(x, y)=2 x^{2}+y^{2}$ on the circle $x^{2}+y^{2}=1$ (Hint: Use Lagrange Multipliers).

Solution:

- The constraint function is $g(x, y)=x^{2}+y^{2}$. Note that x and y cannot both be 0 .
- Set $\nabla f=\langle 4 x, 2 y\rangle=\lambda \nabla g=\lambda\langle 2 x, 2 y\rangle$ and solve:

$$
\begin{aligned}
& 4 x=\lambda 2 x \Longrightarrow x=0 \text { or } \lambda=2 \\
& 2 y=\lambda 2 y \Longrightarrow y=0 \text { or } \lambda=1
\end{aligned}
$$

- Since λ cannot simultaneously be 2 and 1 , then x or y is zero.
- From the constraint $x^{2}+y^{2}=1, x=0 \Longrightarrow y= \pm 1$ and $y=0 \Longrightarrow x= \pm 1$.
- We only need to check the values of f at the points $(0, \pm 1)$, $(\pm 1,0)$:

Problem 21 - Fall 2006

Find the maximum value of $f(x, y)=2 x^{2}+y^{2}$ on the circle $x^{2}+y^{2}=1$ (Hint: Use Lagrange Multipliers).

Solution:

- The constraint function is $g(x, y)=x^{2}+y^{2}$. Note that x and y cannot both be 0 .
- Set $\nabla f=\langle 4 x, 2 y\rangle=\lambda \nabla g=\lambda\langle 2 x, 2 y\rangle$ and solve:

$$
\begin{aligned}
& 4 x=\lambda 2 x \Longrightarrow x=0 \text { or } \lambda=2 \\
& 2 y=\lambda 2 y \Longrightarrow y=0 \text { or } \lambda=1
\end{aligned}
$$

- Since λ cannot simultaneously be 2 and 1 , then x or y is zero.
- From the constraint $x^{2}+y^{2}=1, x=0 \Longrightarrow y= \pm 1$ and $y=0 \Longrightarrow x= \pm 1$.
- We only need to check the values of f at the points $(0, \pm 1)$, $(\pm 1,0)$:

$$
f(0, \pm 1)=1 \quad f(\pm 1,0)=2
$$

Problem 21 - Fall 2006

Find the maximum value of $f(x, y)=2 x^{2}+y^{2}$ on the circle $x^{2}+y^{2}=1$ (Hint: Use Lagrange Multipliers).

Solution:

- The constraint function is $g(x, y)=x^{2}+y^{2}$. Note that x and y cannot both be 0 .
- Set $\nabla f=\langle 4 x, 2 y\rangle=\lambda \nabla g=\lambda\langle 2 x, 2 y\rangle$ and solve:

$$
\begin{aligned}
& 4 x=\lambda 2 x \Longrightarrow x=0 \text { or } \lambda=2 \\
& 2 y=\lambda 2 y \Longrightarrow y=0 \text { or } \lambda=1
\end{aligned}
$$

- Since λ cannot simultaneously be 2 and 1 , then x or y is zero.
- From the constraint $x^{2}+y^{2}=1, x=0 \Longrightarrow y= \pm 1$ and $y=0 \Longrightarrow x= \pm 1$.
- We only need to check the values of f at the points $(0, \pm 1)$, $(\pm 1,0)$:

$$
f(0, \pm 1)=1 \quad f(\pm 1,0)=2
$$

- $f(x, y)$ has its maximum value 2 at the points $(\pm 1,0)$.

Problem 22 - Fall 2006

Find the volume \mathbf{V} above the rectangle $-1 \leq x \leq 1$, $2 \leq y \leq 5$ and below the surface $z=5+x^{2}+y$.

Problem 22 - Fall 2006

Find the volume V above the rectangle $-1 \leq x \leq 1$, $2 \leq y \leq 5$ and below the surface $z=5+x^{2}+y$.

Solution:

We apply Fubini's Theorem:

$$
\mathbf{V}=\int_{2}^{5} \int_{-1}^{1}\left(5+x^{2}+y\right) d x d y
$$

Problem 22 - Fall 2006

Find the volume \mathbf{V} above the rectangle $-1 \leq x \leq 1$, $2 \leq y \leq 5$ and below the surface $z=5+x^{2}+y$.

Solution:

We apply Fubini's Theorem:

$$
\mathbf{V}=\int_{2}^{5} \int_{-1}^{1}\left(5+x^{2}+y\right) d x d y=\int_{2}^{5}\left[5 x+\frac{x^{3}}{3}+y x\right]_{-1}^{1} d y
$$

Problem 22 - Fall 2006

Find the volume \mathbf{V} above the rectangle $-1 \leq x \leq 1$, $2 \leq y \leq 5$ and below the surface $z=5+x^{2}+y$.

Solution:

We apply Fubini's Theorem:

$$
\begin{aligned}
\mathbf{V}= & \int_{2}^{5} \int_{-1}^{1}\left(5+x^{2}+y\right) d x d y=\int_{2}^{5}\left[5 x+\frac{x^{3}}{3}+y x\right]_{-1}^{1} d y \\
& =\int_{2}^{5} 10+\frac{2}{3}+2 y d y
\end{aligned}
$$

Problem 22 - Fall 2006

Find the volume V above the rectangle $-1 \leq x \leq 1$, $2 \leq y \leq 5$ and below the surface $z=5+x^{2}+y$.

Solution:

We apply Fubini's Theorem:

$$
\begin{aligned}
\mathbf{V}= & \int_{2}^{5} \int_{-1}^{1}\left(5+x^{2}+y\right) d x d y=\int_{2}^{5}\left[5 x+\frac{x^{3}}{3}+y x\right]_{-1}^{1} d y \\
& =\int_{2}^{5} 10+\frac{2}{3}+2 y d y=\left(10+\frac{2}{3}\right) y+\left.y^{2}\right|_{2} ^{5}
\end{aligned}
$$

Problem 22 - Fall 2006

Find the volume V above the rectangle $-1 \leq x \leq 1$, $2 \leq y \leq 5$ and below the surface $z=5+x^{2}+y$.

Solution:

We apply Fubini's Theorem:

$$
\begin{aligned}
\mathbf{V}= & \int_{2}^{5} \int_{-1}^{1}\left(5+x^{2}+y\right) d x d y=\int_{2}^{5}\left[5 x+\frac{x^{3}}{3}+y x\right]_{-1}^{1} d y \\
& =\int_{2}^{5} 10+\frac{2}{3}+2 y d y=\left(10+\frac{2}{3}\right) y+\left.y^{2}\right|_{2} ^{5}=53
\end{aligned}
$$

Problem 23 - Fall 2006

Evaluate the integral

$$
\int_{0}^{1} \int_{\sqrt{y}}^{1} \sqrt{x^{3}+1} d x d y
$$

by reversing the order of integration.

Problem 23 - Fall 2006

Evaluate the integral

$$
\int_{0}^{1} \int_{\sqrt{y}}^{1} \sqrt{x^{3}+1} d x d y
$$

by reversing the order of integration.

Solution:

There is no integration problem on this exam with varying limits of integration (function limits).

Problem 24(1)

Use Chain Rule to find $d z / d t$.
$z=x^{2} y+2 y^{3}, x=1+t^{2}, y=(1-t)^{2}$.

Problem 24(1)

Use Chain Rule to find $d z / d t$.
$z=x^{2} y+2 y^{3}, x=1+t^{2}, y=(1-t)^{2}$.
Solution:

- Calculating:

$$
\begin{array}{ll}
\frac{d x}{d t}=2 t & \frac{d y}{d t}=-2(1-t) \\
\frac{\partial z}{\partial x}=2 x y & \frac{\partial z}{\partial y}=x^{2}+6 y^{2}
\end{array}
$$

Problem 24(1)

Use Chain Rule to find $d z / d t$.
$z=x^{2} y+2 y^{3}, x=1+t^{2}, y=(1-t)^{2}$.
Solution:

- Calculating:

$$
\begin{array}{ll}
\frac{d x}{d t}=2 t & \frac{d y}{d t}=-2(1-t) \\
\frac{\partial z}{\partial x}=2 x y & \frac{\partial z}{\partial y}=x^{2}+6 y^{2}
\end{array}
$$

- By the Chain Rule,

$$
\frac{d z}{d t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t}
$$

Problem 24(1)

Use Chain Rule to find $d z / d t$.
$z=x^{2} y+2 y^{3}, x=1+t^{2}, y=(1-t)^{2}$.

Solution:

- Calculating:

$$
\begin{array}{ll}
\frac{d x}{d t}=2 t & \frac{d y}{d t}=-2(1-t) \\
\frac{\partial z}{\partial x}=2 x y & \frac{\partial z}{\partial y}=x^{2}+6 y^{2}
\end{array}
$$

- By the Chain Rule,

$$
\frac{d z}{d t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t}=2 x y \cdot 2 t+\left(x^{2}+6 y^{2}\right) \cdot(-2(1-t))
$$

Problem 24(1)

Use Chain Rule to find $d z / d t$.
$z=x^{2} y+2 y^{3}, x=1+t^{2}, y=(1-t)^{2}$.

Solution:

- Calculating:

$$
\begin{array}{ll}
\frac{d x}{d t}=2 t & \frac{d y}{d t}=-2(1-t) \\
\frac{\partial z}{\partial x}=2 x y & \frac{\partial z}{\partial y}=x^{2}+6 y^{2}
\end{array}
$$

- By the Chain Rule,

$$
\begin{aligned}
& \frac{d z}{d t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t}=2 x y \cdot 2 t+\left(x^{2}+6 y^{2}\right) \cdot(-2(1-t)) \\
& =2\left(1+t^{2}\right)(1-t)^{2} 2 t+\left(\left(1+t^{2}\right)^{2}+6(1-t)^{4}\right)(-2(1-t))
\end{aligned}
$$

Problem 24(1)

Use Chain Rule to find $d z / d t$.
$z=x^{2} y+2 y^{3}, x=1+t^{2}, y=(1-t)^{2}$.

Solution:

- Calculating:

$$
\begin{array}{ll}
\frac{d x}{d t}=2 t & \frac{d y}{d t}=-2(1-t) \\
\frac{\partial z}{\partial x}=2 x y & \frac{\partial z}{\partial y}=x^{2}+6 y^{2}
\end{array}
$$

- By the Chain Rule,

$$
\begin{aligned}
& \frac{d z}{d t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t}=2 x y \cdot 2 t+\left(x^{2}+6 y^{2}\right) \cdot(-2(1-t)) \\
& =2\left(1+t^{2}\right)(1-t)^{2} 2 t+\left(\left(1+t^{2}\right)^{2}+6(1-t)^{4}\right)(-2(1-t))
\end{aligned}
$$

- You can simplify further if you want.

Problem 24(2)
Use Chain Rule to find $\partial z / \partial u$ and $\partial z / \partial v$.
$z=x^{3}+x y^{2}+y^{3}, x=u v, y=u+v$.

Problem 24(2)
Use Chain Rule to find $\partial z / \partial u$ and $\partial z / \partial v$.
$z=x^{3}+x y^{2}+y^{3}, x=u v, y=u+v$.

Solution:

- Calculating:

$$
\begin{aligned}
\frac{\partial x}{\partial u}=v & \frac{\partial x}{\partial v}=u \\
\frac{\partial y}{\partial u}=1 & \frac{\partial y}{\partial v}=1 \\
\frac{\partial z}{\partial x}=3 x^{2}+y^{2} & \frac{\partial z}{\partial y}=2 x y+3 y^{2}
\end{aligned}
$$

Problem 24(2)
Use Chain Rule to find $\partial z / \partial u$ and $\partial z / \partial v$.
$z=x^{3}+x y^{2}+y^{3}, x=u v, y=u+v$.

Solution:

- Calculating:

$$
\begin{aligned}
\frac{\partial x}{\partial u}=v & \frac{\partial x}{\partial v}=u \\
\frac{\partial y}{\partial u}=1 & \frac{\partial y}{\partial v}=1 \\
\frac{\partial z}{\partial x}=3 x^{2}+y^{2} & \frac{\partial z}{\partial y}=2 x y+3 y^{2} .
\end{aligned}
$$

- By the Chain Rule:

$$
\frac{\partial z}{\partial u}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial u}
$$

Problem 24(2)
Use Chain Rule to find $\partial z / \partial u$ and $\partial z / \partial v$.
$z=x^{3}+x y^{2}+y^{3}, x=u v, y=u+v$.

Solution:

- Calculating:

$$
\begin{aligned}
\frac{\partial x}{\partial u}=v & \frac{\partial x}{\partial v}=u \\
\frac{\partial y}{\partial u}=1 & \frac{\partial y}{\partial v}=1 \\
\frac{\partial z}{\partial x}=3 x^{2}+y^{2} & \frac{\partial z}{\partial y}=2 x y+3 y^{2} .
\end{aligned}
$$

- By the Chain Rule:

$$
\frac{\partial z}{\partial u}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial u}
$$

$$
=\left(3 x^{2}+y^{2}\right) v+\left(2 x y+3 y^{2}\right)
$$

Problem 24(2)
Use Chain Rule to find $\partial z / \partial u$ and $\partial z / \partial v$.
$z=x^{3}+x y^{2}+y^{3}, x=u v, y=u+v$.

Solution:

- Calculating:

$$
\begin{aligned}
\frac{\partial x}{\partial u}=v & \frac{\partial x}{\partial v}=u \\
\frac{\partial y}{\partial u}=1 & \frac{\partial y}{\partial v}=1 \\
\frac{\partial z}{\partial x}=3 x^{2}+y^{2} & \frac{\partial z}{\partial y}=2 x y+3 y^{2} .
\end{aligned}
$$

- By the Chain Rule:

$$
\begin{gathered}
\frac{\partial z}{\partial u}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial u} \\
=\left(3 x^{2}+y^{2}\right) v+\left(2 x y+3 y^{2}\right)=\left(3 u^{2} v^{2}+(u+v)^{2}\right) v+2 u v(u+v)+3(u+v)^{2},
\end{gathered}
$$

Problem 24(2)
Use Chain Rule to find $\partial z / \partial u$ and $\partial z / \partial v$.
$z=x^{3}+x y^{2}+y^{3}, x=u v, y=u+v$.

Solution:

- Calculating:

$$
\begin{aligned}
\frac{\partial x}{\partial u}=v & \frac{\partial x}{\partial v}=u \\
\frac{\partial y}{\partial u}=1 & \frac{\partial y}{\partial v}=1 \\
\frac{\partial z}{\partial x}=3 x^{2}+y^{2} & \frac{\partial z}{\partial y}=2 x y+3 y^{2} .
\end{aligned}
$$

- By the Chain Rule:

$$
\frac{\partial z}{\partial u}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial u}
$$

$$
=\left(3 x^{2}+y^{2}\right) v+\left(2 x y+3 y^{2}\right)=\left(3 u^{2} v^{2}+(u+v)^{2}\right) v+2 u v(u+v)+3(u+v)^{2},
$$

$$
\frac{\partial z}{\partial v}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial v}
$$

Problem 24(2)
Use Chain Rule to find $\partial z / \partial u$ and $\partial z / \partial v$.
$z=x^{3}+x y^{2}+y^{3}, x=u v, y=u+v$.

Solution:

- Calculating:

$$
\begin{aligned}
\frac{\partial x}{\partial u}=v & \frac{\partial x}{\partial v}=u \\
\frac{\partial y}{\partial u}=1 & \frac{\partial y}{\partial v}=1 \\
\frac{\partial z}{\partial x}=3 x^{2}+y^{2} & \frac{\partial z}{\partial y}=2 x y+3 y^{2} .
\end{aligned}
$$

- By the Chain Rule:

$$
\frac{\partial z}{\partial u}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial u}
$$

$$
=\left(3 x^{2}+y^{2}\right) v+\left(2 x y+3 y^{2}\right)=\left(3 u^{2} v^{2}+(u+v)^{2}\right) v+2 u v(u+v)+3(u+v)^{2},
$$

$$
\frac{\partial z}{\partial v}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial v}
$$

$=\left(3 x^{2}+y^{2}\right) u+\left(2 x y+3 y^{2}\right)$

Problem 24(2)

Use Chain Rule to find $\partial z / \partial u$ and $\partial z / \partial v$.
$z=x^{3}+x y^{2}+y^{3}, x=u v, y=u+v$.

Solution:

- Calculating:

$$
\begin{aligned}
\frac{\partial x}{\partial u}=v & \frac{\partial x}{\partial v}=u \\
\frac{\partial y}{\partial u}=1 & \frac{\partial y}{\partial v}=1 \\
\frac{\partial z}{\partial x}=3 x^{2}+y^{2} & \frac{\partial z}{\partial y}=2 x y+3 y^{2} .
\end{aligned}
$$

- By the Chain Rule:

$$
\frac{\partial z}{\partial u}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial u}
$$

$$
=\left(3 x^{2}+y^{2}\right) v+\left(2 x y+3 y^{2}\right)=\left(3 u^{2} v^{2}+(u+v)^{2}\right) v+2 u v(u+v)+3(u+v)^{2},
$$

$$
\frac{\partial z}{\partial v}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial v}
$$

$$
=\left(3 x^{2}+y^{2}\right) u+\left(2 x y+3 y^{2}\right)=\left(3 u^{2} v^{2}+(u+v)^{2}\right) u+\left(2 u v(u+v)+3(u+v)^{2}\right) .
$$

Problem 25
If $z=f(x, y)$, where f is differentiable, and $x=1+t^{2}, y=3 t$, compute $d z / d t$ at $t=2$ provided that $f_{x}(5,6)=f_{y}(5,6)=-1$.

Problem 25

If $z=f(x, y)$, where f is differentiable, and $x=1+t^{2}, y=3 t$, compute $d z / d t$ at $t=2$ provided that $f_{x}(5,6)=f_{y}(5,6)=-1$.

Solution:

- We apply the Chain Rule $\frac{d z}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}$.

Problem 25

If $z=f(x, y)$, where f is differentiable, and $x=1+t^{2}, y=3 t$, compute $d z / d t$ at $t=2$ provided that $f_{x}(5,6)=f_{y}(5,6)=-1$.

Solution:

- We apply the Chain Rule $\frac{d z}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}$.
- Since $t=2$, then $x(2)=1+2^{2}=5$ and $y(2)=3 \cdot 2=6$.

Problem 25

If $z=f(x, y)$, where f is differentiable, and $x=1+t^{2}, y=3 t$, compute $d z / d t$ at $t=2$ provided that $f_{x}(5,6)=f_{y}(5,6)=-1$.

Solution:

- We apply the Chain Rule $\frac{d z}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}$.
- Since $t=2$, then $x(2)=1+2^{2}=5$ and $y(2)=3 \cdot 2=6$.
- Calculating, we obtain:

$$
\frac{d x}{d t}=2 t \quad \frac{d y}{d t}=3
$$

Problem 25

If $z=f(x, y)$, where f is differentiable, and $x=1+t^{2}, y=3 t$, compute $d z / d t$ at $t=2$ provided that $f_{x}(5,6)=f_{y}(5,6)=-1$.

Solution:

- We apply the Chain Rule $\frac{d z}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}$.
- Since $t=2$, then $x(2)=1+2^{2}=5$ and $y(2)=3 \cdot 2=6$.
- Calculating, we obtain:

$$
\frac{d x}{d t}=2 t \quad \frac{d y}{d t}=3
$$

- Evaluate using the Chain Rule:

$$
\frac{d z}{d t}(2)
$$

Problem 25

If $z=f(x, y)$, where f is differentiable, and $x=1+t^{2}, y=3 t$, compute $d z / d t$ at $t=2$ provided that $f_{x}(5,6)=f_{y}(5,6)=-1$.

Solution:

- We apply the Chain Rule $\frac{d z}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}$.
- Since $t=2$, then $x(2)=1+2^{2}=5$ and $y(2)=3 \cdot 2=6$.
- Calculating, we obtain:

$$
\frac{d x}{d t}=2 t \quad \frac{d y}{d t}=3 .
$$

- Evaluate using the Chain Rule:

$$
\frac{d z}{d t}(2)=\frac{\partial f}{\partial x}(5,6) \frac{d x}{d t}(2)+\frac{\partial f}{\partial y}(5,6) \frac{d y}{d t}(2)
$$

Problem 25

If $z=f(x, y)$, where f is differentiable, and $x=1+t^{2}, y=3 t$, compute $d z / d t$ at $t=2$ provided that $f_{x}(5,6)=f_{y}(5,6)=-1$.

Solution:

- We apply the Chain Rule $\frac{d z}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}$.
- Since $t=2$, then $x(2)=1+2^{2}=5$ and $y(2)=3 \cdot 2=6$.
- Calculating, we obtain:

$$
\frac{d x}{d t}=2 t \quad \frac{d y}{d t}=3
$$

- Evaluate using the Chain Rule:

$$
\begin{aligned}
\frac{d z}{d t}(2) & =\frac{\partial f}{\partial x}(5,6) \frac{d x}{d t}(2)+\frac{\partial f}{\partial y}(5,6) \frac{d y}{d t}(2) \\
& =-1(2 \cdot 2)+(-1) 3
\end{aligned}
$$

Problem 25

If $z=f(x, y)$, where f is differentiable, and $x=1+t^{2}, y=3 t$, compute $d z / d t$ at $t=2$ provided that $f_{x}(5,6)=f_{y}(5,6)=-1$.

Solution:

- We apply the Chain Rule $\frac{d z}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}$.
- Since $t=2$, then $x(2)=1+2^{2}=5$ and $y(2)=3 \cdot 2=6$.
- Calculating, we obtain:

$$
\frac{d x}{d t}=2 t \quad \frac{d y}{d t}=3 .
$$

- Evaluate using the Chain Rule:

$$
\begin{aligned}
\frac{d z}{d t}(2) & =\frac{\partial f}{\partial x}(5,6) \frac{d x}{d t}(2)+\frac{\partial f}{\partial y}(5,6) \frac{d y}{d t}(2) \\
& =-1(2 \cdot 2)+(-1) 3=-7 .
\end{aligned}
$$

Problem 26(a)

For the functions
(1) $f(x, y)=x^{2} y+y^{3}-y^{2}$,
(2) $g(x, y)=x / y+x y$,
(3) $h(x, y)=\sin \left(x^{2} y\right)+x y^{2}$
find the gradient at $(0,1)$.

Problem 26(a)

For the functions
(1) $f(x, y)=x^{2} y+y^{3}-y^{2}$,
(2) $g(x, y)=x / y+x y$,
(3) $h(x, y)=\sin \left(x^{2} y\right)+x y^{2}$
find the gradient at $(0,1)$.

Solution:

(1) $\nabla f(x, y)=\left\langle 2 x y, x^{2}+3 y^{2}-2 y\right\rangle$
$\nabla f(0,1)=\langle 0,1\rangle ;$

Problem 26(a)

For the functions
(1) $f(x, y)=x^{2} y+y^{3}-y^{2}$,
(2) $g(x, y)=x / y+x y$,
(3) $h(x, y)=\sin \left(x^{2} y\right)+x y^{2}$
find the gradient at $(0,1)$.

Solution:

$$
\text { (1) } \begin{aligned}
& \nabla f(x, y)=\left\langle 2 x y, x^{2}+3 y^{2}-2 y\right\rangle \\
& \nabla f(0,1)=\langle 0,1\rangle
\end{aligned}
$$

(2) $\nabla g(x, y)=\left\langle\frac{1}{y}+y,-\frac{x}{y^{2}}+x\right\rangle$
$\nabla g(0,1)=\langle 2,0\rangle ;$

Problem 26(a)

For the functions
(1) $f(x, y)=x^{2} y+y^{3}-y^{2}$,
(2) $g(x, y)=x / y+x y$,
(3) $h(x, y)=\sin \left(x^{2} y\right)+x y^{2}$
find the gradient at $(0,1)$.

Solution:

$$
\text { (1) } \begin{aligned}
& \nabla f(x, y)=\left\langle 2 x y, x^{2}+3 y^{2}-2 y\right\rangle \\
& \nabla f(0,1)=\langle 0,1\rangle ; \\
& \text { (2) } \nabla g(x, y)=\left\langle\frac{1}{y}+y,-\frac{x}{y^{2}}+x\right\rangle \\
& \nabla g(0,1)=\langle 2,0\rangle ; \\
& \text { () } \nabla h(x, y)=\left\langle\cos \left(x^{2} y\right)(2 x y)+y^{2}, \cos \left(x^{2} y\right) x^{2}+2 x y\right\rangle \\
& \nabla h(0,1)=\langle 1,0\rangle .
\end{aligned}
$$

Problem 26(b)

For the functions
(1) $f(x, y)=x^{2} y+y^{3}-y^{2}$,
(2) $g(x, y)=x / y+x y$,
(3) $h(x, y)=\sin \left(x^{2} y\right)+x y^{2}$
find the directional derivative at the point $(0,1)$ in the direction of $\mathbf{v}=\langle 3,4\rangle$.

Problem 26(b)

For the functions
(1) $f(x, y)=x^{2} y+y^{3}-y^{2}$,
(2) $g(x, y)=x / y+x y$,
(3) $h(x, y)=\sin \left(x^{2} y\right)+x y^{2}$
find the directional derivative at the point $(0,1)$ in the direction of $\mathbf{v}=\langle 3,4\rangle$.

Solution:

(1) The unit vector \mathbf{u} in the direction of $\mathbf{v}=\langle 3,4\rangle$ is:

$$
\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}
$$

Problem 26(b)

For the functions
(1) $f(x, y)=x^{2} y+y^{3}-y^{2}$,
(2) $g(x, y)=x / y+x y$,
(3) $h(x, y)=\sin \left(x^{2} y\right)+x y^{2}$
find the directional derivative at the point $(0,1)$ in the direction of $\mathbf{v}=\langle 3,4\rangle$.

Solution:

(1) The unit vector \mathbf{u} in the direction of $\mathbf{v}=\langle 3,4\rangle$ is:

$$
\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{1}{5}\langle 3,4\rangle
$$

Problem 26(b)

For the functions
(1) $f(x, y)=x^{2} y+y^{3}-y^{2}$,
(2) $g(x, y)=x / y+x y$,
(3) $h(x, y)=\sin \left(x^{2} y\right)+x y^{2}$
find the directional derivative at the point $(0,1)$ in the direction of $\mathbf{v}=\langle 3,4\rangle$.

Solution:

(1) The unit vector \mathbf{u} in the direction of $\mathbf{v}=\langle 3,4\rangle$ is:

$$
\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{1}{5}\langle 3,4\rangle=\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle .
$$

Problem 26(b)

For the functions
(1) $f(x, y)=x^{2} y+y^{3}-y^{2}$,
(2) $g(x, y)=x / y+x y$,
(3) $h(x, y)=\sin \left(x^{2} y\right)+x y^{2}$
find the directional derivative at the point $(0,1)$ in the direction of $\mathbf{v}=\langle 3,4\rangle$.

Solution:

(1) The unit vector \mathbf{u} in the direction of $\mathbf{v}=\langle 3,4\rangle$ is:

$$
\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{1}{5}\langle 3,4\rangle=\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle .
$$

(2) $D_{\mathrm{u}} f(0,1)=\nabla f(0,1) \cdot \mathbf{u}$

Problem 26(b)

For the functions
(1) $f(x, y)=x^{2} y+y^{3}-y^{2}$,
(2) $g(x, y)=x / y+x y$,
(3) $h(x, y)=\sin \left(x^{2} y\right)+x y^{2}$
find the directional derivative at the point $(0,1)$ in the direction of $\mathbf{v}=\langle 3,4\rangle$.

Solution:

(1) The unit vector \mathbf{u} in the direction of $\mathbf{v}=\langle 3,4\rangle$ is:

$$
\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{1}{5}\langle 3,4\rangle=\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle .
$$

(2) $D_{\mathrm{u}} f(0,1)=\nabla f(0,1) \cdot \mathbf{u}=\langle 0,1\rangle \cdot\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle$

Problem 26(b)

For the functions
(1) $f(x, y)=x^{2} y+y^{3}-y^{2}$,
(2) $g(x, y)=x / y+x y$,
(3) $h(x, y)=\sin \left(x^{2} y\right)+x y^{2}$
find the directional derivative at the point $(0,1)$ in the direction of $\mathbf{v}=\langle 3,4\rangle$.

Solution:

(1) The unit vector \mathbf{u} in the direction of $\mathbf{v}=\langle 3,4\rangle$ is:

$$
\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{1}{5}\langle 3,4\rangle=\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle .
$$

(2) $D_{\mathrm{u}} f(0,1)=\nabla f(0,1) \cdot \mathbf{u}=\langle 0,1\rangle \cdot\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle=\frac{4}{5}$.

Problem 26(b)

For the functions
(1) $f(x, y)=x^{2} y+y^{3}-y^{2}$,
(2) $g(x, y)=x / y+x y$,
(3) $h(x, y)=\sin \left(x^{2} y\right)+x y^{2}$
find the directional derivative at the point $(0,1)$ in the direction of $\mathbf{v}=\langle 3,4\rangle$.

Solution:

(1) The unit vector \mathbf{u} in the direction of $\mathbf{v}=\langle 3,4\rangle$ is:

$$
\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{1}{5}\langle 3,4\rangle=\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle .
$$

(2) $D_{\mathrm{u}} f(0,1)=\nabla f(0,1) \cdot \mathbf{u}=\langle 0,1\rangle \cdot\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle=\frac{4}{5}$.
(3) $D_{\mathrm{u}} g(0,1)=\nabla g(0,1) \cdot \mathbf{u}$

Problem 26(b)

For the functions
(1) $f(x, y)=x^{2} y+y^{3}-y^{2}$,
(2) $g(x, y)=x / y+x y$,
(3) $h(x, y)=\sin \left(x^{2} y\right)+x y^{2}$
find the directional derivative at the point $(0,1)$ in the direction of $\mathbf{v}=\langle 3,4\rangle$.

Solution:

(1) The unit vector \mathbf{u} in the direction of $\mathbf{v}=\langle 3,4\rangle$ is:

$$
\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{1}{5}\langle 3,4\rangle=\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle .
$$

(2) $D_{\mathrm{u}} f(0,1)=\nabla f(0,1) \cdot \mathbf{u}=\langle 0,1\rangle \cdot\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle=\frac{4}{5}$.
(3) $D_{u} g(0,1)=\nabla g(0,1) \cdot \mathbf{u}=\langle 2,0\rangle \cdot\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle$

Problem 26(b)

For the functions
(1) $f(x, y)=x^{2} y+y^{3}-y^{2}$,
(2) $g(x, y)=x / y+x y$,
(3) $h(x, y)=\sin \left(x^{2} y\right)+x y^{2}$
find the directional derivative at the point $(0,1)$ in the direction of $\mathbf{v}=\langle 3,4\rangle$.

Solution:

(1) The unit vector \mathbf{u} in the direction of $\mathbf{v}=\langle 3,4\rangle$ is:

$$
\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{1}{5}\langle 3,4\rangle=\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle .
$$

(2) $D_{\mathrm{u}} f(0,1)=\nabla f(0,1) \cdot \mathbf{u}=\langle 0,1\rangle \cdot\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle=\frac{4}{5}$.
(3) $D_{u} g(0,1)=\nabla g(0,1) \cdot \mathbf{u}=\langle 2,0\rangle \cdot\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle=\frac{6}{5}$.

Problem 26(b)

For the functions
(1) $f(x, y)=x^{2} y+y^{3}-y^{2}$,
(2) $g(x, y)=x / y+x y$,
(3) $h(x, y)=\sin \left(x^{2} y\right)+x y^{2}$
find the directional derivative at the point $(0,1)$ in the direction of $\mathbf{v}=\langle 3,4\rangle$.

Solution:

(1) The unit vector \mathbf{u} in the direction of $\mathbf{v}=\langle 3,4\rangle$ is:

$$
\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{1}{5}\langle 3,4\rangle=\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle .
$$

(2) $D_{\mathrm{u}} f(0,1)=\nabla f(0,1) \cdot \mathbf{u}=\langle 0,1\rangle \cdot\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle=\frac{4}{5}$.
(3) $D_{u} g(0,1)=\nabla g(0,1) \cdot \mathbf{u}=\langle 2,0\rangle \cdot\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle=\frac{6}{5}$.
(9) $D_{\mathrm{u}} h(0,1)=\nabla h(0,1) \cdot \mathbf{u}$

Problem 26(b)

For the functions
(1) $f(x, y)=x^{2} y+y^{3}-y^{2}$,
(2) $g(x, y)=x / y+x y$,
(3) $h(x, y)=\sin \left(x^{2} y\right)+x y^{2}$
find the directional derivative at the point $(0,1)$ in the direction of $\mathbf{v}=\langle 3,4\rangle$.

Solution:

(1) The unit vector \mathbf{u} in the direction of $\mathbf{v}=\langle 3,4\rangle$ is:

$$
\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{1}{5}\langle 3,4\rangle=\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle .
$$

(2) $D_{\mathrm{u}} f(0,1)=\nabla f(0,1) \cdot \mathbf{u}=\langle 0,1\rangle \cdot\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle=\frac{4}{5}$.
(3) $D_{\mathrm{u}} g(0,1)=\nabla g(0,1) \cdot \mathbf{u}=\langle 2,0\rangle \cdot\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle=\frac{6}{5}$.
(9) $D_{\mathrm{u}} h(0,1)=\nabla h(0,1) \cdot \mathbf{u}=\langle 1,0\rangle \cdot\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle$

Problem 26(b)

For the functions
(1) $f(x, y)=x^{2} y+y^{3}-y^{2}$,
(2) $g(x, y)=x / y+x y$,
(3) $h(x, y)=\sin \left(x^{2} y\right)+x y^{2}$
find the directional derivative at the point $(0,1)$ in the direction of $\mathbf{v}=\langle 3,4\rangle$.

Solution:

(1) The unit vector \mathbf{u} in the direction of $\mathbf{v}=\langle 3,4\rangle$ is:

$$
\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{1}{5}\langle 3,4\rangle=\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle .
$$

(2) $D_{\mathrm{u}} f(0,1)=\nabla f(0,1) \cdot \mathbf{u}=\langle 0,1\rangle \cdot\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle=\frac{4}{5}$.
(3) $D_{u} g(0,1)=\nabla g(0,1) \cdot \mathbf{u}=\langle 2,0\rangle \cdot\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle=\frac{6}{5}$.
(9) $D_{\mathrm{u}} h(0,1)=\nabla h(0,1) \cdot \mathbf{u}=\langle 1,0\rangle \cdot\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle=\frac{3}{5}$.

Problem 26(c)

For the functions
(1) $f(x, y)=x^{2} y+y^{3}-y^{2}$,
(2) $g(x, y)=x / y+x y$,
(3) $h(x, y)=\sin \left(x^{2} y\right)+x y^{2}$
find the maximum rate of change (MRC) at the point $(0,1)$.

Problem 26(c)

For the functions
(1) $f(x, y)=x^{2} y+y^{3}-y^{2}$,
(2) $g(x, y)=x / y+x y$,
(3) $h(x, y)=\sin \left(x^{2} y\right)+x y^{2}$
find the maximum rate of change (MRC) at the point $(0,1)$.

Solution:

We know that the maximum rate of change is the length of the gradient of the respective function:

Problem 26(c)

For the functions
(1) $f(x, y)=x^{2} y+y^{3}-y^{2}$,
(2) $g(x, y)=x / y+x y$,
(3) $h(x, y)=\sin \left(x^{2} y\right)+x y^{2}$
find the maximum rate of change (MRC) at the point $(0,1)$.

Solution:

We know that the maximum rate of change is the length of the gradient of the respective function:

$$
\operatorname{MRC}(f)=|\nabla f(0,1)|=|\langle 0,1\rangle|=1 ;
$$

Problem 26(c)

For the functions
(1) $f(x, y)=x^{2} y+y^{3}-y^{2}$,
(2) $g(x, y)=x / y+x y$,
(3) $h(x, y)=\sin \left(x^{2} y\right)+x y^{2}$
find the maximum rate of change (MRC) at the point $(0,1)$.

Solution:

We know that the maximum rate of change is the length of the gradient of the respective function:

$$
\operatorname{MRC}(f)=|\nabla f(0,1)|=|\langle 0,1\rangle|=1 ;
$$

$$
\operatorname{MRC}(g)=|\nabla g(0,1)|=|\langle 2,0\rangle|=2
$$

Problem 26(c)

For the functions
(1) $f(x, y)=x^{2} y+y^{3}-y^{2}$,
(2) $g(x, y)=x / y+x y$,
(3) $h(x, y)=\sin \left(x^{2} y\right)+x y^{2}$
find the maximum rate of change (MRC) at the point $(0,1)$.

Solution:

We know that the maximum rate of change is the length of the gradient of the respective function:

$$
\operatorname{MRC}(f)=|\nabla f(0,1)|=|\langle 0,1\rangle|=1 ;
$$

$$
\operatorname{MRC}(g)=|\nabla g(0,1)|=|\langle 2,0\rangle|=2
$$

$\operatorname{MRC}(h)=|\nabla h(0,1)|=|\langle 1,0\rangle|=1$.

Problem 27

Find an equation of the tangent plane to the surface $x^{2}+2 y^{2}-z^{2}=5$ at the point $(2,1,1)$.

Problem 27

Find an equation of the tangent plane to the surface $x^{2}+2 y^{2}-z^{2}=5$ at the point $(2,1,1)$.

Solution:

- For $\mathbf{F}(x, y, z)=x^{2}+2 y^{2}-z^{2}$, the gradient is:

$$
\nabla \mathbf{F}(x, y, z)=\langle 2 x, 4 y,-2 z\rangle
$$

Problem 27

Find an equation of the tangent plane to the surface $x^{2}+2 y^{2}-z^{2}=5$ at the point $(2,1,1)$.

Solution:

- For $\mathbf{F}(x, y, z)=x^{2}+2 y^{2}-z^{2}$, the gradient is:

$$
\nabla \mathbf{F}(x, y, z)=\langle 2 x, 4 y,-2 z\rangle
$$

- At the point $(2,1,1)$, we have $\nabla \mathbf{F}(2,1,1)=\langle 4,4,-2\rangle$, which is the normal vector \mathbf{n} to the tangent plane to the surface $\mathbf{F}(x, y, z)=x^{2}+2 y^{2}-z^{2}=5$ at $(2,1,1)$.

Problem 27

Find an equation of the tangent plane to the surface $x^{2}+2 y^{2}-z^{2}=5$ at the point $(2,1,1)$.

Solution:

- For $\mathbf{F}(x, y, z)=x^{2}+2 y^{2}-z^{2}$, the gradient is:

$$
\nabla \mathbf{F}(x, y, z)=\langle 2 x, 4 y,-2 z\rangle
$$

- At the point $(2,1,1)$, we have $\nabla \mathbf{F}(2,1,1)=\langle 4,4,-2\rangle$, which is the normal vector \mathbf{n} to the tangent plane to the surface $\mathbf{F}(x, y, z)=x^{2}+2 y^{2}-z^{2}=5$ at $(2,1,1)$.
- Since $(2,1,1)$ is a point on the tangent plane, the equation is:

Problem 27

Find an equation of the tangent plane to the surface $x^{2}+2 y^{2}-z^{2}=5$ at the point $(2,1,1)$.

Solution:

- For $\mathbf{F}(x, y, z)=x^{2}+2 y^{2}-z^{2}$, the gradient is:

$$
\nabla \mathbf{F}(x, y, z)=\langle 2 x, 4 y,-2 z\rangle
$$

- At the point $(2,1,1)$, we have $\nabla \mathbf{F}(2,1,1)=\langle 4,4,-2\rangle$, which is the normal vector \mathbf{n} to the tangent plane to the surface $\mathbf{F}(x, y, z)=x^{2}+2 y^{2}-z^{2}=5$ at $(2,1,1)$.
- Since $(2,1,1)$ is a point on the tangent plane, the equation is:

$$
\langle 4,4,-2\rangle \cdot\langle x-2, y-1, z-1\rangle=4(x-2)+4(y-1)-2(z-1)=0 .
$$

Problem 28

Find parametric equations for the tangent line to the curve of intersection of the surfaces $z^{2}=x^{2}+y^{2}$ and $x^{2}+2 y^{2}+z^{2}=66$ at the point $(3,4,5)$.

Problem 28

Find parametric equations for the tangent line to the curve of intersection of the surfaces $z^{2}=x^{2}+y^{2}$ and $x^{2}+2 y^{2}+z^{2}=66$ at the point $(3,4,5)$.

Solution:

- If $\mathbf{n}_{1}, \mathbf{n}_{2}$ are the normal vectors of the respective surfaces, the equation of the tangent line is $\mathbf{L}(t)=\langle 3,4,5\rangle+t\left(\mathbf{n}_{1} \times \mathbf{n}_{2}\right)$.

Problem 28

Find parametric equations for the tangent line to the curve of intersection of the surfaces $z^{2}=x^{2}+y^{2}$ and $x^{2}+2 y^{2}+z^{2}=66$ at the point $(3,4,5)$.

Solution:

- If $\mathbf{n}_{1}, \mathbf{n}_{2}$ are the normal vectors of the respective surfaces, the equation of the tangent line is $\mathbf{L}(t)=\langle 3,4,5\rangle+t\left(\mathbf{n}_{1} \times \mathbf{n}_{2}\right)$.
- The normal \mathbf{n}_{1} to the surface $\mathbf{F}(x, y, z)=z^{2}-x^{2}-y^{2}=0$ at the point $(3,4,5)$ is:

Problem 28

Find parametric equations for the tangent line to the curve of intersection of the surfaces $z^{2}=x^{2}+y^{2}$ and $x^{2}+2 y^{2}+z^{2}=66$ at the point $(3,4,5)$.

Solution:

- If $\mathbf{n}_{1}, \mathbf{n}_{2}$ are the normal vectors of the respective surfaces, the equation of the tangent line is $\mathbf{L}(t)=\langle 3,4,5\rangle+t\left(\mathbf{n}_{1} \times \mathbf{n}_{2}\right)$.
- The normal \mathbf{n}_{1} to the surface $\mathbf{F}(x, y, z)=z^{2}-x^{2}-y^{2}=0$ at the point $(3,4,5)$ is: $\quad \mathbf{n}_{1}=\nabla \mathbf{F}(3,4,5)$

Problem 28

Find parametric equations for the tangent line to the curve of intersection of the surfaces $z^{2}=x^{2}+y^{2}$ and $x^{2}+2 y^{2}+z^{2}=66$ at the point $(3,4,5)$.

Solution:

- If $\mathbf{n}_{1}, \mathbf{n}_{2}$ are the normal vectors of the respective surfaces, the equation of the tangent line is $\mathbf{L}(t)=\langle 3,4,5\rangle+t\left(\mathbf{n}_{1} \times \mathbf{n}_{2}\right)$.
- The normal \mathbf{n}_{1} to the surface $\mathbf{F}(x, y, z)=z^{2}-x^{2}-y^{2}=0$ at the point $(3,4,5)$ is: $\quad \mathbf{n}_{1}=\nabla \mathbf{F}(3,4,5)=\langle-6,-8,10\rangle$.

Problem 28

Find parametric equations for the tangent line to the curve of intersection of the surfaces $z^{2}=x^{2}+y^{2}$ and $x^{2}+2 y^{2}+z^{2}=66$ at the point $(3,4,5)$.

Solution:

- If $\mathbf{n}_{1}, \mathbf{n}_{2}$ are the normal vectors of the respective surfaces, the equation of the tangent line is $\mathbf{L}(t)=\langle 3,4,5\rangle+t\left(\mathbf{n}_{1} \times \mathbf{n}_{2}\right)$.
- The normal \mathbf{n}_{1} to the surface $\mathbf{F}(x, y, z)=z^{2}-x^{2}-y^{2}=0$ at the point $(3,4,5)$ is: $\quad \mathbf{n}_{1}=\nabla \mathbf{F}(3,4,5)=\langle-6,-8,10\rangle$.
- The normal \mathbf{n}_{2} to the surface $\mathbf{G}(x, y, z)=x^{2}+2 y^{2}+z^{2}=66$ at the point $(3,4,5)$ is:

Problem 28

Find parametric equations for the tangent line to the curve of intersection of the surfaces $z^{2}=x^{2}+y^{2}$ and $x^{2}+2 y^{2}+z^{2}=66$ at the point $(3,4,5)$.

Solution:

- If $\mathbf{n}_{1}, \mathbf{n}_{2}$ are the normal vectors of the respective surfaces, the equation of the tangent line is $\mathbf{L}(t)=\langle 3,4,5\rangle+t\left(\mathbf{n}_{1} \times \mathbf{n}_{2}\right)$.
- The normal \mathbf{n}_{1} to the surface $\mathbf{F}(x, y, z)=z^{2}-x^{2}-y^{2}=0$ at the point $(3,4,5)$ is: $\quad \mathbf{n}_{1}=\nabla \mathbf{F}(3,4,5)=\langle-6,-8,10\rangle$.
- The normal \mathbf{n}_{2} to the surface $\mathbf{G}(x, y, z)=x^{2}+2 y^{2}+z^{2}=66$ at the point $(3,4,5)$ is: $\quad \mathbf{n}_{2}=\nabla \mathbf{G}(3,4,5)$

Problem 28

Find parametric equations for the tangent line to the curve of intersection of the surfaces $z^{2}=x^{2}+y^{2}$ and $x^{2}+2 y^{2}+z^{2}=66$ at the point $(3,4,5)$.

Solution:

- If $\mathbf{n}_{1}, \mathbf{n}_{2}$ are the normal vectors of the respective surfaces, the equation of the tangent line is $\mathbf{L}(t)=\langle 3,4,5\rangle+t\left(\mathbf{n}_{1} \times \mathbf{n}_{2}\right)$.
- The normal \mathbf{n}_{1} to the surface $\mathbf{F}(x, y, z)=z^{2}-x^{2}-y^{2}=0$ at the point $(3,4,5)$ is: $\quad \mathbf{n}_{1}=\nabla \mathbf{F}(3,4,5)=\langle-6,-8,10\rangle$.
- The normal \mathbf{n}_{2} to the surface $\mathbf{G}(x, y, z)=x^{2}+2 y^{2}+z^{2}=66$ at the point $(3,4,5)$ is: $\quad \mathbf{n}_{2}=\nabla \mathbf{G}(3,4,5)=\langle 6,16,10\rangle$.

Problem 28

Find parametric equations for the tangent line to the curve of intersection of the surfaces $z^{2}=x^{2}+y^{2}$ and $x^{2}+2 y^{2}+z^{2}=66$ at the point $(3,4,5)$.

Solution:

- If $\mathbf{n}_{1}, \mathbf{n}_{2}$ are the normal vectors of the respective surfaces, the equation of the tangent line is $\mathbf{L}(t)=\langle 3,4,5\rangle+t\left(\mathbf{n}_{1} \times \mathbf{n}_{2}\right)$.
- The normal \mathbf{n}_{1} to the surface $\mathbf{F}(x, y, z)=z^{2}-x^{2}-y^{2}=0$ at the point $(3,4,5)$ is: $\quad \mathbf{n}_{1}=\nabla \mathbf{F}(3,4,5)=\langle-6,-8,10\rangle$.
- The normal \mathbf{n}_{2} to the surface $\mathbf{G}(x, y, z)=x^{2}+2 y^{2}+z^{2}=66$ at the point $(3,4,5)$ is: $\quad \mathbf{n}_{2}=\nabla \mathbf{G}(3,4,5)=\langle 6,16,10\rangle$.
- The vector part of the line is:

$$
\mathbf{n}_{1} \times \mathbf{n}_{2}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-6 & -8 & 10 \\
6 & 16 & 10
\end{array}\right|
$$

Problem 28

Find parametric equations for the tangent line to the curve of intersection of the surfaces $z^{2}=x^{2}+y^{2}$ and $x^{2}+2 y^{2}+z^{2}=66$ at the point $(3,4,5)$.

Solution:

- If $\mathbf{n}_{1}, \mathbf{n}_{2}$ are the normal vectors of the respective surfaces, the equation of the tangent line is $\mathbf{L}(t)=\langle 3,4,5\rangle+t\left(\mathbf{n}_{1} \times \mathbf{n}_{2}\right)$.
- The normal \mathbf{n}_{1} to the surface $\mathbf{F}(x, y, z)=z^{2}-x^{2}-y^{2}=0$ at the point $(3,4,5)$ is: $\quad \mathbf{n}_{1}=\nabla \mathbf{F}(3,4,5)=\langle-6,-8,10\rangle$.
- The normal \mathbf{n}_{2} to the surface $\mathbf{G}(x, y, z)=x^{2}+2 y^{2}+z^{2}=66$ at the point $(3,4,5)$ is: $\quad \mathbf{n}_{2}=\nabla \mathbf{G}(3,4,5)=\langle 6,16,10\rangle$.
- The vector part of the line is:

$$
\mathbf{n}_{1} \times \mathbf{n}_{2}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-6 & -8 & 10 \\
6 & 16 & 10
\end{array}\right|=\langle-240,120,-48\rangle
$$

Problem 28

Find parametric equations for the tangent line to the curve of intersection of the surfaces $z^{2}=x^{2}+y^{2}$ and $x^{2}+2 y^{2}+z^{2}=66$ at the point $(3,4,5)$.

Solution:

- If $\mathbf{n}_{1}, \mathbf{n}_{2}$ are the normal vectors of the respective surfaces, the equation of the tangent line is $\mathbf{L}(t)=\langle 3,4,5\rangle+t\left(\mathbf{n}_{1} \times \mathbf{n}_{2}\right)$.
- The normal \mathbf{n}_{1} to the surface $\mathbf{F}(x, y, z)=z^{2}-x^{2}-y^{2}=0$ at the point $(3,4,5)$ is: $\quad \mathbf{n}_{1}=\nabla \mathbf{F}(3,4,5)=\langle-6,-8,10\rangle$.
- The normal \mathbf{n}_{2} to the surface $\mathbf{G}(x, y, z)=x^{2}+2 y^{2}+z^{2}=66$ at the point $(3,4,5)$ is: $\quad \mathbf{n}_{2}=\nabla \mathbf{G}(3,4,5)=\langle 6,16,10\rangle$.
- The vector part of the line is:

$$
\mathbf{n}_{1} \times \mathbf{n}_{2}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-6 & -8 & 10 \\
6 & 16 & 10
\end{array}\right|=\langle-240,120,-48\rangle
$$

- The parametric equations are:

$$
\begin{gathered}
x=3-240 t \\
y=4+120 t \\
z=5-48 t .
\end{gathered}
$$

Problem 29(1)

Find and classify all critical points (as local maxima, local minima, or saddle points) of the function
$f(x, y)=x^{2} y^{2}+x^{2}-2 y^{3}+3 y^{2}$

Problem 29(1)

Find and classify all critical points (as local maxima, local minima, or saddle points) of the function
$f(x, y)=x^{2} y^{2}+x^{2}-2 y^{3}+3 y^{2}$
Solution:

- Set $\nabla f=\langle 0,0\rangle$ and solve:

$$
\nabla f=\left\langle 2 x y^{2}+2 x, 2 x^{2} y-6 y^{2}+6 y\right\rangle=\langle 0,0\rangle
$$

Problem 29(1)

Find and classify all critical points (as local maxima, local minima, or saddle points) of the function

$$
f(x, y)=x^{2} y^{2}+x^{2}-2 y^{3}+3 y^{2}
$$

Solution:

- Set $\nabla f=\langle 0,0\rangle$ and solve:

$$
\begin{aligned}
& \nabla f=\left\langle 2 x y^{2}+2 x, 2 x^{2} y-6 y^{2}+6 y\right\rangle=\langle 0,0\rangle \Longrightarrow \\
& 2 x y+2 x=2 x\left(y^{2}+1\right)=0
\end{aligned}
$$

Problem 29(1)

Find and classify all critical points (as local maxima, local minima, or saddle points) of the function

$$
f(x, y)=x^{2} y^{2}+x^{2}-2 y^{3}+3 y^{2}
$$

Solution:

- Set $\nabla f=\langle 0,0\rangle$ and solve:

$$
\begin{aligned}
& \nabla f=\left\langle 2 x y^{2}+2 x, 2 x^{2} y-6 y^{2}+6 y\right\rangle=\langle 0,0\rangle \Longrightarrow \\
& 2 x y+2 x=2 x\left(y^{2}+1\right)=0 \Longrightarrow x=0
\end{aligned}
$$

Problem 29(1)

Find and classify all critical points (as local maxima, local minima, or saddle points) of the function

$$
f(x, y)=x^{2} y^{2}+x^{2}-2 y^{3}+3 y^{2}
$$

Solution:

- Set $\nabla f=\langle 0,0\rangle$ and solve:

$$
\begin{aligned}
& \nabla f=\left\langle 2 x y^{2}+2 x, 2 x^{2} y-6 y^{2}+6 y\right\rangle=\langle 0,0\rangle \Longrightarrow \\
& 2 x y+2 x=2 x\left(y^{2}+1\right)=0 \Longrightarrow x=0 ; \Longrightarrow \\
& -6 y^{2}+6 y=6 y(-y+1)=0
\end{aligned}
$$

Problem 29(1)

Find and classify all critical points (as local maxima, local minima, or saddle points) of the function

$$
f(x, y)=x^{2} y^{2}+x^{2}-2 y^{3}+3 y^{2}
$$

Solution:

- Set $\nabla f=\langle 0,0\rangle$ and solve:

$$
\begin{aligned}
& \nabla f=\left\langle 2 x y^{2}+2 x, 2 x^{2} y-6 y^{2}+6 y\right\rangle=\langle 0,0\rangle \Longrightarrow \\
& 2 x y+2 x=2 x\left(y^{2}+1\right)=0 \Longrightarrow x=0 ; \Longrightarrow \\
& -6 y^{2}+6 y=6 y(-y+1)=0 \Longrightarrow y=0 \text { or } y=1
\end{aligned}
$$

Problem 29(1)

Find and classify all critical points (as local maxima, local minima, or saddle points) of the function
$f(x, y)=x^{2} y^{2}+x^{2}-2 y^{3}+3 y^{2}$

Solution:

- Set $\nabla f=\langle 0,0\rangle$ and solve:

$$
\begin{aligned}
& \nabla f=\left\langle 2 x y^{2}+2 x, 2 x^{2} y-6 y^{2}+6 y\right\rangle=\langle 0,0\rangle \Longrightarrow \\
& 2 x y+2 x=2 x\left(y^{2}+1\right)=0 \Longrightarrow x=0 ; \Longrightarrow \\
& -6 y^{2}+6 y=6 y(-y+1)=0 \Longrightarrow y=0 \text { or } y=1
\end{aligned}
$$

- The critical points are $(0,0),(0,1)$.

Problem 29(1)

Find and classify all critical points (as local maxima, local minima, or saddle points) of the function
$f(x, y)=x^{2} y^{2}+x^{2}-2 y^{3}+3 y^{2}$

Solution:

- Set $\nabla f=\langle 0,0\rangle$ and solve:

$$
\begin{aligned}
& \nabla f=\left\langle 2 x y^{2}+2 x, 2 x^{2} y-6 y^{2}+6 y\right\rangle=\langle 0,0\rangle \Longrightarrow \\
& 2 x y+2 x=2 x\left(y^{2}+1\right)=0 \Longrightarrow x=0 ; \Longrightarrow \\
& -6 y^{2}+6 y=6 y(-y+1)=0 \Longrightarrow y=0 \text { or } y=1 .
\end{aligned}
$$

- The critical points are $(0,0),(0,1)$.
- The Hessian is:

$$
D=\left|\begin{array}{cc}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|=\left|\begin{array}{cc}
2 y^{2}+2 & 4 x y \\
4 x y & 2 x^{2}-12 y+6
\end{array}\right|
$$

Problem 29(1)

Find and classify all critical points (as local maxima, local minima, or saddle points) of the function
$f(x, y)=x^{2} y^{2}+x^{2}-2 y^{3}+3 y^{2}$

Solution:

- Set $\nabla f=\langle 0,0\rangle$ and solve:

$$
\begin{aligned}
& \nabla f=\left\langle 2 x y^{2}+2 x, 2 x^{2} y-6 y^{2}+6 y\right\rangle=\langle 0,0\rangle \Longrightarrow \\
& 2 x y+2 x=2 x\left(y^{2}+1\right)=0 \Longrightarrow x=0 ; \Longrightarrow \\
& -6 y^{2}+6 y=6 y(-y+1)=0 \Longrightarrow y=0 \text { or } y=1 .
\end{aligned}
$$

- The critical points are $(0,0),(0,1)$.
- The Hessian is:

$$
D=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|=\left|\begin{array}{cc}
2 y^{2}+2 & 4 x y \\
4 x y & 2 x^{2}-12 y+6
\end{array}\right|
$$

- Since $D(0,0)=2 \cdot 6>0$ and $f_{x x}(0,0)=2>0$, the point $(0,0)$ is a local minimum.

Problem 29(1)

Find and classify all critical points (as local maxima, local minima, or saddle points) of the function

$$
f(x, y)=x^{2} y^{2}+x^{2}-2 y^{3}+3 y^{2}
$$

Solution:

- Set $\nabla f=\langle 0,0\rangle$ and solve:

$$
\begin{aligned}
& \nabla f=\left\langle 2 x y^{2}+2 x, 2 x^{2} y-6 y^{2}+6 y\right\rangle=\langle 0,0\rangle \Longrightarrow \\
& 2 x y+2 x=2 x\left(y^{2}+1\right)=0 \Longrightarrow x=0 ; \Longrightarrow \\
& -6 y^{2}+6 y=6 y(-y+1)=0 \Longrightarrow y=0 \text { or } y=1 .
\end{aligned}
$$

- The critical points are $(0,0),(0,1)$.
- The Hessian is:

$$
D=\left|\begin{array}{cc}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|=\left|\begin{array}{cc}
2 y^{2}+2 & 4 x y \\
4 x y & 2 x^{2}-12 y+6
\end{array}\right| .
$$

- Since $D(0,0)=2 \cdot 6>0$ and $f_{x x}(0,0)=2>0$, the point $(0,0)$ is a local minimum.
- Since $D(0,1)=4 \cdot(-12)<0$, the point $(0,1)$ is saddle point.

Problem 29(2)

Find and classify all critical points (as local maxima, local minima, or saddle points) of the function $g(x, y)=x^{3}+y^{2}+2 x y-4 x-3 y+5$.

Problem 29(2)

Find and classify all critical points (as local maxima, local minima, or saddle points) of the function $g(x, y)=x^{3}+y^{2}+2 x y-4 x-3 y+5$.

Solution:

- Set $\nabla g=\langle 0,0\rangle$ and solve:

$$
\nabla g=\left\langle 3 x^{2}+2 y-4,2 y+2 x-3\right\rangle=0
$$

Problem 29(2)

Find and classify all critical points (as local maxima, local minima, or saddle points) of the function $g(x, y)=x^{3}+y^{2}+2 x y-4 x-3 y+5$.

Solution:

- Set $\nabla g=\langle 0,0\rangle$ and solve:

$$
\begin{aligned}
& \nabla g=\left\langle 3 x^{2}+2 y-4,2 y+2 x-3\right\rangle=0 \\
& \quad 2 y+2 x-3=0
\end{aligned}
$$

Problem 29(2)

Find and classify all critical points (as local maxima, local minima, or saddle points) of the function $g(x, y)=x^{3}+y^{2}+2 x y-4 x-3 y+5$.

Solution:

- Set $\nabla g=\langle 0,0\rangle$ and solve:

$$
\begin{gathered}
\nabla g=\left\langle 3 x^{2}+2 y-4,2 y+2 x-3\right\rangle=0 \\
2 y+2 x-3=0 \Longrightarrow y=\frac{3}{2}-x
\end{gathered}
$$

Problem 29(2)

Find and classify all critical points (as local maxima, local minima, or saddle points) of the function $g(x, y)=x^{3}+y^{2}+2 x y-4 x-3 y+5$.

Solution:

- Set $\nabla g=\langle 0,0\rangle$ and solve:
- So,

$$
\begin{gathered}
\nabla g=\left\langle 3 x^{2}+2 y-4,2 y+2 x-3\right\rangle=0 \\
2 y+2 x-3=0 \Longrightarrow y=\frac{3}{2}-x
\end{gathered}
$$

$$
3 x^{2}+2\left(\frac{3}{2}-x\right)-4
$$

Problem 29(2)

Find and classify all critical points (as local maxima, local minima, or saddle points) of the function $g(x, y)=x^{3}+y^{2}+2 x y-4 x-3 y+5$.

Solution:

- Set $\nabla g=\langle 0,0\rangle$ and solve:
- So,

$$
\begin{gathered}
\nabla g=\left\langle 3 x^{2}+2 y-4,2 y+2 x-3\right\rangle=0 \\
2 y+2 x-3=0 \Longrightarrow y=\frac{3}{2}-x
\end{gathered}
$$

$$
3 x^{2}+2\left(\frac{3}{2}-x\right)-4=3 x^{2}-2 x-1
$$

Problem 29(2)

Find and classify all critical points (as local maxima, local minima, or saddle points) of the function $g(x, y)=x^{3}+y^{2}+2 x y-4 x-3 y+5$.

Solution:

- Set $\nabla g=\langle 0,0\rangle$ and solve:
- So,

$$
\begin{gathered}
\nabla g=\left\langle 3 x^{2}+2 y-4,2 y+2 x-3\right\rangle=0 \\
2 y+2 x-3=0 \Longrightarrow y=\frac{3}{2}-x
\end{gathered}
$$

$$
3 x^{2}+2\left(\frac{3}{2}-x\right)-4=3 x^{2}-2 x-1=(3 x+1)(x-1)=0
$$

Problem 29(2)

Find and classify all critical points (as local maxima, local minima, or saddle points) of the function $g(x, y)=x^{3}+y^{2}+2 x y-4 x-3 y+5$.

Solution:

- Set $\nabla g=\langle 0,0\rangle$ and solve:
- So,

$$
\begin{gathered}
\nabla g=\left\langle 3 x^{2}+2 y-4,2 y+2 x-3\right\rangle=0 \\
2 y+2 x-3=0 \Longrightarrow y=\frac{3}{2}-x
\end{gathered}
$$

$$
\begin{aligned}
& 3 x^{2}+2\left(\frac{3}{2}-x\right)-4=3 x^{2}-2 x-1=(3 x+1)(x-1)=0 \\
& \Longrightarrow x=1 \text { or } x=-\frac{1}{3}
\end{aligned}
$$

Problem 29(2)

Find and classify all critical points (as local maxima, local minima, or saddle points) of the function $g(x, y)=x^{3}+y^{2}+2 x y-4 x-3 y+5$.

Solution:

- Set $\nabla g=\langle 0,0\rangle$ and solve:
- So,

$$
\begin{gathered}
\nabla g=\left\langle 3 x^{2}+2 y-4,2 y+2 x-3\right\rangle=0 \\
2 y+2 x-3=0 \Longrightarrow y=\frac{3}{2}-x
\end{gathered}
$$

$$
\begin{aligned}
& 3 x^{2}+2\left(\frac{3}{2}-x\right)-4=3 x^{2}-2 x-1=(3 x+1)(x-1)=0 \\
& \Longrightarrow x=1 \text { or } x=-\frac{1}{3}
\end{aligned}
$$

- The set of critical points is $\left\{\left(1, \frac{1}{2}\right),\left(-\frac{1}{3}, \frac{11}{6}\right)\right\}$.

Problem 29(2)

Find and classify all critical points (as local maxima, local minima, or saddle points) of the function $g(x, y)=x^{3}+y^{2}+2 x y-4 x-3 y+5$.

Solution:

- Set $\nabla g=\langle 0,0\rangle$ and solve:
- So,

$$
\begin{gathered}
\nabla g=\left\langle 3 x^{2}+2 y-4,2 y+2 x-3\right\rangle=0 \\
2 y+2 x-3=0 \Longrightarrow y=\frac{3}{2}-x
\end{gathered}
$$

$$
\begin{aligned}
& 3 x^{2}+2\left(\frac{3}{2}-x\right)-4=3 x^{2}-2 x-1=(3 x+1)(x-1)=0 \\
& \Longrightarrow x=1 \text { or } x=-\frac{1}{3}
\end{aligned}
$$

- The set of critical points is $\left\{\left(1, \frac{1}{2}\right),\left(-\frac{1}{3}, \frac{11}{6}\right)\right\}$.
- The Hessian is:

$$
D=\left|\begin{array}{ll}
g_{x x} & g_{x y} \\
g_{y x} & g_{y y}
\end{array}\right|=\left|\begin{array}{cc}
6 x & 2 \\
2 & 2
\end{array}\right| .
$$

Problem 29(2)

Find and classify all critical points (as local maxima, local minima, or saddle points) of the function $g(x, y)=x^{3}+y^{2}+2 x y-4 x-3 y+5$.

Solution:

- Set $\nabla g=\langle 0,0\rangle$ and solve:
- So,

$$
\begin{gathered}
\nabla g=\left\langle 3 x^{2}+2 y-4,2 y+2 x-3\right\rangle=0 \\
2 y+2 x-3=0 \Longrightarrow y=\frac{3}{2}-x
\end{gathered}
$$

$$
\begin{aligned}
& 3 x^{2}+2\left(\frac{3}{2}-x\right)-4=3 x^{2}-2 x-1=(3 x+1)(x-1)=0 \\
& \Longrightarrow x=1 \text { or } x=-\frac{1}{3}
\end{aligned}
$$

- The set of critical points is $\left\{\left(1, \frac{1}{2}\right),\left(-\frac{1}{3}, \frac{11}{6}\right)\right\}$.
- The Hessian is:

$$
D=\left|\begin{array}{ll}
g_{x x} & g_{x y} \\
g_{y x} & g_{y y}
\end{array}\right|=\left|\begin{array}{cc}
6 x & 2 \\
2 & 2
\end{array}\right| .
$$

- Since $D\left(1, \frac{1}{2}\right)=(6 \cdot 2-4)>0$ and $g_{x x}\left(1, \frac{1}{2}\right)=6>0$, the point ($1, \frac{1}{2}$) is a local minimum.

Problem 29(2)

Find and classify all critical points (as local maxima, local minima, or saddle points) of the function $g(x, y)=x^{3}+y^{2}+2 x y-4 x-3 y+5$.

Solution:

- Set $\nabla g=\langle 0,0\rangle$ and solve:
- So,

$$
\begin{gathered}
\nabla g=\left\langle 3 x^{2}+2 y-4,2 y+2 x-3\right\rangle=0 \\
2 y+2 x-3=0 \Longrightarrow y=\frac{3}{2}-x
\end{gathered}
$$

$$
\begin{aligned}
& 3 x^{2}+2\left(\frac{3}{2}-x\right)-4=3 x^{2}-2 x-1=(3 x+1)(x-1)=0 \\
& \Longrightarrow x=1 \text { or } x=-\frac{1}{3}
\end{aligned}
$$

- The set of critical points is $\left\{\left(1, \frac{1}{2}\right),\left(-\frac{1}{3}, \frac{11}{6}\right)\right\}$.
- The Hessian is:

$$
D=\left|\begin{array}{ll}
g_{x x} & g_{x y} \\
g_{y x} & g_{y y}
\end{array}\right|=\left|\begin{array}{cc}
6 x & 2 \\
2 & 2
\end{array}\right| .
$$

- Since $D\left(1, \frac{1}{2}\right)=(6 \cdot 2-4)>0$ and $g_{x x}\left(1, \frac{1}{2}\right)=6>0$, the point $\left(1, \frac{1}{2}\right)$ is a local minimum.
- Since $D\left(-\frac{1}{3}, \frac{11}{6}\right)=-8<0$, then $\left(-1, \frac{5}{2}\right)$ is a saddle point.

Problem 30

Find the minimum value of $f(x, y)=3+x y-x-2 y$ on the closed triangular region with vertices $(0,0),(2,0)$ and $(0,3)$.

Problem 30

Find the minimum value of $f(x, y)=3+x y-x-2 y$ on the closed triangular region with vertices $(0,0),(2,0)$ and $(0,3)$.

Solution:

- Set $\nabla f=\langle 0,0\rangle$ and solve:

$$
\nabla f=\langle y-1, x-2\rangle=\langle 0,0\rangle \Longrightarrow y=1 \text { and } x=2
$$

Problem 30

Find the minimum value of $f(x, y)=3+x y-x-2 y$ on the closed triangular region with vertices $(0,0),(2,0)$ and $(0,3)$.

Solution:

- Set $\nabla f=\langle 0,0\rangle$ and solve:

$$
\nabla f=\langle y-1, x-2\rangle=\langle 0,0\rangle \Longrightarrow y=1 \text { and } x=2
$$

- There is exactly one critical point which is $(2,1)$, but this point is not inside the triangle, so ignore it.

Problem 30

Find the minimum value of $f(x, y)=3+x y-x-2 y$ on the closed triangular region with vertices $(0,0),(2,0)$ and $(0,3)$.

Solution:

- Set $\nabla f=\langle 0,0\rangle$ and solve:

$$
\nabla f=\langle y-1, x-2\rangle=\langle 0,0\rangle \Longrightarrow y=1 \text { and } x=2
$$

- There is exactly one critical point which is $(2,1)$, but this point is not inside the triangle, so ignore it.
- On the interval $(0,0)$ to $(2,0)$,

$$
f(x, 0)=3+x \cdot 0-x-2 \cdot 0
$$

Problem 30

Find the minimum value of $f(x, y)=3+x y-x-2 y$ on the closed triangular region with vertices $(0,0),(2,0)$ and $(0,3)$.

Solution:

- Set $\nabla f=\langle 0,0\rangle$ and solve:

$$
\nabla f=\langle y-1, x-2\rangle=\langle 0,0\rangle \Longrightarrow y=1 \text { and } x=2
$$

- There is exactly one critical point which is $(2,1)$, but this point is not inside the triangle, so ignore it.
- On the interval $(0,0)$ to $(2,0)$,

$$
f(x, 0)=3+x \cdot 0-x-2 \cdot 0=3-x
$$

Problem 30

Find the minimum value of $f(x, y)=3+x y-x-2 y$ on the closed triangular region with vertices $(0,0),(2,0)$ and $(0,3)$.

Solution:

- Set $\nabla f=\langle 0,0\rangle$ and solve:

$$
\nabla f=\langle y-1, x-2\rangle=\langle 0,0\rangle \Longrightarrow y=1 \text { and } x=2
$$

- There is exactly one critical point which is $(2,1)$, but this point is not inside the triangle, so ignore it.
- On the interval $(0,0)$ to $(2,0)$, $f(x, 0)=3+x \cdot 0-x-2 \cdot 0=3-x$, which has a minimum value of 1 at the point $(2,0)$.

Problem 30

Find the minimum value of $f(x, y)=3+x y-x-2 y$ on the closed triangular region with vertices $(0,0),(2,0)$ and $(0,3)$.

Solution:

- Set $\nabla f=\langle 0,0\rangle$ and solve:

$$
\nabla f=\langle y-1, x-2\rangle=\langle 0,0\rangle \Longrightarrow y=1 \text { and } x=2
$$

- There is exactly one critical point which is $(2,1)$, but this point is not inside the triangle, so ignore it.
- On the interval $(0,0)$ to $(2,0)$, $f(x, 0)=3+x \cdot 0-x-2 \cdot 0=3-x$, which has a minimum value of 1 at the point $(2,0)$.
- On the interval $(0,0)$ to $(0,3)$,

$$
f(0, y)=3+0 \cdot y-0-2 y
$$

Problem 30

Find the minimum value of $f(x, y)=3+x y-x-2 y$ on the closed triangular region with vertices $(0,0),(2,0)$ and $(0,3)$.

Solution:

- Set $\nabla f=\langle 0,0\rangle$ and solve:

$$
\nabla f=\langle y-1, x-2\rangle=\langle 0,0\rangle \Longrightarrow y=1 \text { and } x=2
$$

- There is exactly one critical point which is $(2,1)$, but this point is not inside the triangle, so ignore it.
- On the interval $(0,0)$ to $(2,0)$, $f(x, 0)=3+x \cdot 0-x-2 \cdot 0=3-x$, which has a minimum value of 1 at the point $(2,0)$.
- On the interval $(0,0)$ to $(0,3)$, $f(0, y)=3+0 \cdot y-0-2 y=3-2 y$, which has a minimum value of -3 at $(0,3)$.

Problem 30

Find the minimum value of $f(x, y)=3+x y-x-2 y$ on the closed triangular region with vertices $(0,0),(2,0)$ and $(0,3)$.

Solution:

- Set $\nabla f=\langle 0,0\rangle$ and solve:

$$
\nabla f=\langle y-1, x-2\rangle=\langle 0,0\rangle \Longrightarrow y=1 \text { and } x=2
$$

- There is exactly one critical point which is $(2,1)$, but this point is not inside the triangle, so ignore it.
- On the interval $(0,0)$ to $(2,0)$, $f(x, 0)=3+x \cdot 0-x-2 \cdot 0=3-x$, which has a minimum value of 1 at the point $(2,0)$.
- On the interval $(0,0)$ to $(0,3)$, $f(0, y)=3+0 \cdot y-0-2 y=3-2 y$, which has a minimum value of -3 at $(0,3)$.
- On the line segment from $(2,0)$ to $(0,3), y=-\frac{3}{2} x+3$

Problem 30

Find the minimum value of $f(x, y)=3+x y-x-2 y$ on the closed triangular region with vertices $(0,0),(2,0)$ and $(0,3)$.

Solution:

- Set $\nabla f=\langle 0,0\rangle$ and solve:

$$
\nabla f=\langle y-1, x-2\rangle=\langle 0,0\rangle \Longrightarrow y=1 \text { and } x=2
$$

- There is exactly one critical point which is $(2,1)$, but this point is not inside the triangle, so ignore it.
- On the interval $(0,0)$ to $(2,0)$, $f(x, 0)=3+x \cdot 0-x-2 \cdot 0=3-x$, which has a minimum value of 1 at the point $(2,0)$.
- On the interval $(0,0)$ to $(0,3)$, $f(0, y)=3+0 \cdot y-0-2 y=3-2 y$, which has a minimum value of -3 at $(0,3)$.
- On the line segment from $(2,0)$ to $(0,3), y=-\frac{3}{2} x+3$ and $f\left(x, y=-\frac{3}{2} x+3\right)$

Problem 30

Find the minimum value of $f(x, y)=3+x y-x-2 y$ on the closed triangular region with vertices $(0,0),(2,0)$ and $(0,3)$.

Solution:

- Set $\nabla f=\langle 0,0\rangle$ and solve:

$$
\nabla f=\langle y-1, x-2\rangle=\langle 0,0\rangle \Longrightarrow y=1 \text { and } x=2
$$

- There is exactly one critical point which is $(2,1)$, but this point is not inside the triangle, so ignore it.
- On the interval $(0,0)$ to $(2,0)$, $f(x, 0)=3+x \cdot 0-x-2 \cdot 0=3-x$, which has a minimum value of 1 at the point $(2,0)$.
- On the interval $(0,0)$ to $(0,3)$, $f(0, y)=3+0 \cdot y-0-2 y=3-2 y$, which has a minimum value of -3 at $(0,3)$.
- On the line segment from $(2,0)$ to $(0,3), y=-\frac{3}{2} x+3$ and $f\left(x, y=-\frac{3}{2} x+3\right)=3+x\left(-\frac{3}{2} x+3\right)-x-2\left(-\frac{3}{2} x+3\right)$

Problem 30

Find the minimum value of $f(x, y)=3+x y-x-2 y$ on the closed triangular region with vertices $(0,0),(2,0)$ and $(0,3)$.

Solution:

- Set $\nabla f=\langle 0,0\rangle$ and solve:

$$
\nabla f=\langle y-1, x-2\rangle=\langle 0,0\rangle \Longrightarrow y=1 \text { and } x=2
$$

- There is exactly one critical point which is $(2,1)$, but this point is not inside the triangle, so ignore it.
- On the interval $(0,0)$ to $(2,0)$, $f(x, 0)=3+x \cdot 0-x-2 \cdot 0=3-x$, which has a minimum value of 1 at the point $(2,0)$.
- On the interval $(0,0)$ to $(0,3)$, $f(0, y)=3+0 \cdot y-0-2 y=3-2 y$, which has a minimum value of -3 at $(0,3)$.
- On the line segment from $(2,0)$ to $(0,3), y=-\frac{3}{2} x+3$ and $f\left(x, y=-\frac{3}{2} x+3\right)=3+x\left(-\frac{3}{2} x+3\right)-x-2\left(-\frac{3}{2} x+3\right)=$ $-\frac{3}{2} x^{2}+5 x-3$,

Problem 30

Find the minimum value of $f(x, y)=3+x y-x-2 y$ on the closed triangular region with vertices $(0,0),(2,0)$ and $(0,3)$.

Solution:

- Set $\nabla f=\langle 0,0\rangle$ and solve:

$$
\nabla f=\langle y-1, x-2\rangle=\langle 0,0\rangle \Longrightarrow y=1 \text { and } x=2
$$

- There is exactly one critical point which is $(2,1)$, but this point is not inside the triangle, so ignore it.
- On the interval $(0,0)$ to $(2,0)$, $f(x, 0)=3+x \cdot 0-x-2 \cdot 0=3-x$, which has a minimum value of 1 at the point $(2,0)$.
- On the interval $(0,0)$ to $(0,3)$, $f(0, y)=3+0 \cdot y-0-2 y=3-2 y$, which has a minimum value of -3 at $(0,3)$.
- On the line segment from $(2,0)$ to $(0,3), y=-\frac{3}{2} x+3$ and $f\left(x, y=-\frac{3}{2} x+3\right)=3+x\left(-\frac{3}{2} x+3\right)-x-2\left(-\frac{3}{2} x+3\right)=$ $-\frac{3}{2} x^{2}+5 x-3$, which has a minimum of $\frac{25}{6}-3$ at $\left(\frac{5}{3}, \frac{1}{2}\right)$.

Problem 30

Find the minimum value of $f(x, y)=3+x y-x-2 y$ on the closed triangular region with vertices $(0,0),(2,0)$ and $(0,3)$.

Solution:

- Set $\nabla f=\langle 0,0\rangle$ and solve:

$$
\nabla f=\langle y-1, x-2\rangle=\langle 0,0\rangle \Longrightarrow y=1 \text { and } x=2
$$

- There is exactly one critical point which is $(2,1)$, but this point is not inside the triangle, so ignore it.
- On the interval $(0,0)$ to $(2,0)$, $f(x, 0)=3+x \cdot 0-x-2 \cdot 0=3-x$, which has a minimum value of 1 at the point $(2,0)$.
- On the interval $(0,0)$ to $(0,3)$, $f(0, y)=3+0 \cdot y-0-2 y=3-2 y$, which has a minimum value of -3 at $(0,3)$.
- On the line segment from $(2,0)$ to $(0,3), y=-\frac{3}{2} x+3$ and $f\left(x, y=-\frac{3}{2} x+3\right)=3+x\left(-\frac{3}{2} x+3\right)-x-2\left(-\frac{3}{2} x+3\right)=$ $-\frac{3}{2} x^{2}+5 x-3$, which has a minimum of $\frac{25}{6}-3$ at $\left(\frac{5}{3}, \frac{1}{2}\right)$.
- Hence, the absolute minimum value of $f(x, y)$ is -3 .

Problem 31(1)

Use Lagrange multipliers to find the extreme values of $f(x, y)=x y$ with constraint $g(x, y)=x^{2}+2 y^{2}=3$.

Problem 31(1)

Use Lagrange multipliers to find the extreme values of $f(x, y)=x y$ with constraint $g(x, y)=x^{2}+2 y^{2}=3$.

Solution:

Problem 31(1)

Use Lagrange multipliers to find the extreme values of $f(x, y)=x y$ with constraint $g(x, y)=x^{2}+2 y^{2}=3$.

Solution:

- Set $\nabla f=\langle y, x\rangle=\lambda \nabla g=\lambda\langle 2 x, 4 y\rangle$ and solve:

Problem 31(1)

Use Lagrange multipliers to find the extreme values of $f(x, y)=x y$ with constraint $g(x, y)=x^{2}+2 y^{2}=3$.

Solution:

- Set $\nabla f=\langle y, x\rangle=\lambda \nabla g=\lambda\langle 2 x, 4 y\rangle$ and solve:

$$
\begin{aligned}
& y=\lambda 2 x \Longrightarrow x=0 \text { or } \lambda=\frac{y}{2 x} . \\
& x=\lambda 4 y \Longrightarrow y=0 \text { or } \lambda=\frac{x}{4 y} .
\end{aligned}
$$

Problem 31(1)

Use Lagrange multipliers to find the extreme values of $f(x, y)=x y$ with constraint $g(x, y)=x^{2}+2 y^{2}=3$.

Solution:

- Set $\nabla f=\langle y, x\rangle=\lambda \nabla g=\lambda\langle 2 x, 4 y\rangle$ and solve:

$$
\begin{aligned}
& y=\lambda 2 x \Longrightarrow x=0 \text { or } \lambda=\frac{y}{2 x} . \\
& x=\lambda 4 y \Longrightarrow y=0 \text { or } \lambda=\frac{x}{4 y} .
\end{aligned}
$$

- Since $g(x, y)=x^{2}+2 y^{2}=3$, either x or y must be nonzero;

Problem 31(1)

Use Lagrange multipliers to find the extreme values of $f(x, y)=x y$ with constraint $g(x, y)=x^{2}+2 y^{2}=3$.

Solution:

- Set $\nabla f=\langle y, x\rangle=\lambda \nabla g=\lambda\langle 2 x, 4 y\rangle$ and solve:

$$
\begin{aligned}
& y=\lambda 2 x \Longrightarrow x=0 \text { or } \lambda=\frac{y}{2 x} . \\
& x=\lambda 4 y \Longrightarrow y=0 \text { or } \lambda=\frac{x}{4 y} .
\end{aligned}
$$

- Since $g(x, y)=x^{2}+2 y^{2}=3$, either x or y must be nonzero; the above equations then imply both x and y are nonzero.

Problem 31(1)

Use Lagrange multipliers to find the extreme values of $f(x, y)=x y$ with constraint $g(x, y)=x^{2}+2 y^{2}=3$.

Solution:

- Set $\nabla f=\langle y, x\rangle=\lambda \nabla g=\lambda\langle 2 x, 4 y\rangle$ and solve:

$$
\begin{aligned}
& y=\lambda 2 x \Longrightarrow x=0 \text { or } \lambda=\frac{y}{2 x} . \\
& x=\lambda 4 y \Longrightarrow y=0 \text { or } \lambda=\frac{x}{4 y} .
\end{aligned}
$$

- Since $g(x, y)=x^{2}+2 y^{2}=3$, either x or y must be nonzero; the above equations then imply both x and y are nonzero.
- Since x, y are both nonzero, then

$$
\frac{y}{2 x}=\frac{x}{4 y}
$$

Problem 31(1)

Use Lagrange multipliers to find the extreme values of $f(x, y)=x y$ with constraint $g(x, y)=x^{2}+2 y^{2}=3$.

Solution:

- Set $\nabla f=\langle y, x\rangle=\lambda \nabla g=\lambda\langle 2 x, 4 y\rangle$ and solve:

$$
\begin{aligned}
& y=\lambda 2 x \Longrightarrow x=0 \text { or } \lambda=\frac{y}{2 x} . \\
& x=\lambda 4 y \Longrightarrow y=0 \text { or } \lambda=\frac{x}{4 y} .
\end{aligned}
$$

- Since $g(x, y)=x^{2}+2 y^{2}=3$, either x or y must be nonzero; the above equations then imply both x and y are nonzero.
- Since x, y are both nonzero, then

$$
\frac{y}{2 x}=\frac{x}{4 y} \Longrightarrow 4 y^{2}=2 x^{2}
$$

Problem 31(1)

Use Lagrange multipliers to find the extreme values of $f(x, y)=x y$ with constraint $g(x, y)=x^{2}+2 y^{2}=3$.

Solution:

- Set $\nabla f=\langle y, x\rangle=\lambda \nabla g=\lambda\langle 2 x, 4 y\rangle$ and solve:

$$
\begin{aligned}
& y=\lambda 2 x \Longrightarrow x=0 \text { or } \lambda=\frac{y}{2 x} . \\
& x=\lambda 4 y \Longrightarrow y=0 \text { or } \lambda=\frac{x}{4 y} .
\end{aligned}
$$

- Since $g(x, y)=x^{2}+2 y^{2}=3$, either x or y must be nonzero; the above equations then imply both x and y are nonzero.
- Since x, y are both nonzero, then

$$
\frac{y}{2 x}=\frac{x}{4 y} \Longrightarrow 4 y^{2}=2 x^{2} \Longrightarrow x^{2}=2 y^{2}
$$

Problem 31(1)

Use Lagrange multipliers to find the extreme values of $f(x, y)=x y$ with constraint $g(x, y)=x^{2}+2 y^{2}=3$.

Solution:

- Set $\nabla f=\langle y, x\rangle=\lambda \nabla g=\lambda\langle 2 x, 4 y\rangle$ and solve:

$$
\begin{aligned}
& y=\lambda 2 x \Longrightarrow x=0 \text { or } \lambda=\frac{y}{2 x} . \\
& x=\lambda 4 y \Longrightarrow y=0 \text { or } \lambda=\frac{x}{4 y} .
\end{aligned}
$$

- Since $g(x, y)=x^{2}+2 y^{2}=3$, either x or y must be nonzero; the above equations then imply both x and y are nonzero.
- Since x, y are both nonzero, then

$$
\frac{y}{2 x}=\frac{x}{4 y} \Longrightarrow 4 y^{2}=2 x^{2} \Longrightarrow x^{2}=2 y^{2}
$$

- From the constraint $x^{2}+2 y^{2}=3$, we get $y= \pm \frac{\sqrt{3}}{2}$,

Problem 31(1)

Use Lagrange multipliers to find the extreme values of $f(x, y)=x y$ with constraint $g(x, y)=x^{2}+2 y^{2}=3$.

Solution:

- Set $\nabla f=\langle y, x\rangle=\lambda \nabla g=\lambda\langle 2 x, 4 y\rangle$ and solve:

$$
\begin{aligned}
& y=\lambda 2 x \Longrightarrow x=0 \text { or } \lambda=\frac{y}{2 x} . \\
& x=\lambda 4 y \Longrightarrow y=0 \text { or } \lambda=\frac{x}{4 y} .
\end{aligned}
$$

- Since $g(x, y)=x^{2}+2 y^{2}=3$, either x or y must be nonzero; the above equations then imply both x and y are nonzero.
- Since x, y are both nonzero, then

$$
\frac{y}{2 x}=\frac{x}{4 y} \Longrightarrow 4 y^{2}=2 x^{2} \Longrightarrow x^{2}=2 y^{2}
$$

- From the constraint $x^{2}+2 y^{2}=3$, we get $y= \pm \frac{\sqrt{3}}{2}$, and the 4 possible points $\left(\pm \frac{\sqrt{3}}{\sqrt{2}}, \pm \frac{\sqrt{3}}{2}\right)$ where $f(x, y)$ is extreme.

Problem 31(1)

Use Lagrange multipliers to find the extreme values of $f(x, y)=x y$ with constraint $g(x, y)=x^{2}+2 y^{2}=3$.

Solution:

- Set $\nabla f=\langle y, x\rangle=\lambda \nabla g=\lambda\langle 2 x, 4 y\rangle$ and solve:

$$
\begin{aligned}
& y=\lambda 2 x \Longrightarrow x=0 \text { or } \lambda=\frac{y}{2 x} . \\
& x=\lambda 4 y \Longrightarrow y=0 \text { or } \lambda=\frac{x}{4 y} .
\end{aligned}
$$

- Since $g(x, y)=x^{2}+2 y^{2}=3$, either x or y must be nonzero; the above equations then imply both x and y are nonzero.
- Since x, y are both nonzero, then

$$
\frac{y}{2 x}=\frac{x}{4 y} \Longrightarrow 4 y^{2}=2 x^{2} \Longrightarrow x^{2}=2 y^{2}
$$

- From the constraint $x^{2}+2 y^{2}=3$, we get $y= \pm \frac{\sqrt{3}}{2}$, and the 4 possible points $\left(\pm \frac{\sqrt{3}}{\sqrt{2}}, \pm \frac{\sqrt{3}}{2}\right)$ where $f(x, y)$ is extreme.
- Then $f\left(\frac{\sqrt{3}}{\sqrt{2}}, \frac{\sqrt{3}}{2}\right)=f\left(-\frac{\sqrt{3}}{\sqrt{2}},-\frac{\sqrt{3}}{2}\right)=\frac{3}{2 \sqrt{2}}$,

Problem 31(1)

Use Lagrange multipliers to find the extreme values of $f(x, y)=x y$ with constraint $g(x, y)=x^{2}+2 y^{2}=3$.

Solution:

- Set $\nabla f=\langle y, x\rangle=\lambda \nabla g=\lambda\langle 2 x, 4 y\rangle$ and solve:

$$
\begin{aligned}
& y=\lambda 2 x \Longrightarrow x=0 \text { or } \lambda=\frac{y}{2 x} . \\
& x=\lambda 4 y \Longrightarrow y=0 \text { or } \lambda=\frac{x}{4 y} .
\end{aligned}
$$

- Since $g(x, y)=x^{2}+2 y^{2}=3$, either x or y must be nonzero; the above equations then imply both x and y are nonzero.
- Since x, y are both nonzero, then

$$
\frac{y}{2 x}=\frac{x}{4 y} \Longrightarrow 4 y^{2}=2 x^{2} \Longrightarrow x^{2}=2 y^{2}
$$

- From the constraint $x^{2}+2 y^{2}=3$, we get $y= \pm \frac{\sqrt{3}}{2}$, and the 4 possible points $\left(\pm \frac{\sqrt{3}}{\sqrt{2}}, \pm \frac{\sqrt{3}}{2}\right)$ where $f(x, y)$ is extreme.
- Then $f\left(\frac{\sqrt{3}}{\sqrt{2}}, \frac{\sqrt{3}}{2}\right)=f\left(-\frac{\sqrt{3}}{\sqrt{2}},-\frac{\sqrt{3}}{2}\right)=\frac{3}{2 \sqrt{2}}$,

$$
f\left(-\frac{\sqrt{3}}{\sqrt{2}}, \frac{\sqrt{3}}{2}\right)=f\left(\frac{\sqrt{3}}{\sqrt{2}},-\frac{\sqrt{3}}{2}\right)=-\frac{3}{2 \sqrt{2}} .
$$

Problem 31(1)

Use Lagrange multipliers to find the extreme values of $f(x, y)=x y$ with constraint $g(x, y)=x^{2}+2 y^{2}=3$.

Solution:

- Set $\nabla f=\langle y, x\rangle=\lambda \nabla g=\lambda\langle 2 x, 4 y\rangle$ and solve:

$$
\begin{aligned}
& y=\lambda 2 x \Longrightarrow x=0 \text { or } \lambda=\frac{y}{2 x} . \\
& x=\lambda 4 y \Longrightarrow y=0 \text { or } \lambda=\frac{x}{4 y} .
\end{aligned}
$$

- Since $g(x, y)=x^{2}+2 y^{2}=3$, either x or y must be nonzero; the above equations then imply both x and y are nonzero.
- Since x, y are both nonzero, then

$$
\frac{y}{2 x}=\frac{x}{4 y} \Longrightarrow 4 y^{2}=2 x^{2} \Longrightarrow x^{2}=2 y^{2}
$$

- From the constraint $x^{2}+2 y^{2}=3$, we get $y= \pm \frac{\sqrt{3}}{2}$, and the 4 possible points $\left(\pm \frac{\sqrt{3}}{\sqrt{2}}, \pm \frac{\sqrt{3}}{2}\right)$ where $f(x, y)$ is extreme.
- Then $f\left(\frac{\sqrt{3}}{\sqrt{2}}, \frac{\sqrt{3}}{2}\right)=f\left(-\frac{\sqrt{3}}{\sqrt{2}},-\frac{\sqrt{3}}{2}\right)=\frac{3}{2 \sqrt{2}}$,

$$
f\left(-\frac{\sqrt{3}}{\sqrt{2}}, \frac{\sqrt{3}}{2}\right)=f\left(\frac{\sqrt{3}}{\sqrt{2}},-\frac{\sqrt{3}}{2}\right)=-\frac{3}{2 \sqrt{2}} .
$$

- Hence, the extreme values are $\pm \frac{3}{2 \sqrt{2}}$.

Problem 31(2)

Use Lagrange multipliers to find the extreme values of $g(x, y, z)=x+3 y-2 z$ with constraint $x^{2}+2 y^{2}+z^{2}=5$.

Problem 31(2)

Use Lagrange multipliers to find the extreme values of $g(x, y, z)=x+3 y-2 z$ with constraint $x^{2}+2 y^{2}+z^{2}=5$.

Solution:
There is no Lagrange multipliers problem in 3 variables on this exam.

Problem 32(1)
Find the iterated integral,

$$
\int_{1}^{4} \int_{0}^{2}(x+\sqrt{y}) d x d y
$$

Problem 32(1)

Find the iterated integral,

$$
\int_{1}^{4} \int_{0}^{2}(x+\sqrt{y}) d x d y
$$

Solution:

$$
\int_{1}^{4} \int_{0}^{2}(x+\sqrt{y}) d x d y
$$

Problem 32(1)

Find the iterated integral,

$$
\int_{1}^{4} \int_{0}^{2}(x+\sqrt{y}) d x d y
$$

Solution:

$$
\int_{1}^{4} \int_{0}^{2}(x+\sqrt{y}) d x d y=\int_{1}^{4}\left[\frac{x^{2}}{2}+\sqrt{y} x\right]_{0}^{2} d y
$$

Problem 32(1)

Find the iterated integral,

$$
\int_{1}^{4} \int_{0}^{2}(x+\sqrt{y}) d x d y
$$

Solution:

$$
\begin{gathered}
\int_{1}^{4} \int_{0}^{2}(x+\sqrt{y}) d x d y=\int_{1}^{4}\left[\frac{x^{2}}{2}+\sqrt{y} x\right]_{0}^{2} d y \\
\quad=\int_{1}^{4}\left(2+2 y^{\frac{1}{2}}\right) d y
\end{gathered}
$$

Problem 32(1)

Find the iterated integral,

$$
\int_{1}^{4} \int_{0}^{2}(x+\sqrt{y}) d x d y
$$

Solution:

$$
\begin{gathered}
\int_{1}^{4} \int_{0}^{2}(x+\sqrt{y}) d x d y=\int_{1}^{4}\left[\frac{x^{2}}{2}+\sqrt{y} x\right]_{0}^{2} d y \\
=\int_{1}^{4}\left(2+2 y^{\frac{1}{2}}\right) d y=2 y+\left.\frac{4}{3} y^{\frac{3}{2}}\right|_{1} ^{4}
\end{gathered}
$$

Problem 32(1)

Find the iterated integral,

$$
\int_{1}^{4} \int_{0}^{2}(x+\sqrt{y}) d x d y
$$

Solution:

$$
\begin{gathered}
\int_{1}^{4} \int_{0}^{2}(x+\sqrt{y}) d x d y=\int_{1}^{4}\left[\frac{x^{2}}{2}+\sqrt{y} x\right]_{0}^{2} d y \\
=\int_{1}^{4}\left(2+2 y^{\frac{1}{2}}\right) d y=2 y+\left.\frac{4}{3} y^{\frac{3}{2}}\right|_{1} ^{4} \\
=8+\frac{4}{3}(8)-\left(2+\frac{4}{3}\right)
\end{gathered}
$$

Problem 32(2)
Find the iterated integral,

$$
\int_{1}^{2} \int_{0}^{1}(2 x+3 y)^{2} d y d x
$$

Problem 32(2)
Find the iterated integral,

$$
\int_{1}^{2} \int_{0}^{1}(2 x+3 y)^{2} d y d x
$$

Solution:

$$
\int_{1}^{2} \int_{0}^{1}(2 x+3 y)^{2} d y d x
$$

Problem 32(2)

Find the iterated integral,

$$
\int_{1}^{2} \int_{0}^{1}(2 x+3 y)^{2} d y d x
$$

Solution:

$$
\int_{1}^{2} \int_{0}^{1}(2 x+3 y)^{2} d y d x=\int_{1}^{2} \int_{0}^{1} 4 x^{2}+12 x y+9 y^{2} d y d x
$$

Problem 32(2)

Find the iterated integral,

$$
\int_{1}^{2} \int_{0}^{1}(2 x+3 y)^{2} d y d x
$$

Solution:

$$
\begin{aligned}
& \int_{1}^{2} \int_{0}^{1}(2 x+3 y)^{2} d y d x=\int_{1}^{2} \int_{0}^{1} 4 x^{2}+12 x y+9 y^{2} d y d x \\
& \quad=\int_{1}^{2}\left[4 x^{2} y+6 x y^{2}+3 y^{3}\right]_{0}^{1} d x
\end{aligned}
$$

Problem 32(2)

Find the iterated integral,

$$
\int_{1}^{2} \int_{0}^{1}(2 x+3 y)^{2} d y d x
$$

Solution:

$$
\begin{aligned}
& \int_{1}^{2} \int_{0}^{1}(2 x+3 y)^{2} d y d x=\int_{1}^{2} \int_{0}^{1} 4 x^{2}+12 x y+9 y^{2} d y d x \\
& \quad=\int_{1}^{2}\left[4 x^{2} y+6 x y^{2}+3 y^{3}\right]_{0}^{1} d x=\int_{1}^{2} 4 x^{2}+6 x+3 d x
\end{aligned}
$$

Problem 32(2)

Find the iterated integral,

$$
\int_{1}^{2} \int_{0}^{1}(2 x+3 y)^{2} d y d x
$$

Solution:

$$
\begin{aligned}
& \int_{1}^{2} \int_{0}^{1}(2 x+3 y)^{2} d y d x=\int_{1}^{2} \int_{0}^{1} 4 x^{2}+12 x y+9 y^{2} d y d x \\
& =\int_{1}^{2}\left[4 x^{2} y+6 x y^{2}+3 y^{3}\right]_{0}^{1} d x=\int_{1}^{2} 4 x^{2}+6 x+3 d x \\
& =\frac{4}{3} x^{3}+3 x^{2}+\left.3 x\right|_{1} ^{2}
\end{aligned}
$$

Problem 32(2)

Find the iterated integral,

$$
\int_{1}^{2} \int_{0}^{1}(2 x+3 y)^{2} d y d x
$$

Solution:

$$
\begin{aligned}
& \int_{1}^{2} \int_{0}^{1}(2 x+3 y)^{2} d y d x=\int_{1}^{2} \int_{0}^{1} 4 x^{2}+12 x y+9 y^{2} d y d x \\
& =\int_{1}^{2}\left[4 x^{2} y+6 x y^{2}+3 y^{3}\right]_{0}^{1} d x=\int_{1}^{2} 4 x^{2}+6 x+3 d x \\
& =\frac{4}{3} x^{3}+3 x^{2}+\left.3 x\right|_{1} ^{2}=\frac{4}{3}(2)^{3}+3(2)^{2}+3(2)-\left(\frac{4}{3}+3+3\right)
\end{aligned}
$$

Problem 32(3)

Find the iterated integral,

$$
\int_{0}^{1} \int_{x}^{2-x}\left(x^{2}-y\right) d y d x
$$

Solution:

There is no integration problem on this exam with varying limits of integration (function limits).

Problem 32(4)

Find the iterated integral,

$$
\int_{0}^{1} \int_{x^{2}}^{1} x^{3} \sin \left(y^{3}\right) d y d x
$$

(Hint: Reverse the order of integration)

Solution:

There is no integration problem on this exam with varying limits of integration (function limits).

Problem 33(1)

Evaluate the following double integral.

$$
\iint_{\mathbf{R}} \cos (x+2 y) d A, \quad \mathbf{R}=\{(x, y) \mid 0 \leq x \leq \pi, 0 \leq y \leq \pi / 2\} .
$$

Problem 33(1)

Evaluate the following double integral.

$$
\iint_{\mathbf{R}} \cos (x+2 y) d A, \quad \mathbf{R}=\{(x, y) \mid 0 \leq x \leq \pi, 0 \leq y \leq \pi / 2\}
$$

Solution:

- Applying Fubini's Theorem and the fact $\sin (\pi+\theta)=-\sin (\theta)$, we obtain:

$$
\iint_{\mathrm{R}} \cos (x+2 y) d A
$$

Problem 33(1)

Evaluate the following double integral.

$$
\iint_{\mathbf{R}} \cos (x+2 y) d A, \quad \mathbf{R}=\{(x, y) \mid 0 \leq x \leq \pi, 0 \leq y \leq \pi / 2\}
$$

Solution:

- Applying Fubini's Theorem and the fact $\sin (\pi+\theta)=-\sin (\theta)$, we obtain:

$$
\iint_{\mathrm{R}} \cos (x+2 y) d A=\int_{0}^{\frac{\pi}{2}} \int_{0}^{\pi} \cos (x+2 y) d x d y
$$

Problem 33(1)

Evaluate the following double integral.

$$
\iint_{\mathbf{R}} \cos (x+2 y) d A, \quad \mathbf{R}=\{(x, y) \mid 0 \leq x \leq \pi, 0 \leq y \leq \pi / 2\}
$$

Solution:

- Applying Fubini's Theorem and the fact $\sin (\pi+\theta)=-\sin (\theta)$, we obtain:

$$
\begin{aligned}
& \iint_{\mathrm{R}} \cos (x+2 y) d A=\int_{0}^{\frac{\pi}{2}} \int_{0}^{\pi} \cos (x+2 y) d x d y \\
= & \int_{0}^{\frac{\pi}{2}}[\sin (x+2 y)]_{0}^{\pi} d y
\end{aligned}
$$

Problem 33(1)

Evaluate the following double integral.

$$
\iint_{\mathbf{R}} \cos (x+2 y) d A, \quad \mathbf{R}=\{(x, y) \mid 0 \leq x \leq \pi, 0 \leq y \leq \pi / 2\}
$$

Solution:

- Applying Fubini's Theorem and the fact $\sin (\pi+\theta)=-\sin (\theta)$, we obtain:

$$
\begin{aligned}
& \iint_{\mathrm{R}} \cos (x+2 y) d A=\int_{0}^{\frac{\pi}{2}} \int_{0}^{\pi} \cos (x+2 y) d x d y \\
= & \int_{0}^{\frac{\pi}{2}}[\sin (x+2 y)]_{0}^{\pi} d y=\int_{0}^{\frac{\pi}{2}} \sin (\pi+2 y)-\sin (2 y) d y
\end{aligned}
$$

Problem 33(1)

Evaluate the following double integral.

$$
\iint_{\mathbf{R}} \cos (x+2 y) d A, \quad \mathbf{R}=\{(x, y) \mid 0 \leq x \leq \pi, 0 \leq y \leq \pi / 2\}
$$

Solution:

- Applying Fubini's Theorem and the fact $\sin (\pi+\theta)=-\sin (\theta)$, we obtain:

$$
\begin{aligned}
& \iint_{\mathrm{R}} \cos (x+2 y) d A=\int_{0}^{\frac{\pi}{2}} \int_{0}^{\pi} \cos (x+2 y) d x d y \\
= & \int_{0}^{\frac{\pi}{2}}[\sin (x+2 y)]_{0}^{\pi} d y=\int_{0}^{\frac{\pi}{2}} \sin (\pi+2 y)-\sin (2 y) d y \\
= & \int_{0}^{\frac{\pi}{2}}-\sin (2 y) 2 d y
\end{aligned}
$$

Problem 33(1)

Evaluate the following double integral.

$$
\iint_{\mathbf{R}} \cos (x+2 y) d A, \quad \mathbf{R}=\{(x, y) \mid 0 \leq x \leq \pi, 0 \leq y \leq \pi / 2\}
$$

Solution:

- Applying Fubini's Theorem and the fact $\sin (\pi+\theta)=-\sin (\theta)$, we obtain:

$$
\begin{aligned}
& \iint_{\mathrm{R}} \cos (x+2 y) d A=\int_{0}^{\frac{\pi}{2}} \int_{0}^{\pi} \cos (x+2 y) d x d y \\
= & \int_{0}^{\frac{\pi}{2}}[\sin (x+2 y)]_{0}^{\pi} d y=\int_{0}^{\frac{\pi}{2}} \sin (\pi+2 y)-\sin (2 y) d y \\
= & \int_{0}^{\frac{\pi}{2}}-\sin (2 y) 2 d y=\left.\cos (2 y)\right|_{0} ^{\frac{\pi}{2}}=-1-1=-2 .
\end{aligned}
$$

Problem 33(2)

Evaluate the following double integral.

$$
\iint_{\mathbf{R}} e^{y^{2}} d A, \quad \mathbf{R}=\{(x, y) \mid 0 \leq y \leq 1,0 \leq x \leq y\} .
$$

Solution:

There is no integration problem on this exam with varying limits of integration (function limits).

Problem 33(3)

Evaluate the following double integral.

$$
\iint_{\mathrm{R}} x \sqrt{y^{2}-x^{2}} d A, \quad \mathbf{R}=\{(x, y) \mid 0 \leq y \leq 1,0 \leq x \leq y\} .
$$

Solution:
There is no integration problem on this exam with varying limits of integration (function limits).

Problem 34(1)

Find the volume \mathbf{V} of the solid under the surface $z=4+x^{2}-y^{2}$ and above the rectangle

$$
\mathbf{R}=\{(x, y) \mid-1 \leq x \leq 1,0 \leq y \leq 2\}
$$

Problem 34(1)

Find the volume \mathbf{V} of the solid under the surface $z=4+x^{2}-y^{2}$ and above the rectangle

$$
\mathbf{R}=\{(x, y) \mid-1 \leq x \leq 1,0 \leq y \leq 2\}
$$

Solution:

$$
\mathbf{V}=\iint_{\mathbf{R}}\left(4+x^{2}-y^{2}\right) d A
$$

Problem 34(1)

Find the volume \mathbf{V} of the solid under the surface $z=4+x^{2}-y^{2}$ and above the rectangle

$$
\mathbf{R}=\{(x, y) \mid-1 \leq x \leq 1,0 \leq y \leq 2\}
$$

Solution:

$$
\mathbf{V}=\iint_{\mathbf{R}}\left(4+x^{2}-y^{2}\right) d A=\int_{0}^{2} \int_{-1}^{1}\left(4+x^{2}-y^{2}\right) d x d y
$$

Problem 34(1)

Find the volume \mathbf{V} of the solid under the surface $z=4+x^{2}-y^{2}$ and above the rectangle

$$
\mathbf{R}=\{(x, y) \mid-1 \leq x \leq 1,0 \leq y \leq 2\}
$$

Solution:

$$
\begin{aligned}
\mathbf{V} & =\iint_{\mathbf{R}}\left(4+x^{2}-y^{2}\right) d A=\int_{0}^{2} \int_{-1}^{1}\left(4+x^{2}-y^{2}\right) d x d y \\
& =\int_{0}^{2}\left[4 x+\frac{x^{3}}{3}-y^{2} x\right]_{-1}^{1} d y
\end{aligned}
$$

Problem 34(1)

Find the volume \mathbf{V} of the solid under the surface $z=4+x^{2}-y^{2}$ and above the rectangle

$$
\mathbf{R}=\{(x, y) \mid-1 \leq x \leq 1,0 \leq y \leq 2\}
$$

Solution:

$$
\begin{aligned}
\mathbf{V} & =\iint_{\mathbf{R}}\left(4+x^{2}-y^{2}\right) d A=\int_{0}^{2} \int_{-1}^{1}\left(4+x^{2}-y^{2}\right) d x d y \\
& =\int_{0}^{2}\left[4 x+\frac{x^{3}}{3}-y^{2} x\right]_{-1}^{1} d y=\int_{0}^{2}\left(8+\frac{2}{3}-2 y^{2}\right) d y
\end{aligned}
$$

Problem 34(1)

Find the volume \mathbf{V} of the solid under the surface $z=4+x^{2}-y^{2}$ and above the rectangle

$$
\mathbf{R}=\{(x, y) \mid-1 \leq x \leq 1,0 \leq y \leq 2\}
$$

Solution:

$$
\begin{aligned}
& \mathbf{V}=\iint_{R}\left(4+x^{2}-y^{2}\right) d A=\int_{0}^{2} \int_{-1}^{1}\left(4+x^{2}-y^{2}\right) d x d y \\
&=\int_{0}^{2}\left[4 x+\frac{x^{3}}{3}-y^{2} x\right]_{-1}^{1} d y=\int_{0}^{2}\left(8+\frac{2}{3}-2 y^{2}\right) d y \\
&=\left(8+\frac{2}{3}\right) y-\left.\frac{2}{3} y^{3}\right|_{0} ^{2}
\end{aligned}
$$

Problem 34(1)

Find the volume \mathbf{V} of the solid under the surface $z=4+x^{2}-y^{2}$ and above the rectangle

$$
\mathbf{R}=\{(x, y) \mid-1 \leq x \leq 1,0 \leq y \leq 2\}
$$

Solution:

$$
\begin{gathered}
\mathbf{V}=\iint_{\mathrm{R}}\left(4+x^{2}-y^{2}\right) d A=\int_{0}^{2} \int_{-1}^{1}\left(4+x^{2}-y^{2}\right) d x d y \\
=\int_{0}^{2}\left[4 x+\frac{x^{3}}{3}-y^{2} x\right]_{-1}^{1} d y=\int_{0}^{2}\left(8+\frac{2}{3}-2 y^{2}\right) d y \\
=\left(8+\frac{2}{3}\right) y-\left.\frac{2}{3} y^{3}\right|_{0} ^{2}=\frac{52}{3}-\frac{16}{3}
\end{gathered}
$$

Problem 34(1)

Find the volume \mathbf{V} of the solid under the surface $z=4+x^{2}-y^{2}$ and above the rectangle

$$
\mathbf{R}=\{(x, y) \mid-1 \leq x \leq 1,0 \leq y \leq 2\}
$$

Solution:

$$
\begin{gathered}
\mathbf{V}=\iint_{R}\left(4+x^{2}-y^{2}\right) d A=\int_{0}^{2} \int_{-1}^{1}\left(4+x^{2}-y^{2}\right) d x d y \\
=\int_{0}^{2}\left[4 x+\frac{x^{3}}{3}-y^{2} x\right]_{-1}^{1} d y=\int_{0}^{2}\left(8+\frac{2}{3}-2 y^{2}\right) d y \\
=\left(8+\frac{2}{3}\right) y-\left.\frac{2}{3} y^{3}\right|_{0} ^{2}=\frac{52}{3}-\frac{16}{3}=\frac{36}{3}
\end{gathered}
$$

Problem 34(2)

Find the volume \mathbf{V} of the solid under the surface $z=2 x+y^{2}$ and above the region bounded by curves $x-y^{2}=0$ and $x-y^{3}=0$.

Solution:

There is no integration problem on this exam with varying limits of integration (function limits).

